Tag Archives: learn

#435707 AI Agents Startle Researchers With ...

After 25 million games, the AI agents playing hide-and-seek with each other had mastered four basic game strategies. The researchers expected that part.

After a total of 380 million games, the AI players developed strategies that the researchers didn’t know were possible in the game environment—which the researchers had themselves created. That was the part that surprised the team at OpenAI, a research company based in San Francisco.

The AI players learned everything via a machine learning technique known as reinforcement learning. In this learning method, AI agents start out by taking random actions. Sometimes those random actions produce desired results, which earn them rewards. Via trial-and-error on a massive scale, they can learn sophisticated strategies.

In the context of games, this process can be abetted by having the AI play against another version of itself, ensuring that the opponents will be evenly matched. It also locks the AI into a process of one-upmanship, where any new strategy that emerges forces the opponent to search for a countermeasure. Over time, this “self-play” amounted to what the researchers call an “auto-curriculum.”

According to OpenAI researcher Igor Mordatch, this experiment shows that self-play “is enough for the agents to learn surprising behaviors on their own—it’s like children playing with each other.”

Reinforcement is a hot field of AI research right now. OpenAI’s researchers used the technique when they trained a team of bots to play the video game Dota 2, which squashed a world-champion human team last April. The Alphabet subsidiary DeepMind has used it to triumph in the ancient board game Go and the video game StarCraft.

Aniruddha Kembhavi, a researcher at the Allen Institute for Artificial Intelligence (AI2) in Seattle, says games such as hide-and-seek offer a good way for AI agents to learn “foundational skills.” He worked on a team that taught their AllenAI to play Pictionary with humans, viewing the gameplay as a way for the AI to work on common sense reasoning and communication. “We are, however, quite far away from being able to translate these preliminary findings in highly simplified environments into the real world,” says Kembhavi.

Illustration: OpenAI

AI agents construct a fort during a hide-and-seek game developed by OpenAI.

In OpenAI’s game of hide-and-seek, both the hiders and the seekers received a reward only if they won the game, leaving the AI players to develop their own strategies. Within a simple 3D environment containing walls, blocks, and ramps, the players first learned to run around and chase each other (strategy 1). The hiders next learned to move the blocks around to build forts (2), and then the seekers learned to move the ramps (3), enabling them to jump inside the forts. Then the hiders learned to move all the ramps into their forts before the seekers could use them (4).

The two strategies that surprised the researchers came next. First the seekers learned that they could jump onto a box and “surf” it over to a fort (5), allowing them to jump in—a maneuver that the researchers hadn’t realized was physically possible in the game environment. So as a final countermeasure, the hiders learned to lock all the boxes into place (6) so they weren’t available for use as surfboards.

Illustration: OpenAI

An AI agent uses a nearby box to surf its way into a competitor’s fort.

In this circumstance, having AI agents behave in an unexpected way wasn’t a problem: They found different paths to their rewards, but didn’t cause any trouble. However, you can imagine situations in which the outcome would be rather serious. Robots acting in the real world could do real damage. And then there’s Nick Bostrom’s famous example of a paper clip factory run by an AI, whose goal is to make as many paper clips as possible. As Bostrom told IEEE Spectrum back in 2014, the AI might realize that “human bodies consist of atoms, and those atoms could be used to make some very nice paper clips.”

Bowen Baker, another member of the OpenAI research team, notes that it’s hard to predict all the ways an AI agent will act inside an environment—even a simple one. “Building these environments is hard,” he says. “The agents will come up with these unexpected behaviors, which will be a safety problem down the road when you put them in more complex environments.”

AI researcher Katja Hofmann at Microsoft Research Cambridge, in England, has seen a lot of gameplay by AI agents: She started a competition that uses Minecraft as the playing field. She says the emergent behavior seen in this game, and in prior experiments by other researchers, shows that games can be a useful for studies of safe and responsible AI.

“I find demonstrations like this, in games and game-like settings, a great way to explore the capabilities and limitations of existing approaches in a safe environment,” says Hofmann. “Results like these will help us develop a better understanding on how to validate and debug reinforcement learning systems–a crucial step on the path towards real-world applications.”

Baker says there’s also a hopeful takeaway from the surprises in the hide-and-seek experiment. “If you put these agents into a rich enough environment they will find strategies that we never knew were possible,” he says. “Maybe they can solve problems that we can’t imagine solutions to.” Continue reading

Posted in Human Robots

#435683 How High Fives Help Us Get in Touch With ...

The human sense of touch is so naturally ingrained in our everyday lives that we often don’t notice its presence. Even so, touch is a crucial sensing ability that helps people to understand the world and connect with others. As the market for robots grows, and as robots become more ingrained into our environments, people will expect robots to participate in a wide variety of social touch interactions. At Oregon State University’s Collaborative Robotics and Intelligent Systems (CoRIS) Institute, I research how to equip everyday robots with better social-physical interaction skills—from playful high-fives to challenging physical therapy routines.

Some commercial robots already possess certain physical interaction skills. For example, the videoconferencing feature of mobile telepresence robots can keep far-away family members connected with one another. These robots can also roam distant spaces and bump into people, chairs, and other remote objects. And my Roomba occasionally tickles my toes before turning to vacuum a different area of the room. As a human being, I naturally interpret this (and other Roomba behaviors) as social, even if they were not intended as such. At the same time, for both of these systems, social perceptions of the robots’ physical interaction behaviors are not well understood, and these social touch-like interactions cannot be controlled in nuanced ways.

Before joining CoRIS early this year, I was a postdoc at the University of Southern California’s Interaction Lab, and prior to that, I completed my doctoral work at the GRASP Laboratory’s Haptics Group at the University of Pennsylvania. My dissertation focused on improving the general understanding of how robot control and planning strategies influence perceptions of social touch interactions. As part of that research, I conducted a study of human-robot hand-to-hand contact, focusing on an interaction somewhere between a high five and a hand-clapping game. I decided to study this particular interaction because people often high five, and they will likely expect robots in everyday spaces to high five as well!

I conducted a study of human-robot hand-to-hand contact, focusing on an interaction somewhere between a high five and a hand-clapping game. I decided to study this particular interaction because people often high five, and they will likely expect robots to high five as well!

The implications of motion and planning on the social touch experience in these interactions is also crucial—think about a disappointingly wimpy (or triumphantly amazing) high five that you’ve experienced in the past. This great or terrible high-fiving experience could be fleeting, but it could also influence who you interact with, who you’re friends with, and even how you perceive the character or personalities of those around you. This type of perception, judgement, and response could extend to personal robots, too!

An investigation like this requires a mixture of more traditional robotics research (e.g., understanding how to move and control a robot arm, developing models of the desired robot motion) along with techniques from design and psychology (e.g., performing interviews with research participants, using best practices from experimental methods in perception). Enabling robots with social touch abilities also comes with many challenges, and even skilled humans can have trouble anticipating what another person is about to do. Think about trying to make satisfying hand contact during a high five—you might know the classic adage “watch the elbow,” but if you’re like me, even this may not always work.

I conducted a research study involving eight different types of human-robot hand contact, with different combinations of the following: interactions with a facially reactive or non-reactive robot, a physically reactive or non-reactive planning strategy, and a lower or higher robot arm stiffness. My robotic system could become facially reactive by changing its facial expression in response to hand contact, or physically reactive by updating its plan of where to move next after sensing hand contact. The stiffness of the robot could be adjusted by changing a variable that controlled how quickly the robot’s motors tried to pull its arm to the desired position. I knew from previous research that fine differences in touch interactions can have a big impact on perceived robot character. For example, if a robot grips an object too tightly or for too long while handing an object to a person, it might be perceived as greedy, possessive, or perhaps even Sméagol-like. A robot that lets go too soon might appear careless or sloppy.

In the example cases of robot grip, it’s clear that understanding people’s perceptions of robot characteristics and personality can help roboticists choose the right robot design based on the proposed operating environment of the robot. I likewise wanted to learn how the facial expressions, physical reactions, and stiffness of a hand-clapping robot would influence human perceptions of robot pleasantness, energeticness, dominance, and safety. Understanding this relationship can help roboticists to equip robots with personalities appropriate for the task at hand. For example, a robot assisting people in a grocery store may need to be designed with a high level of pleasantness and only moderate energy, while a maximally effective robot for comedy roast battles may need high degrees of energy and dominance above all else.

After many a late night at the GRASP Lab clapping hands with a big red robot, I was ready to conduct the study. Twenty participants visited the lab to clap hands with our Baxter Research Robot and help me begin to understand how characteristics of this humanoid robot’s social touch influenced its pleasantness, energeticness, dominance, and apparent safety. Baxter interacted with participants using a custom 3D-printed hand that was inlaid with silicone inserts.

The study showed that a facially reactive robot seemed more pleasant and energetic. A physically reactive robot seemed less pleasant, energetic, and dominant for this particular study design and interaction. I thought contact with a stiffer robot would seem harder (and therefore more dominant and less safe), but counter to my expectations, a stiffer-armed robot seemed safer and less dominant to participants. This may be because the stiffer robot was more precise in following its pre-programmed trajectory, therefore seeming more predictable and less free-spirited.

Safety ratings of the robot were generally high, and several participants commented positively on the robot’s facial expressions. Some participants attributed inventive (and non-existent) intelligences to the robot—I used neither computer vision nor the Baxter robot’s cameras in this study, but more than one participant complimented me on how well the robot tracked their hand position. While interacting with the robot, participants displayed happy facial expressions more than any other analyzed type of expression.

Photo: Naomi Fitter

Participants were asked to clap hands with Baxter and describe how they perceived the robot in terms of its pleasantness, energeticness, dominance, and apparent safety.

Circling back to the idea of how people might interpret even rudimentary and practical robot behaviors as social, these results show that this type of social perception isn’t just true for my lovable (but sometimes dopey) Roomba, but also for collaborative industrial robots, and generally, any robot capable of physical human-robot interaction. In designing the motion of Baxter, the adjustment of a single number in the equation that controls joint stiffness can flip the robot from seeming safe and docile to brash and commanding. These implications are sometimes predictable, but often unexpected.

The results of this particular study give us a partial guide to manipulating the emotional experience of robot users by adjusting aspects of robot control and planning, but future work is needed to fully understand the design space of social touch. Will materials play a major role? How about personalized machine learning? Do results generalize over all robot arms, or even a specialized subset like collaborative industrial robot arms? I’m planning to continue answering these questions, and when I finally solve human-robot social touch, I’ll high five all my robots to celebrate.

Naomi Fitter is an assistant professor in the Collaborative Robotics and Intelligent Systems (CoRIS) Institute at Oregon State University, where her Social Haptics, Assistive Robotics, and Embodiment (SHARE) research group aims to equip robots with the ability to engage and empower people in interactions from playful high-fives to challenging physical therapy routines. She completed her doctoral work in the GRASP Laboratory’s Haptics Group and was a postdoctoral scholar in the University of Southern California’s Interaction Lab from 2017 to 2018. Naomi’s not-so-secret pastime is performing stand-up and improv comedy. Continue reading

Posted in Human Robots

#435658 Video Friday: A Two-Armed Robot That ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
Let us know if you have suggestions for next week, and enjoy today’s videos.

I’m sure you’ve seen this video already because you read this blog every day, but if you somehow missed it because you were skiing across Antarctica (the only valid excuse we’re accepting today), here’s our video introducing HMI’s Aquanaut transforming robot submarine.

And after you recover from all that frostbite, make sure and read our in-depth feature article here.

[ Aquanaut ]

Last week we complained about not having seen a ballbot with a manipulator, so Roberto from CMU shared a new video of their ballbot, featuring a pair of 7-DoF arms.

We should learn more at Humanoids 2019.

[ CMU ]

Thanks Roberto!

The FAA is making it easier for recreational drone pilots to get near-realtime approval to fly in lightly controlled airspace.

[ LAANC ]

Self-reconfigurable modular robots are usually composed of multiple modules with uniform docking interfaces that can be transformed into different configurations by themselves. The reconfiguration planning problem is finding what sequence of reconfiguration actions are required for one arrangement of modules to transform into another. We present a novel reconfiguration planning algorithm for modular robots. The algorithm compares the initial configuration with the goal configuration efficiently. The reconfiguration actions can be executed in a distributed manner so that each module can efficiently finish its reconfiguration task which results in a global reconfiguration for the system. In the end, the algorithm is demonstrated on real modular robots and some example reconfiguration tasks are provided.

[ CKbot ]

A nice design of a gripper that uses a passive thumb of sorts to pick up flat objects from flat surfaces.

[ Paper ] via [ Laval University ]

I like this video of a palletizing robot from Kawasaki because in the background you can see a human doing the exact same job and obviously not enjoying it.

[ Kawasaki ]

This robot cleans and “brings joy and laughter.” What else do we need?

I do appreciate that all the robots are named Leo, and that they’re also all female.

[ LionsBot ]

This is less of a dishwashing robot and more of a dishsorting robot, but we’ll forgive it because it doesn’t drop a single dish.

[ TechMagic ]

Thanks Ryosuke!

A slight warning here that the robot in the following video (which costs something like $180,000) appears “naked” in some scenes, none of which are strictly objectionable, we hope.

Beautifully slim and delicate motion life-size motion figures are ideal avatars for expressing emotions to customers in various arts, content and businesses. We can provide a system that integrates not only motion figures but all moving devices.

[ Speecys ]

The best way to operate a Husky with a pair of manipulators on it is to become the robot.

[ UT Austin ]

The FlyJacket drone control system from EPFL has been upgraded so that it can yank you around a little bit.

In several fields of human-machine interaction, haptic guidance has proven to be an effective training tool for enhancing user performance. This work presents the results of psychophysical and motor learning studies that were carried out with human participant to assess the effect of cable-driven haptic guidance for a task involving aerial robotic teleoperation. The guidance system was integrated into an exosuit, called the FlyJacket, that was developed to control drones with torso movements. Results for the Just Noticeable Difference (JND) and from the Stevens Power Law suggest that the perception of force on the users’ torso scales linearly with the amplitude of the force exerted through the cables and the perceived force is close to the magnitude of the stimulus. Motor learning studies reveal that this form of haptic guidance improves user performance in training, but this improvement is not retained when participants are evaluated without guidance.

[ EPFL ]

The SAND Challenge is an opportunity for small businesses to compete in an autonomous unmanned aerial vehicle (UAV) competition to help NASA address safety-critical risks associated with flying UAVs in the national airspace. Set in a post-natural disaster scenario, SAND will push the envelope of aviation.

[ NASA ]

Legged robots have the potential to traverse diverse and rugged terrain. To find a safe and efficient navigation path and to carefully select individual footholds, it is useful to predict properties of the terrain ahead of the robot. In this work, we propose a method to collect data from robot-terrain interaction and associate it to images, to then train a neural network to predict terrain properties from images.

[ RSL ]

Misty wants to be your new receptionist.

[ Misty Robotics ]

For years, we’ve been pointing out that while new Roombas have lots of great features, older Roombas still do a totally decent job of cleaning your floors. This video is a performance comparison between the newest Roomba (the S9+) and the original 2002 Roomba (!), and the results will surprise you. Or maybe they won’t.

[ Vacuum Wars ]

Lex Fridman from MIT interviews Chris Urmson, who was involved in some of the earliest autonomous vehicle projects, Google’s original self-driving car among them, and is currently CEO of Aurora Innovation.

Chris Urmson was the CTO of the Google Self-Driving Car team, a key engineer and leader behind the Carnegie Mellon autonomous vehicle entries in the DARPA grand challenges and the winner of the DARPA urban challenge. Today he is the CEO of Aurora Innovation, an autonomous vehicle software company he started with Sterling Anderson, who was the former director of Tesla Autopilot, and Drew Bagnell, Uber’s former autonomy and perception lead.

[ AI Podcast ]

In this week’s episode of Robots in Depth, Per speaks with Lael Odhner from RightHand Robotics.

Lael Odhner is a co-founder of RightHand Robotics, that is developing a gripper based on the combination of control and soft, compliant parts to get better grasping of objects. Their work focuses on grasping and manipulating everyday human objects in everyday environments.This mimics how human hands combine control and flexibility to grasp objects with great dexterity.

The combination of control and compliance makes the RightHand robotics gripper very light-weight and affordable. The compliance makes it easier to grasp objects of unknown shape and differs from the way industrial robots usually grip. The compliance also helps in a more unstructured environment where contact with the object and its surroundings cannot be exactly predicted.

[ RightHand Robotics ] via [ Robots in Depth ] Continue reading

Posted in Human Robots

#435626 Video Friday: Watch Robots Make a Crepe ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. Every week, we also post a calendar of upcoming robotics events; here's what we have so far (send us your events!):

Robotronica – August 18, 2019 – Brisbane, Australia
CLAWAR 2019 – August 26-28, 2019 – Kuala Lumpur, Malaysia
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi
Humanoids 2019 – October 15-17, 2019 – Toronto
ARSO 2019 – October 31-November 2, 2019 – Beijing
ROSCon 2019 – October 31-November 1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today's videos.

Team CoSTAR (JPL, MIT, Caltech, KAIST, LTU) has one of the more diverse teams of robots that we’ve seen:

[ Team CoSTAR ]

A team from Carnegie Mellon University and Oregon State University is sending ground and aerial autonomous robots into a Pittsburgh-area mine to prepare for this month’s DARPA Subterranean Challenge.

“Look at that fire extinguisher, what a beauty!” Expect to hear a lot more of that kind of weirdness during SubT.

[ CMU ]

Unitree Robotics is starting to batch-manufacture Laikago Pro quadrupeds, and if you buy four of them, they can carry you around in a chair!

I’m also really liking these videos from companies that are like, “We have a whole bunch of robot dogs now—what weird stuff can we do with them?”

[ Unitree Robotics ]

Why take a handful of pills every day for all the stuff that's wrong with you, when you could take one custom pill instead? Because custom pills are time-consuming to make, that’s why. But robots don’t care!

Multiply Labs’ factory is designed to operate in parallel. All the filling robots and all the quality-control robots are operating at the same time. The robotic arm, in the meanwhile, shuttles dozens of trays up and down the production floor, making sure that each capsule is filled with the right drugs. The manufacturing cell shown in this article can produce 10,000 personalized capsules in an 8-hour shift. A single cell occupies just 128 square feet (12 square meters) on the production floor. This means that a regular production facility (~10,000 square feet, or 929 m2 ) can house 78 cells, for an overall output of 780,000 capsules per shift. This exceeds the output of most traditional manufacturers—while producing unique personalized capsules!

[ Multiply Labs ]

Thanks Fred!

If you’re getting tired of all those annoying drones that sound like giant bees, just have a listen to this turbine-powered one:

[ Malloy Aeronautics ]

In retrospect, it’s kind of amazing that nobody has bothered to put a functional robotic dog head on a quadruped robot before this, right?

Equipped with sensors, high-tech radar imaging, cameras and a directional microphone, this 100-pound (45-kilogram) super-robot is still a “puppy-in-training.” Just like a regular dog, he responds to commands such as “sit,” “stand,” and “lie down.” Eventually, he will be able to understand and respond to hand signals, detect different colors, comprehend many languages, coordinate his efforts with drones, distinguish human faces, and even recognize other dogs.

As an information scout, Astro’s key missions will include detecting guns, explosives and gun residue to assist police, the military, and security personnel. This robodog’s talents won’t just end there, he also can be programmed to assist as a service dog for the visually impaired or to provide medical diagnostic monitoring. The MPCR team also is training Astro to serve as a first responder for search-and-rescue missions such as hurricane reconnaissance as well as military maneuvers.

[ FAU ]

And now this amazing video, “The Coke Thief,” from ICRA 2005 (!):

[ Paper ]

CYBATHLON Series put the focus on one or two of the six disciplines and are organized in cooperation with international universities and partners. The CYBATHLON Arm and Leg Prosthesis Series took place in Karlsruhe, Germany, from 16 to 18 May and was organized in cooperation with the Karlsruhe Institute of Technology (KIT) and the trade fair REHAB Karlsruhe.

The CYBATHLON Wheelchair Series took place in Kawasaki, Japan on 5 May 2019 and was organized in cooperation with the CYBATHLON Wheelchair Series Japan Organizing Committee and supported by the Swiss Embassy.

[ Cybathlon ]

Rainbow crepe robot!

There’s also this other robot, which I assume does something besides what's in the video, because otherwise it appears to be a massively overengineered way of shaping cooked rice into a chubby triangle.

[ PC Watch ]

The Weaponized Plastic Fighting League at Fetch Robotics has had another season of shardation, deintegration, explodification, and other -tions. Here are a couple fan favorite match videos:

[ Fetch Robotics ]

This video is in German, but it’s worth watching for the three seconds of extremely satisfying footage showing a robot twisting dough into pretzels.

[ Festo ]

Putting brains into farming equipment is a no-brainer, since it’s a semi-structured environment that's generally clear of wayward humans driving other vehicles.

[ Lovol ]

Thanks Fan!

Watch some robots assemble suspiciously Lego-like (but definitely not actually Lego) minifigs.

[ DevLinks ]

The Robotics Innovation Facility (RIFBristol) helps businesses, entrepreneurs, researchers and public sector bodies to embrace the concept of ‘Industry 4.0'. From training your staff in robotics, and demonstrating how automation can improve your manufacturing processes, to prototyping and validating your new innovations—we can provide the support you need.

[ RIF ]

Ryan Gariepy from Clearpath Robotics (and a bunch of other stuff) gave a talk at ICRA with the title of “Move Fast and (Don’t) Break Things: Commercializing Robotics at the Speed of Venture Capital,” which is more interesting when you know that this year’s theme was “Notable Failures.”

[ Clearpath Robotics ]

In this week’s episode of Robots in Depth, Per interviews Michael Nielsen, a computer vision researcher at the Danish Technological Institute.

Michael worked with a fusion of sensors like stereo vision, thermography, radar, lidar and high-frame-rate cameras, merging multiple images for high dynamic range. All this, to be able to navigate the tricky situation in a farm field where you need to navigate close to or even in what is grown. Multibaseline cameras were also used to provide range detection over a wide range of distances.

We also learn about how he expanded his work into sorting recycling, a very challenging problem. We also hear about the problems faced when using time of flight and sheet of light cameras. He then shares some good results using stereo vision, especially combined with blue light random dot projectors.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435619 Video Friday: Watch This Robot Dog ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, CA, USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Team PLUTO (University of Pennsylvania, Ghost Robotics, and Exyn Technologies) put together this video giving us a robot’s-eye-view (or whatever they happen to be using for eyes) of the DARPA Subterranean Challenge tunnel circuits.

[ PLUTO ]

Zhifeng Huang has been improving his jet-stepping humanoid robot, which features new hardware and the ability to take larger and more complex steps.

This video reported the last progress of an ongoing project utilizing ducted-fan propulsion system to improve humanoid robot’s ability in stepping over large ditches. The landing point of the robot’s swing foot can be not only forward but also side direction. With keeping quasi-static balance, the robot was able to step over a ditch with 450mm in width (up to 97% of the robot’s leg’s length) in 3D stepping.

[ Paper ]

Thanks Zhifeng!

These underacuated hands from Matei Ciocarlie’s lab at Columbia are magically able to reconfigure themselves to grasp different object types with just one or two motors.

[ Paper ] via [ ROAM Lab ]

This is one reason we should pursue not “autonomous cars” but “fully autonomous cars” that never require humans to take over. We can’t be trusted.

During our early days as the Google self-driving car project, we invited some employees to test our vehicles on their commutes and weekend trips. What we were testing at the time was similar to the highway driver assist features that are now available on cars today, where the car takes over the boring parts of the driving, but if something outside its ability occurs, the driver has to take over immediately.

What we saw was that our testers put too much trust in that technology. They were doing things like texting, applying makeup, and even falling asleep that made it clear they would not be ready to take over driving if the vehicle asked them to. This is why we believe that nothing short of full autonomy will do.

[ Waymo ]

Buddy is a DIY and fetchingly minimalist social robot (of sorts) that will be coming to Kickstarter this month.

We have created a new arduino kit. His name is Buddy. He is a DIY social robot to serve as a replacement for Jibo, Cozmo, or any of the other bots that are no longer available. Fully 3D printed and supported he adds much more to our series of Arduino STEM robotics kits.

Buddy is able to look around and map his surroundings and react to changes within them. He can be surprised and he will always have a unique reaction to changes. The kit can be built very easily in less than an hour. It is even robust enough to take the abuse that kids can give it in a classroom.

[ Littlebots ]

The android Mindar, based on the Buddhist deity of mercy, preaches sermons at Kodaiji temple in Kyoto, and its human colleagues predict that with artificial intelligence it could one day acquire unlimited wisdom. Developed at a cost of almost $1 million (¥106 million) in a joint project between the Zen temple and robotics professor Hiroshi Ishiguro, the robot teaches about compassion and the dangers of desire, anger and ego.

[ Japan Times ]

I’m not sure whether it’s the sound or what, but this thing scares me for some reason.

[ BIRL ]

This gripper uses magnets as a sort of adjustable spring for dynamic stiffness control, which seems pretty clever.

[ Buffalo ]

What a package of medicine sees while being flown by drone from a hospital to a remote clinic in the Dominican Republic. The drone flew 11 km horizontally and 800 meters vertically, and I can’t even imagine what it would take to make that drive.

[ WeRobotics ]

My first ride in a fully autonomous car was at Stanford in 2009. I vividly remember getting in the back seat of a descendant of Junior, and watching the steering wheel turn by itself as the car executed a perfect parking maneuver. Ten years later, it’s still fun to watch other people have that experience.

[ Waymo ]

Flirtey, the pioneer of the commercial drone delivery industry, has unveiled the much-anticipated first video of its next-generation delivery drone, the Flirtey Eagle. The aircraft designer and manufacturer also unveiled the Flirtey Portal, a sophisticated take off and landing platform that enables scalable store-to-door operations; and an autonomous software platform that enables drones to deliver safely to homes.

[ Flirtey ]

EPFL scientists are developing new approaches for improved control of robotic hands – in particular for amputees – that combines individual finger control and automation for improved grasping and manipulation. This interdisciplinary proof-of-concept between neuroengineering and robotics was successfully tested on three amputees and seven healthy subjects.

[ EPFL ]

This video is a few years old, but we’ll take any excuse to watch the majestic sage-grouse be majestic in all their majesticness.

[ UC Davis ]

I like the idea of a game of soccer (or, football to you weirdos in the rest of the world) where the ball has a mind of its own.

[ Sphero ]

Looks like the whole delivery glider idea is really taking off! Or, you know, not taking off.

Weird that they didn’t show the landing, because it sure looked like it was going to plow into the side of the hill at full speed.

[ Yates ] via [ sUAS News ]

This video is from a 2018 paper, but it’s not like we ever get tired of seeing quadrupeds do stuff, right?

[ MIT ]

Founder and Head of Product, Ian Bernstein, and Head of Engineering, Morgan Bell, have been involved in the Misty project for years and they have learned a thing or two about building robots. Hear how and why Misty evolved into a robot development platform, learn what some of the earliest prototypes did (and why they didn’t work for what we envision), and take a deep dive into the technology decisions that form the Misty II platform.

[ Misty Robotics ]

Lex Fridman interviews Vijay Kumar on the Artifiical Intelligence Podcast.

[ AI Podcast ]

This week’s CMU RI Seminar is from Ross Knepper at Cornell, on Formalizing Teamwork in Human-Robot Interaction.

Robots out in the world today work for people but not with people. Before robots can work closely with ordinary people as part of a human-robot team in a home or office setting, robots need the ability to acquire a new mix of functional and social skills. Working with people requires a shared understanding of the task, capabilities, intentions, and background knowledge. For robots to act jointly as part of a team with people, they must engage in collaborative planning, which involves forming a consensus through an exchange of information about goals, capabilities, and partial plans. Often, much of this information is conveyed through implicit communication. In this talk, I formalize components of teamwork involving collaboration, communication, and representation. I illustrate how these concepts interact in the application of social navigation, which I argue is a first-class example of teamwork. In this setting, participants must avoid collision by legibly conveying intended passing sides via nonverbal cues like path shape. A topological representation using the braid groups enables the robot to reason about a small enumerable set of passing outcomes. I show how implicit communication of topological group plans achieves rapid covergence to a group consensus, and how a robot in the group can deliberately influence the ultimate outcome to maximize joint performance, yielding pedestrian comfort with the robot.

[ CMU RI ]

In this week’s episode of Robots in Depth, Per speaks with Julien Bourgeois about Claytronics, a project from Carnegie Mellon and Intel to develop “programmable matter.”

Julien started out as a computer scientist. He was always interested in robotics privately but then had the opportunity to get into micro robots when his lab was merged into the FEMTO-ST Institute. He later worked with Seth Copen Goldstein at Carnegie Mellon on the Claytronics project.

Julien shows an enlarged mock-up of the small robots that make up programmable matter, catoms, and speaks about how they are designed. Currently he is working on a unit that is one centimeter in diameter and he shows us the very small CPU that goes into that model.

[ Robots in Depth ] Continue reading

Posted in Human Robots