Tag Archives: large
#432013 How AI Can Overcome Planet’s ...
People are often quick to link artificial intelligence with the future of every industry including technology, medicine, and science. For most scientists, there is a common belief that the answer lies in data mining through the information we have already generated online. Whereas humans cannot analyze large amounts of data, AI can produce fast, accurate …
The post How AI Can Overcome Planet’s Challenges: 5 Ways How Artificial Intelligence May Help to Save the Planet appeared first on TFOT. Continue reading
#431939 This Awesome Robot Is the Size of a ...
They say size isn’t everything, but when it comes to delta robots it seems like it’s pretty important.
The speed and precision of these machines sees them employed in delicate pick-and-place tasks in all kinds of factories, as well as to control 3D printer heads. But Harvard researchers have found that scaling them down to millimeter scale makes them even faster and more precise, opening up applications in everything from microsurgery to manipulating tiny objects like circuit board components or even living cells.
Unlike the industrial robots you’re probably more familiar with, delta robots consist of three individually controlled arms supporting a platform. Different combinations of movements can move the platform in three directions, and a variety of tools can be attached to this platform.
The benefit of this design is that unlike a typical robotic arm, all the motors are housed at the base rather than at the joints, which reduces their mechanical complexity, but also—importantly—the weight of the arms. That means they can move and accelerate faster and with greater precision.
It’s been known for a while that the physics of these robots means the smaller you can make them, the more pronounced these advantages become, but scientists had struggled to build them at scales below tens of centimeters.
In a recent paper in the journal Science Robotics, the researchers describe how they used an origami-inspired micro-fabrication approach that relies on folding flat sheets of composite materials to create a robot measuring just 15 millimeters by 15 millimeters by 20 millimeters.
The robot dubbed “milliDelta” features joints that rely on a flexible polymer core to bend—a simplified version of the more complicated joints found in large-scale delta robots. The machine was powered by three piezoelectric actuators, which flex when a voltage is applied, and could perform movements at frequencies 15 to 20 times higher than current delta robots, with precisions down to roughly 5 micrometers.
One potential use for the device is to cancel out surgeons’ hand tremors as they carry out delicate microsurgery procedures, such as operations on the eye’s retina. The researchers actually investigated this application in their paper. They got volunteers to hold a toothpick and measured the movement of the tip to map natural hand tremors. They fed this data to the milliDelta, which was able to match the movements and therefore cancel them out.
In an email to Singularity Hub, the researchers said that adding the robot to the end of a surgical tool could make it possible to stabilize needles or scalpels, though this would require some design optimization. For a start, the base would have to be redesigned to fit on a surgical tool, and sensors would have to be added to the robot to allow it to measure tremors in real time.
Another promising application for the device would be placing components on circuit boards at very high speeds, which could prove valuable in electronics manufacturing. The researchers even think the device’s precision means it could be used for manipulating living cells in research and clinical laboratories.
The researchers even said it would be feasible to integrate the devices onto microrobots to give them similarly impressive manipulation capabilities, though that would require considerable work to overcome control and sensing challenges.
Image Credit: Wyss institute / Harvard Continue reading
#431928 How Fast Is AI Progressing? Stanford’s ...
When? This is probably the question that futurists, AI experts, and even people with a keen interest in technology dread the most. It has proved famously difficult to predict when new developments in AI will take place. The scientists at the Dartmouth Summer Research Project on Artificial Intelligence in 1956 thought that perhaps two months would be enough to make “significant advances” in a whole range of complex problems, including computers that can understand language, improve themselves, and even understand abstract concepts.
Sixty years later, and these problems are not yet solved. The AI Index, from Stanford, is an attempt to measure how much progress has been made in artificial intelligence.
The index adopts a unique approach, and tries to aggregate data across many regimes. It contains Volume of Activity metrics, which measure things like venture capital investment, attendance at academic conferences, published papers, and so on. The results are what you might expect: tenfold increases in academic activity since 1996, an explosive growth in startups focused around AI, and corresponding venture capital investment. The issue with this metric is that it measures AI hype as much as AI progress. The two might be correlated, but then again, they may not.
The index also scrapes data from the popular coding website Github, which hosts more source code than anyone in the world. They can track the amount of AI-related software people are creating, as well as the interest levels in popular machine learning packages like Tensorflow and Keras. The index also keeps track of the sentiment of news articles that mention AI: surprisingly, given concerns about the apocalypse and an employment crisis, those considered “positive” outweigh the “negative” by three to one.
But again, this could all just be a measure of AI enthusiasm in general.
No one would dispute the fact that we’re in an age of considerable AI hype, but the progress of AI is littered by booms and busts in hype, growth spurts that alternate with AI winters. So the AI Index attempts to track the progress of algorithms against a series of tasks. How well does computer vision perform at the Large Scale Visual Recognition challenge? (Superhuman at annotating images since 2015, but they still can’t answer questions about images very well, combining natural language processing and image recognition). Speech recognition on phone calls is almost at parity.
In other narrow fields, AIs are still catching up to humans. Translation might be good enough that you can usually get the gist of what’s being said, but still scores poorly on the BLEU metric for translation accuracy. The AI index even keeps track of how well the programs can do on the SAT test, so if you took it, you can compare your score to an AI’s.
Measuring the performance of state-of-the-art AI systems on narrow tasks is useful and fairly easy to do. You can define a metric that’s simple to calculate, or devise a competition with a scoring system, and compare new software with old in a standardized way. Academics can always debate about the best method of assessing translation or natural language understanding. The Loebner prize, a simplified question-and-answer Turing Test, recently adopted Winograd Schema type questions, which rely on contextual understanding. AI has more difficulty with these.
Where the assessment really becomes difficult, though, is in trying to map these narrow-task performances onto general intelligence. This is hard because of a lack of understanding of our own intelligence. Computers are superhuman at chess, and now even a more complex game like Go. The braver predictors who came up with timelines thought AlphaGo’s success was faster than expected, but does this necessarily mean we’re closer to general intelligence than they thought?
Here is where it’s harder to track progress.
We can note the specialized performance of algorithms on tasks previously reserved for humans—for example, the index cites a Nature paper that shows AI can now predict skin cancer with more accuracy than dermatologists. We could even try to track one specific approach to general AI; for example, how many regions of the brain have been successfully simulated by a computer? Alternatively, we could simply keep track of the number of professions and professional tasks that can now be performed to an acceptable standard by AI.
“We are running a race, but we don’t know how to get to the endpoint, or how far we have to go.”
Progress in AI over the next few years is far more likely to resemble a gradual rising tide—as more and more tasks can be turned into algorithms and accomplished by software—rather than the tsunami of a sudden intelligence explosion or general intelligence breakthrough. Perhaps measuring the ability of an AI system to learn and adapt to the work routines of humans in office-based tasks could be possible.
The AI index doesn’t attempt to offer a timeline for general intelligence, as this is still too nebulous and confused a concept.
Michael Woodridge, head of Computer Science at the University of Oxford, notes, “The main reason general AI is not captured in the report is that neither I nor anyone else would know how to measure progress.” He is concerned about another AI winter, and overhyped “charlatans and snake-oil salesmen” exaggerating the progress that has been made.
A key concern that all the experts bring up is the ethics of artificial intelligence.
Of course, you don’t need general intelligence to have an impact on society; algorithms are already transforming our lives and the world around us. After all, why are Amazon, Google, and Facebook worth any money? The experts agree on the need for an index to measure the benefits of AI, the interactions between humans and AIs, and our ability to program values, ethics, and oversight into these systems.
Barbra Grosz of Harvard champions this view, saying, “It is important to take on the challenge of identifying success measures for AI systems by their impact on people’s lives.”
For those concerned about the AI employment apocalypse, tracking the use of AI in the fields considered most vulnerable (say, self-driving cars replacing taxi drivers) would be a good idea. Society’s flexibility for adapting to AI trends should be measured, too; are we providing people with enough educational opportunities to retrain? How about teaching them to work alongside the algorithms, treating them as tools rather than replacements? The experts also note that the data suffers from being US-centric.
We are running a race, but we don’t know how to get to the endpoint, or how far we have to go. We are judging by the scenery, and how far we’ve run already. For this reason, measuring progress is a daunting task that starts with defining progress. But the AI index, as an annual collection of relevant information, is a good start.
Image Credit: Photobank gallery / Shutterstock.com Continue reading
#431862 Want Self-Healing Robots and Tires? ...
We all have scars, and each one tells a story. Tales of tomfoolery, tales of haphazardness, or in my case, tales of stupidity.
Whether the cause of your scar was a push-bike accident, a lack of concentration while cutting onions, or simply the byproduct of an active lifestyle, the experience was likely extremely painful and distressing. Not to mention the long and vexatious recovery period, stretching out for weeks and months after the actual event!
Cast your minds back to that time. How you longed for instant relief from your discomfort! How you longed to have your capabilities restored in an instant!
Well, materials that can heal themselves in an instant may not be far from becoming a reality—and a family of them known as elastomers holds the key.
“Elastomer” is essentially a big, fancy word for rubber. However, elastomers have one unique property—they are capable of returning to their original form after being vigorously stretched and deformed.
This unique property of elastomers has caught the eye of many scientists around the world, particularly those working in the field of robotics. The reason? Elastomer can be encouraged to return to its original shape, in many cases by simply applying heat. The implication of this is the quick and cost-effective repair of “wounds”—cuts, tears, and punctures to the soft, elastomer-based appendages of a robot’s exoskeleton.
Researchers from Vrije University in Brussels, Belgium have been toying with the technique, and with remarkable success. The team built a robotic hand with fingers made of a type of elastomer. They found that cuts and punctures were indeed able to repair themselves simply by applying heat to the affected area.
How long does the healing process take? In this instance, about a day. Now that’s a lot shorter than the weeks and months of recovery time we typically need for a flesh wound, during which we are unable to write, play the guitar, or do the dishes. If you consider the latter to be a bad thing…
However, it’s not the first time scientists have played around with elastomers and examined their self-healing properties. Another team of scientists, headed up by Cheng-Hui Li and Chao Wang, discovered another type of elastomer that exhibited autonomous self-healing properties. Just to help you picture this stuff, the material closely resembles animal muscle— strong, flexible, and elastic. With autogenetic restorative powers to boot.
Advancements in the world of self-healing elastomers, or rubbers, may also affect the lives of everyday motorists. Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a self-healing rubber material that could be used to make tires that repair their own punctures.
This time the mechanism of self-healing doesn’t involve heat. Rather, it is related to a physical phenomenon associated with the rubber’s unique structure. Normally, when a large enough stress is applied to a typical rubber, there is catastrophic failure at the focal point of that stress. The self-healing rubber the researchers created, on the other hand, distributes that same stress evenly over a network of “crazes”—which are like cracks connected by strands of fiber.
Here’s the interesting part. Not only does this unique physical characteristic of the rubber prevent catastrophic failure, it facilitates self-repair. According to Harvard researchers, when the stress is released, the material snaps back to its original form and the crazes heal.
This wonder material could be used in any number of rubber-based products.
Professor Jinrong Wu, of Sichuan University, China, and co-author of the study, happened to single out tires: “Imagine that we could use this material as one of the components to make a rubber tire… If you have a cut through the tire, this tire wouldn’t have to be replaced right away. Instead, it would self-heal while driving, enough to give you leeway to avoid dramatic damage,” said Wu.
So where to from here? Well, self-healing elastomers could have a number of different applications. According to the article published by Quartz, cited earlier, the material could be used on artificial limbs. Perhaps it will provide some measure of structural integrity without looking like a tattered mess after years of regular use.
Or perhaps a sort of elastomer-based hybrid skin is on the horizon. A skin in which wounds heal instantly. And recovery time, unlike your regular old human skin of yesteryear, is significantly slashed. Furthermore, this future skin might eliminate those little reminders we call scars.
For those with poor judgment skills, this spells an end to disquieting reminders of our own stupidity.
Image Credit: Vrije Universiteit Brussel / Prof. Dr. ir. Bram Vanderborght Continue reading