Tag Archives: kit

#437765 Video Friday: Massive Robot Joins ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Here are some professional circus artists messing around with an industrial robot for fun, like you do.

The acrobats are part of Östgötateatern, a Swedish theatre group, and the chair bit got turned into its own act, called “The Last Fish.” But apparently the Swedish Work Environment Authority didn’t like that an industrial robot—a large ABB robotic arm—was being used in an artistic performance, arguing that the same safety measures that apply in a factory setting would apply on stage. In other words, the robot had to operate inside a protective cage and humans could not physically interact with it.

When told that their robot had to be removed, the acrobats went to court. And won! At least that’s what we understand from this Swedish press release. The court in Linköping, in southern Sweden, ruled that the safety measures taken by the theater had been sufficient. The group had worked with a local robotics firm, Dyno Robotics, to program the manipulator and learn how to interact with it as safely as possible. The robot—which the acrobats say is the eighth member of their troupe—will now be allowed to return.

[ Östgötateatern ]

Houston Mechathronics’ Aquanaut continues to be awesome, even in the middle of a pandemic. It’s taken the big step (big swim?) out of NASA’s swimming pool and into open water.

[ HMI ]

Researchers from Carnegie Mellon University and Facebook AI Research have created a navigation system for robots powered by common sense. The technique uses machine learning to teach robots how to recognize objects and understand where they’re likely to be found in house. The result allows the machines to search more strategically.

[ CMU ]

Cassie manages 2.1 m/s, which is uncomfortably fast in a couple of different ways.

Next, untethered. After that, running!

[ Michigan Robotics ]

Engineers at Caltech have designed a new data-driven method to control the movement of multiple robots through cluttered, unmapped spaces, so they do not run into one another.

Multi-robot motion coordination is a fundamental robotics problem with wide-ranging applications that range from urban search and rescue to the control of fleets of self-driving cars to formation-flying in cluttered environments. Two key challenges make multi-robot coordination difficult: first, robots moving in new environments must make split-second decisions about their trajectories despite having incomplete data about their future path; second, the presence of larger numbers of robots in an environment makes their interactions increasingly complex (and more prone to collisions).

To overcome these challenges, Soon-Jo Chung, Bren Professor of Aerospace, and Yisong Yue, professor of computing and mathematical sciences, along with Caltech graduate student Benjamin Rivière (MS ’18), postdoctoral scholar Wolfgang Hönig, and graduate student Guanya Shi, developed a multi-robot motion-planning algorithm called “Global-to-Local Safe Autonomy Synthesis,” or GLAS, which imitates a complete-information planner with only local information, and “Neural-Swarm,” a swarm-tracking controller augmented to learn complex aerodynamic interactions in close-proximity flight.

[ Caltech ]

Fetch Robotics’ Freight robot is now hauling around pulsed xenon UV lamps to autonomously disinfect spaces with UV-A, UV-B, and UV-C, all at the same time.

[ SmartGuard UV ]

When you’re a vertically symmetrical quadruped robot, there is no upside-down.

[ Ghost Robotics ]

In the virtual world, the objects you pick up do not exist: you can see that cup or pen, but it does not feel like you’re touching them. That presented a challenge to EPFL professor Herbert Shea. Drawing on his extensive experience with silicone-based muscles and motors, Shea wanted to find a way to make virtual objects feel real. “With my team, we’ve created very small, thin and fast actuators,” explains Shea. “They are millimeter-sized capsules that use electrostatic energy to inflate and deflate.” The capsules have an outer insulating membrane made of silicone enclosing an inner pocket filled with oil. Each bubble is surrounded by four electrodes, that can close like a zipper. When a voltage is applied, the electrodes are pulled together, causing the center of the capsule to swell like a blister. It is an ingenious system because the capsules, known as HAXELs, can move not only up and down, but also side to side and around in a circle. “When they are placed under your fingers, it feels as though you are touching a range of different objects,” says Shea.

[ EPFL ]

Through the simple trick of reversing motors on impact, a quadrotor can land much more reliably on slopes.

[ Sherbrooke ]

Turtlebot delivers candy at Harvard.

I <3 Turtlebot SO MUCH

[ Harvard ]

Traditional drone controllers are a little bit counterintuitive, because there’s one stick that’s forwards and backwards and another stick that’s up and down but they’re both moving on the same axis. How does that make sense?! Here’s a remote that gives you actual z-axis control instead.

[ Fenics ]

Thanks Ashley!

Lio is a mobile robot platform with a multifunctional arm explicitly designed for human-robot interaction and personal care assistant tasks. The robot has already been deployed in several health care facilities, where it is functioning autonomously, assisting staff and patients on an everyday basis.

[ F&P Robotics ]

Video shows a ground vehicle autonomously exploring and mapping a multi-storage garage building and a connected patio on Carnegie Mellon University campus. The vehicle runs onboard state estimation and mapping leveraging range, vision, and inertial sensing, local planning for collision avoidance, and terrain analysis. All processing is real-time and no post-processing involved. The vehicle drives at 2m/s through the exploration run. This work is dedicated to DARPA Subterranean Challange.

[ CMU ]

Raytheon UK’s flagship STEM programme, the Quadcopter Challenge, gives 14-15 year olds the chance to participate in a hands-on, STEM-based engineering challenge to build a fully operational quadcopter. Each team is provided with an identical kit of parts, tools and instructions to build and customise their quadcopter, whilst Raytheon UK STEM Ambassadors provide mentoring, technical support and deliver bite-size learning modules to support the build.

[ Raytheon ]

A video on some of the research work that is being carried out at The Australian Centre for Field Robotics, University of Sydney.

[ University of Sydney ]

Jeannette Bohg, assistant professor of computer science at Stanford University, gave one of the Early Career Award Keynotes at RSS 2020.

[ RSS 2020 ]

Adam Savage remembers Grant Imahara.

[ Tested ] Continue reading

Posted in Human Robots

#437687 Video Friday: Bittle Is a Palm-Sized ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online]
IROS 2020 – October 25-29, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Rongzhong Li, who is responsible for the adorable robotic cat Nybble, has an updated and even more adorable quadruped that's more robust and agile but only costs around US $200 in kit form on Kickstarter.

Looks like the early bird options are sold out, but a full kit is a $225 pledge, for delivery in December.

[ Kickstarter ]

Thanks Rz!

I still maintain that Stickybot was one of the most elegantly designed robots ever.

[ Stanford ]

With the unpredictable health crisis of COVID-19 continuing to place high demands on hospitals, PAL Robotics have successfully completed testing of their delivery robots in Barcelona hospitals this summer. The TIAGo Delivery and TIAGo Conveyor robots were deployed in Hospital Municipal of Badalona and Hospital Clínic Barcelona following a winning proposal submitted to the European DIH-Hero project. Accerion sensors were integrated onto the TIAGo Delivery Robot and TIAGo Conveyor Robot for use in this project.

[ PAL Robotics ]

Energy Robotics, a leading developer of software solutions for mobile robots used in industrial applications, announced that its remote sensing and inspection solution for Boston Dynamics’s agile mobile robot Spot was successfully deployed at Merck’s thermal exhaust treatment plant at its headquarters in Darmstadt, Germany. Energy Robotics equipped Spot with sensor technology and remote supervision functions to support the inspection mission.

Combining Boston Dynamics’ intuitive controls, robotic intelligence and open interface with Energy Robotics’ control and autonomy software, user interface and encrypted cloud connection, Spot can be taught to autonomously perform a specific inspection round while being supervised remotely from anywhere with internet connectivity. Multiple cameras and industrial sensors enable the robot to find its way around while recording and transmitting information about the facility’s onsite equipment operations.

Spot reads the displays of gauges in its immediate vicinity and can also zoom in on distant objects using an externally-mounted optical zoom lens. In the thermal exhaust treatment facility, for instance, it monitors cooling water levels and notes whether condensation water has accumulated. Outside the facility, Spot monitors pipe bridges for anomalies.

Among the robot’s many abilities, it can detect defects of wires or the temperature of pump components using thermal imaging. The robot was put through its paces on a comprehensive course that tested its ability to handle special challenges such as climbing stairs, scaling embankments and walking over grating.

[ Energy Robotics ]

Thanks Stefan!

Boston Dynamics really should give Dr. Guero an Atlas just to see what he can do with it.

[ DrGuero ]

World's First Socially Distanced Birthday Party: Located in London, the robotic arm was piloted in real time to light the candles on the cake by the founder of Extend Robotics, Chang Liu, who was sat 50 miles away in Reading. Other team members in Manchester and Reading were also able to join in the celebration as the robot was used to accurately light the candles on the birthday cake.

[ Extend Robotics ]

The Robocon in-person competition was canceled this year, but check out Tokyo University's robots in action:

[ Robocon ]

Sphero has managed to pack an entire Sphero into a much smaller sphere.

[ Sphero ]

Squishy Robotics, a small business funded by the National Science Foundation (NSF), is developing mobile sensor robots for use in disaster rescue, remote monitoring, and space exploration. The shape-shifting, mobile, senor robots from UC-Berkeley spin-off Squishy Robotics can be dropped from airplanes or drones and can provide first responders with ground-based situational awareness during fires, hazardous materials (HazMat) release, and natural and man-made disasters.

[ Squishy Robotics ]

Meet Jasper, the small girl with big dreams to FLY. Created by UTS Animal Logic Academy in partnership with the Royal Australian Air Force to encourage girls to soar above the clouds. Jasper was created using a hybrid of traditional animation techniques and technology such as robotics and 3D printing. A KUKA QUANTEC robot is used during the film making to help the Australian Royal Airforce tell their story in a unique way. UTS adapted their High Accurate robot to film consistent paths, creating a video with physical sets and digital characters.

[ AU AF ]

Impressive what the Ghost Robotics V60 can do without any vision sensors on it.

[ Ghost Robotics ]

Is your job moving tiny amounts of liquid around? Would you rather be doing something else? ABB’s YuMi got you.

[ Yumi ]

For his PhD work at the Media Lab, Biomechatronics researcher Roman Stolyarov developed a terrain-adaptive control system for robotic leg prostheses. as a way to help people with amputations feel as able-bodied and mobile as possible, by allowing them to walk seamlessly regardless of the ground terrain.

[ MIT ]

This robot collects data on each cow when she enters to be milked. Milk samples and 3D photos can be taken to monitor the cow’s health status. The Ontario Dairy Research Centre in Elora, Ontario, is leading dairy innovation through education and collaboration. It is a state-of-the-art 175,000 square foot facility for discovery, learning and outreach. This centre is a partnership between the Agricultural Research Institute of Ontario, OMAFRA, the University of Guelph and the Ontario dairy industry.

[ University of Guleph ]

Australia has one of these now, should the rest of us panic?

[ Boeing ]

Daimler and Torc are developing Level 4 automated trucks for the real world. Here is a glimpse into our closed-course testing, routes on public highways in Virginia, and self-driving capabilities development. Our year of collaborating on the future of transportation culminated in the announcement of our new truck testing center in New Mexico.

[ Torc Robotics ] Continue reading

Posted in Human Robots

#436263 Skydio 2 Review: This Is the Drone You ...

Let me begin this review by saying that the Skydio 2 is one of the most impressive robots that I have ever seen. Over the last decade, I’ve spent enough time around robots to have a very good sense of what kinds of things are particularly challenging for them, and to set my expectations accordingly. Those expectations include things like “unstructured environments are basically impossible” and “full autonomy is impractically expensive” and “robot videos rarely reflect reality.”

Skydio’s newest drone is an exception to all of this. It’s able to fly autonomously at speed through complex environments in challenging real-world conditions in a way that’s completely effortless and stress-free for the end user, allowing you to capture the kind of video that would be otherwise impossible, even (I’m guessing) for professional drone pilots. When you see this technology in action, it’s (almost) indistinguishable from magic.

Skydio 2 Price
To be clear, the Skydio 2 is not without compromises, and the price of $999 (on pre-order with delivery of the next batch expected in spring of 2020) requires some justification. But the week I’ve had with this drone has left me feeling like its fundamental autonomous capability is so far beyond just about anything that I’ve ever experienced that I’m questioning why I would every fly anything else ever again.

We’ve written extensively about Skydio, beginning in early 2016 when the company posted a video of a prototype drone dodging trees while following a dude on a bike. Even three years ago, Skydio’s tech was way better than anything we’d seen outside of a research lab, and in early 2018, they introduced their first consumer product, the Skydio R1. A little over a year later, Skydio has introduced the Skydio 2, which is smaller, smarter, and much more affordable. Here’s an overview video just to get you caught up:

Skydio sent me a Skydio 2 review unit last week, and while I’m reasonably experienced with drones in general, this is the first time I’ve tried a Skydio drone in person. I had a pretty good idea what to expect, and I was absolutely blown away. Like, I was giggling to myself while running through the woods as the drone zoomed around, deftly avoiding trees and keeping me in sight. Robots aren’t supposed to be this good.

A week is really not enough time to explore everything that the Skydio can do, especially Thanksgiving week in Washington, D.C. (a no-fly zone) in early winter. But I found a nearby state park in which I could legally and safely fly the drone, and I did my best to put the Skydio 2 through its paces.

Note: Throughout this review, we’ve got a bunch of GIFs to help illustrate different features of the drone. To fit them all in, these GIFs had to be heavily compressed. Underneath each GIF is a timestamped link to this YouTube video (also available at the bottom of the post), which you can click on to see the an extended cut of the original 4K 30 fps footage. And there’s a bunch of interesting extra video in there as well.

Skydio 2 Specs

Photo: Evan Ackerman/IEEE Spectrum

The Skydio 2 is primarily made out of magnesium, which (while light) is both heavier and more rigid and durable than plastic. The offset props (the back pair are above the body, and the front pair are below) are necessary to maintain the field of view of the navigation cameras.

The Skydio 2 both looks and feels like a well-designed and carefully thought-out drone. It’s solid, and a little on the heavy side as far as drones go—it’s primarily made out of magnesium, which (while light) is both heavier and more rigid and durable than plastic. The blue and black color scheme is far more attractive than you typically see with drones.

Photo: Evan Ackerman/IEEE Spectrum

To detect and avoid obstacles, the Skydio 2 uses an array of six 4K hemispherical cameras that feed data into an NVIDIA Jetson TX2 at 30 fps, with the drone processing a million points in 3D space per second to plan the safest path.

The Skydio 2 is built around an array of six hemispherical obstacle-avoidance cameras and the NVIDIA Jetson TX2 computing module that they’re connected to. This defines the placement of the gimbal, the motors and props, and the battery, since all of this stuff has to be as much as possible out of the view of the cameras in order for the drone to effectively avoid obstacles in any direction.

Without the bottom-mounted battery attached, the drone is quite flat. The offset props (the back pair are above the body, and the front pair are below) are necessary to maintain the field of view of the obstacle-avoidance cameras. These hemispherical cameras are on the end of each of the prop arms as well as above and below the body of the drone. They look awfully exposed, even though each is protected from ground contact by a little fin. You need to make sure these cameras are clean and smudge-free, and Skydio includes a cleaning cloth for this purpose. Underneath the drone there are slots for microSD cards, one for recording from the camera and a second one that the drone uses to store data. The attention to detail extends to the SD card insertion, which has a sloped channel that guides the card securely into its slot.

Once you snap the battery in, the drone goes from looking streamlined to looking a little chubby. Relative to other drones, the battery almost seems like an afterthought, like Skydio designed the drone and then remembered, “oops we have to add a battery somewhere, let’s just kludge it onto the bottom.” But again, the reason for this is to leave room inside the body for the NVIDIA TX2, while making sure that the battery stays out of view of the obstacle avoidance cameras.

The magnetic latching system for the battery is both solid and satisfying. I’m not sure why it’s necessary, strictly speaking, but I do like it, and it doesn’t seem like the battery will fly off even during the most aggressive maneuvers. Each battery includes an LED array that will display its charge level in 25 percent increments, as well as a button that you push to turn the drone on and off. Charging takes place via a USB-C port in the top of the drone, which I don’t like, because it means that the batteries can’t be charged on their own (like the Parrot Anafi’s battery), and that you can’t charge one battery while flying with another, like basically every other drone ever. A separate battery charger that will charge two at once is available from Skydio for an eyebrow-raising $129.

I appreciate that all of Skydio’s stuff (batteries, controller, and beacon) charges via USB-C, though. The included USB-C adapter with its beefy cable will output at up to 65 watts, which’ll charge a mostly depleted battery in under an hour. The drone turns itself on while charging, which seems unnecessary.

Photo: Evan Ackerman/IEEE Spectrum

The Skydio 2 is not foldable, making it not nearly as easy to transport as some other drones. But it does come with a nice case that mitigates this issue somewhat, and the drone plus two batteries end up as a passably flat package about the size of a laptop case.

The most obvious compromise that Skydio made with the Skydio 2 is that the drone is not foldable. Skydio CEO Adam Bry told us that adding folding joints to the arms of the Skydio 2 would have made calibrating all six cameras a nightmare and significantly impacted performance. This makes complete sense, of course, but it does mean that the Skydio 2 is not nearly as easy to transport as some other drones.

Photo: Evan Ackerman/IEEE Spectrum

Folded and unfolded: The Skydio 2 compared to the Parrot Anafi (upper left) and the DJI Mavic Pro (upper right).

The Skydio 2 does come with a very nice case that mitigates this issue somewhat, and the drone plus two batteries end up as a passably flat package about the size of a laptop case. Still, it’s just not as convenient to toss into a backpack as my Anafi, although the Mavic Mini might be even more portable.

Photo: Evan Ackerman/IEEE Spectrum

While the Skydio 2’s case is relatively compact, the non-foldable drone is overall a significantly larger package than the Parrot Anafi.

The design of the drone leads to some other compromises as well. Since landing gear would, I assume, occlude the camera system, the drone lands directly on the bottom of its battery pack, which has a slightly rubberized pad about the size of a playing card. This does’t feel particularly stable unless you end up on a very flat surface, and made me concerned for the exposed cameras underneath the drone as well as the lower set of props. I’d recommend hand takeoffs and landings—more on those later.

Skydio 2 Camera System

Photo: Evan Ackerman/IEEE Spectrum

The Skydio 2’s primary camera is a Sony IMX577 1/2.3″ 12.3-megapixel CMOS sensor. It’s mounted to a three-axis gimbal and records 4K video at 60 fps, or 1080p video at 120 fps.

The Skydio 2 comes with a three-axis gimbal supporting a 12-megapixel camera, just enough to record 4K video at 60 fps, or 1080p video at 120 fps. Skydio has provided plenty of evidence that its imaging system is at least as good if not better than other drone cameras. Tested against my Mavic Pro and Parrot Anafi, I found no reason to doubt that. To be clear, I didn’t do exhaustive pixel-peeping comparisons between them, you’re just getting my subjective opinion that the Skydio 2 has a totally decent camera that you won’t be disappointed with. I will say that I found the HDR photo function to be not all that great under the few situations in which I tested it—after looking at a few muddy sunset shots, I turned it off and was much happier.

Photo: Evan Ackerman/IEEE Spectrum

The Skydio 2’s 12-megapixel camera is solid, although we weren’t impressed with the HDR option.

The video stabilization is fantastic, to the point where watching the video footage can be underwhelming because it doesn’t reflect the motion of the drone. I almost wish there was a way to change to unstabilized (or less-stabilized) video so that the viewer could get a little more of a wild ride. Or, ideally, there’d be a way for the drone to provide you with a visualization of what it was doing using the data collected by its cameras. That’s probably wishful thinking, though. The drone itself doesn’t record audio because all you’d get would be an annoying buzz, but the app does record audio, so the audio from your phone gets combined with the drone video. Don’t expect great quality, but it’s better than nothing.

Skydio 2 App
The app is very simple compared to every other drone app I’ve tried, and that’s a good thing. Here’s what it looks like:

Image: Skydio

Trackable subjects get a blue “+” sign over them, and if you tap them, the “+” turns into a spinny blue circle. Once you’ve got a subject selected, you can choose from a variety of cinematic skills that the drone will execute while following you.

You get the controls that you need and the information that you need, and nothing else. Manual flight with the on-screen buttons works adequately, and the double-tap to fly function on the phone works surprisingly well, making it easy to direct the drone to a particular spot above the ground.

The settings menus are limited but functional, allowing you to change settings for the camera and a few basic tweaks for controlling the drone. One unique setting to the Skydio 2 is the height floor—since the drone only avoids static obstacles, you can set it to maintain a height of at least 8 feet above the ground while flying autonomously to make sure that if you’re flying around other people, it won’t run into anyone who isn’t absurdly tall and therefore asking for it.

Trackable subjects get a blue “+” sign over them in the app, and if you tap them, the “+” turns into a spinny blue circle. Once you’ve got a subject selected, you can choose from a variety of cinematic skills that the drone will execute while following you, and in addition, you can select “one-shot” skills that involve the drone performing a specific maneuver before returning to the previously selected cinematic skill. For example, you can tell the drone to orbit around you, and then do a “rocket” one-shot where it’ll fly straight up above you (recording the whole time, of course), before returning to its orbiting.

After you’re done flying, you can scroll through your videos and easily clip out excerpts from them and save them to your phone for sharing. Again, it’s a fairly simple interface without a lot of options. You could call it limited, I guess, but I appreciate that it just does a few things that you care about and otherwise doesn’t clutter itself up.

The real limitation of the app is that it uses Wi-Fi to connect to the Skydio 2, which restricts the range. To fly much beyond a hundred meters or so, you’ll need to use the controller or beacon instead.

Skydio 2 Controller and Beacon

Photo: Evan Ackerman/IEEE Spectrum

While the Skydio 2 controller provides a better hands-on flight experience than with the phone, plus an extended range of up to 3.5 km, more experienced pilots may find manual control a bit frustrating, because the underlying autonomy will supersede your maneuvers when you start getting close to objects.

I was looking forward to using the controller, because with every other drone I’ve had, the precision that a physically controller provides is, I find, mandatory for a good flying experience and to get the photos and videos that you want. With Skydio 2, that’s all out the window. It’s not that the controller is useless or anything, it’s just that because the drone tracks you and avoids obstacles on its own, that level of control precision becomes largely unnecessary.

The controller itself is perfectly fine. It’s a rebranded Parrot Skycontroller3, which is the same as the one that you get with a Parrot Anafi. It’s too bad that the sticks don’t unscrew to make it a little more portable, and overall it’s functional rather than fancy, but it feels good to use and includes a sizeable antenna that makes a significant difference to the range that you get (up to 3.5 kilometers).

You definitely get a better hands-on flight experience with the controller than with the phone, so if you want to (say) zip the drone around some big open space for fun, it’s good for that. And it’s nice to be able to hand the controller to someone who’s never flown a drone before and let them take it for a spin without freaking out about them crashing it the whole time. For more experienced pilots, though, the controller is ultimately just a bit frustrating, because the underlying autonomy will supersede your control when you start getting close to objects, which (again) limits how useful the controller is relative to your phone.

I do still prefer the controller over the phone, but I’m not sure that it’s worth the extra $150, unless you plan to fly the Skydio 2 at very long distances or primarily in manual mode. And honestly, if either of those two things are your top priority, the Skydio 2 is probably not the drone for you.

Photo: Evan Ackerman/IEEE Spectrum

The Skydio 2 beacon uses GPS tracking to help the drone follow you, extending range up to 1.5 km. You can also fly the with the beacon alone, no phone necessary.

The purpose of the beacon, according to Skydio, is to give the drone a way of tracking you if it can’t see you, which can happen, albeit infrequently. My initial impression of the beacon was that it was primarily useful as a range-extending bridge between my phone and the drone. But I accidentally left my phone at home one day (oops) and had to fly the drone with only the beacon, and it was a surprisingly decent experience. The beacon allows for full manual control of a sort—you can tap different buttons to rotate, fly forward, and ascend or descend. This is sufficient for takeoff, landing, to make sure that the drone is looking at you when you engage visual tracking, and to rescue it if it gets trapped somewhere.

The rest of the beacon’s control functions are centered around a few different tracking modes, and with these, it works just about as well as your phone. You have fewer options overall, but all the basic stuff is there with just a few intuitive button clicks, including tracking range and angle. If you’re willing to deal with this relatively minor compromise, it’s nice to not have your phone available for other things rather than being monopolized by the drone.

Skydio 2 In Flight

GIF: Evan Ackerman/IEEE Spectrum

Hand takeoffs are simple and reliable.
Click here for a full resolution clip.

Starting up the Skydio 2 doesn’t require any kind of unusual calibration steps or anything like that. It prefers to be kept still, but you can start it up while holding it, it’ll just take a few seconds longer to tell you that it’s ready to go. While the drone will launch from any flat surface with significant clearance around it (it’ll tell you if it needs more room), the small footprint of the battery means that I was more comfortable hand launching it. This is not a “throw” launch; you just let the drone rest on your palm, tell it to take off, and then stay still while it gets its motors going and then gently lifts off. The lift off is so gentle that you have to be careful not to pull your hand away too soon—I did that once and the drone, being not quite ready, dropped towards the ground, but managed to recover without much drama.

GIF: Evan Ackerman/IEEE Spectrum

Hand landings always look scary, but the Skydio 2 is incredibly gentle. After trying this once, it became the only way I ever landed the drone.
Click here for a full resolution clip.

Catching the drone for landing is perhaps very slightly more dangerous, but not any more difficult. You put the drone above and in front of you facing away, tell it to land in the app or with the beacon, and then put your hand underneath it to grasp it as it slowly descends. It settles delicately and promptly turns itself off. Every drone should land this way. The battery pack provides a good place to grip, although you do have to be mindful of the forward set of props, which (since they’re the pair that are beneath the body of drone) are quite close to your fingers. You’ll certainly be mindful after you catch a blade with your fingers once. Which I did. For the purposes of this review and totally not by accident. No damage, for the record.

Photo: Evan Ackerman/IEEE Spectrum

You won’t be disappointed with the Skydio 2’s in-flight performance, unless you’re looking for a dedicated racing drone.

In normal flight, the Skydio 2 performs as well as you’d expect. It’s stable and manages light to moderate wind without any problems, although I did notice some occasional lateral drifting when the drone should have been in a stationary hover. While the controller gains are adjustable, the Skydio 2 isn’t quite as aggressive in flight as my Mavic Pro on Sport Mode, but again, if you’re looking for a high-speed drone, that’s really not what the Skydio is all about.

The Skydio 2 is substantially louder than my Anafi, although the Anafi is notably quiet for a drone. It’s not annoying to hear (not a high-pitched whine), but you can hear it from a ways away, and farther away than my Mavic Pro. I’m not sure whether that’s because of the absolute volume or the volume plus the pitch. In some ways, this is a feature, since you can hear the drone following you even if you’re not looking at it, you just need to be aware of the noise it makes when you’re flying it around people.

Obstacle Avoidance
The primary reason Skydio 2 is the drone that you want to fly is because of its autonomous subject tracking and obstacle avoidance. Skydio’s PR videos make this capability look almost too good, and since I hadn’t tried out one of their drones before, the first thing I did with it was exactly what you’d expect: attempt to fly it directly into the nearest tree.

GIF: Evan Ackerman/IEEE Spectrum

The Skydio 2 deftly slides around trees and branches. The control inputs here were simple “forward” or “turn,” all obstacle avoidance is autonomous.
Click here for a full resolution clip.

And it just won’t do it. It slows down a bit, and then slides right around one tree after another, going over and under and around branches. I pointed the drone into a forest and just held down “forward” and away it went, without any fuss, effortlessly ducking and weaving its way around. Of course, it wasn’t effortless at all—six 4K cameras were feeding data into the NVIDIA TX2 at 30 fps, and the drone was processing a million points in 3D space per second to plan the safest path while simultaneously taking into account where I wanted it to go. I spent about 10 more minutes doing my level best to crash the drone into anything at all using a flying technique probably best described as “reckless,” but the drone was utterly unfazed. It’s incredible.

What knocked my socks off was telling the drone to pass through treetops—in the clip below, I’m just telling the drone to fly straight down. Watch as it weaves its way through gaps between the branches:

GIF: Evan Ackerman/IEEE Spectrum

The result of parking the Skydio 2 above some trees and holding “down” on the controller is this impressive fully autonomous descent through the branches.
Click here for a full resolution clip.

Here’s one more example, where I sent the drone across a lake and started poking around in a tree. Sometimes the Skydio 2 isn’t sure where you want it to go, and you have to give it a little bit of a nudge in a clear direction, but that’s it.

GIF: Evan Ackerman/IEEE Spectrum

In obstacle-heavy environments, the Skydio 2 prudently slows down, but it can pick its way through almost anything that it can see.
Click here for a full resolution clip.

It’s important to keep in mind that all of the Skydio 2’s intelligence is based on vision. It uses cameras to see the world, which means that it has similar challenges as your eyes do. Specifically, Skydio warns against flying in the following conditions:

Skydio 2 can’t see certain visually challenging obstacles. Do not fly around thin branches, telephone or power lines, ropes, netting, wires, chain link fencing or other objects less than ½ inch in diameter.
Do not fly around transparent surfaces like windows or reflective surfaces like mirrors greater than 60 cm wide.
When the sun is low on the horizon, it can temporarily blind Skydio 2’s cameras depending on the angle of flight. Your drone may be cautious or jerky when flying directly toward the sun.

Basically, if you’d have trouble seeing a thing, or seeing under some specific flight conditions, then the Skydio 2 almost certainly will also. It gets even more problematic when challenging obstacles are combined with challenging flight conditions, which is what I’m pretty sure led to the only near-crash I had with the drone. Here’s a video:

GIF: Evan Ackerman/IEEE Spectrum

Flying around very thin branches and into the sun can cause problems for the Skydio 2’s obstacle avoidance.
Click here for a full resolution clip.

I had the Skydio 2 set to follow me on my bike (more about following and tracking in a bit). It was mid afternoon, but since it’s late fall here in Washington, D.C., the sun doesn’t get much higher than 30 degrees above the horizon. Late fall also means that most of the deciduous trees have lost their leaves, and so there are a bunch of skinny branches all over the place. The drone was doing a pretty good job of following me along the road at a relatively slow speed, and then it clipped the branch that you can just barely see in the video above. It recovered in an acrobatic maneuver that has been mostly video-stabilized out, and resumed tracking me before I freaked and told it to land. You can see another example here, where the drone (again) clips a branch that has the sun behind it, and this clip shows me stopping my bike before the drone runs into another branch in a similar orientation. As the video shows, it’s very hard to see the branches until it’s too late.

As far as I can tell, the drone is no worse for wear from any of this, apart from a small nick in one of the props. But, this is a good illustration of a problematic situation for the Skydio 2: flying into a low sun angle around small bare branches. Should I not have been flying the drone in this situation? It’s hard to say. These probably qualify as “thin branches,” although there was plenty of room along with middle of the road. There is an open question with the Skydio 2 as to exactly how much responsibility the user should have about when and where it’s safe to fly—for branches, how thin is too thin? How low can the sun be? What if the branches are only kinda thin and the sun is only kinda low, but it’s also a little windy? Better to be safe than sorry, of course, but there’s really no way for the user (or the drone) to know what it can’t handle until it can’t handle it.

Edge cases like these aside, the obstacle avoidance just works. Even if you’re not deliberately trying to fly into branches, it’s keeping a lookout for you all the time, which means that flying the drone goes from somewhat stressful to just pure fun. I can’t emphasize enough how amazing it is to be able to fly without worrying about running into things, and how great it feels to be able to hand the controller to someone who’s never flown a drone before and say, with complete confidence, “go ahead, fly it around!”

Skydio 2 vs. DJI Mavic

Photo: Evan Ackerman/IEEE Spectrum

Both the Skydio 2 and many models of DJI’s Mavic use visual obstacle avoidance, but the Skydio 2 is so much more advanced that you can’t really compare the two systems.

It’s important to note that there’s a huge difference between the sort of obstacle avoidance that you get with a DJI Mavic, and the sort of obstacle avoidance that you get with the Skydio 2. The objective of the Mavic’s obstacle avoidance is really there to prevent you from accidentally running into things, and in that capacity, it usually works. But there are two things to keep in mind here—first, not running into things is not the same as avoiding things, because avoiding things means planning several steps ahead, not just one step.

Second, there’s the fact that the Mavic’s obstacle detection only works most of the time. Fundamentally, I don’t trust my Mavic Pro, because sometimes the safety system doesn’t kick in for whatever reason and the drone ends up alarmingly close to something. And that’s actually fine, because with the Mavic, I expect to be piloting it. It’s for this same reason that I don’t care that my Parrot Anafi doesn’t have obstacle avoidance at all: I’m piloting it anyway, and I’m a careful pilot, so it just doesn’t matter. The Skydio 2 is totally and completely different. It’s in a class by itself, and you can’t compare what it can do to what anything else out there right now. Period.

Skydio 2 Tracking
Skydio’s big selling point on the Skydio 2 is that it’ll autonomously track you while avoiding obstacles. It does this visually, by watching where you go, predicting your future motion, and then planning its own motion to keep you in frame. The works better than you might expect, in that it’s really very good at not losing you. Obviously, the drone prioritizes not running into stuff over tracking you, which means that it may not always be where you feel like it should be. It’s probably trying to get there, but in obstacle dense environments, it can take some creative paths.

Having said that, I found it to be very consistent with keeping me in the frame, and I only managed to lose it when changing direction while fully occluded by an obstacle, or while it was executing an avoidance maneuver that was more dynamic than normal. If you deliberately try to hide from the drone it’s not that hard to do so if there are enough obstacles around, but I didn’t find the tracking to be something that I had to worry about it most cases. When tracking does fail and you’re not using the beacon, the drone will come to a hover. It won’t try and find you, but it will reacquire you if you get back into its field of view.

The Skydio 2 had no problem tracking me running through fairly dense trees:

GIF: Evan Ackerman/IEEE Spectrum

The Skydio 2 had no problem chasing me around through these trees, even while I was asking it to continually change its tracking angle.
Click here for a full resolution clip.

It also managed to keep up with me as I rode my bike along a tree-lined road:

GIF: Evan Ackerman/IEEE Spectrum

The Skydio 2 is easily fast enough to keep up with me on a bike, even while avoiding tree branches.
Click here for a full resolution clip.

It lost me when I asked it to follow very close behind me as I wove through some particularly branch-y trees, but it fails more or less gracefully by just sort of nope-ing out of situations when they start to get bad and coming to a hover somewhere safe.

GIF: Evan Ackerman/IEEE Spectrum

The Skydio 2 knows better than to put itself into situations that it can’t handle, and will bail to a safe spot if things get too complicated.
Click here for a full resolution clip.

After a few days of playing with the drone, I started to get to the point where I could set it to track me and then just forget about it while I rode my bike or whatever, as opposed to constantly turning around to make sure it was still behind me, which is what I was doing initially. It’s a level of trust that I don’t think would be possible with any other drone.

Should You Buy a Skydio 2?

Photo: Evan Ackerman/IEEE Spectrum

We think the Skydio 2 is fun and relaxing to fly, with unique autonomous intelligence that makes it worth the cost.

In case I haven’t said it often enough in this review, the Skydio 2 is an incredible piece of technology. As far as I know (as a robotics journalist, mind you), this represents the state of the art in commercial drone autonomy, and quite possibly the state of the art in drone autonomy, period. And it’s available for $999, which is expensive, but less money than a Mavic Pro 2. If you’re interested in a new drone, you should absolutely consider the Skydio 2.

There are some things to keep in mind—battery life is a solid but not stellar 20 minutes. Extra batteries are expensive at $99 each (the base kit includes just one). The controller and the beacon are also expensive, at $150 each. And while I think the Skydio 2 is definitely the drone you want to fly, it may not be the drone you want to travel with, since it’s bulky compared to other options.

But there’s no denying the fact that the experience is uniquely magical. Once you’ve flown the Skydio 2, you won’t want to fly anything else. This drone makes it possible to get pictures and videos that would be otherwise impossible, and you can do it completely on your own. You can trust the drone to do what it promises, as long as you’re mindful of some basic and common sense safety guidelines. And we’ve been told that the drone is only going to get smarter and more capable over time.

If you buy a Skydio 2, it comes with the following warranty from Skydio:

“If you’re operating your Skydio 2 within our Safe Flight guidelines, and it crashes, we’ll repair or replace it for free.”

Skydio trusts their drone to go out into a chaotic and unstructured world and dodge just about anything that comes its way. And after a week with this drone, I can see how they’re able to offer this kind of guarantee. This is the kind of autonomy that robots have been promising for years, and the Skydio 2 makes it real.

Detailed technical specifications are available on Skydio’s website, and if you have any questions, post a comment—we’ve got this drone for a little while longer, and I’d be happy to try out (nearly) anything with it.

Skydio 2 Review Video Highlights
This video is about 7 minutes of 4K, 30 fps footage directly from the Skydio 2. The only editing I did was cutting clips together, no stabilization or color correcting or anything like that. The drone will record in 4K 60 fps, so it gets smoother than this, but I, er, forgot to change the setting.

[ Skydio ] Continue reading

Posted in Human Robots

#436065 From Mainframes to PCs: What Robot ...

This is a guest post. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.

Autonomous robots are coming around slowly. We already got autonomous vacuum cleaners, autonomous lawn mowers, toys that bleep and blink, and (maybe) soon autonomous cars. Yet, generation after generation, we keep waiting for the robots that we all know from movies and TV shows. Instead, businesses seem to get farther and farther away from the robots that are able to do a large variety of tasks using general-purpose, human anatomy-inspired hardware.

Although these are the droids we have been looking for, anything that came close, such as Willow Garage’s PR2 or Rethink Robotics’ Baxter has bitten the dust. With building a robotic company being particularly hard, compounding business risk with technological risk, the trend goes from selling robots to selling actual services like mowing your lawn, provide taxi rides, fulfilling retail orders, or picking strawberries by the pound. Unfortunately for fans of R2-D2 and C-3PO, these kind of business models emphasize specialized, room- or fridge-sized hardware that is optimized for one very specific task, but does not contribute to a general-purpose robotic platform.

We have actually seen something very similar in the personal computer (PC) industry. In the 1950s, even though computers could be as big as an entire room and were only available to a selected few, the public already had a good idea of what computers would look like. A long list of fictional computers started to populate mainstream entertainment during that time. In a 1962 New York Times article titled “Pocket Computer to Replace Shopping List,” visionary scientist John Mauchly stated that “there is no reason to suppose the average boy or girl cannot be master of a personal computer.”

In 1968, Douglas Engelbart gave us the “mother of all demos,” browsing hypertext on a graphical screen and a mouse, and other ideas that have become standard only decades later. Now that we have finally seen all of this, it might be helpful to examine what actually enabled the computing revolution to learn where robotics is really at and what we need to do next.

The parallels between computers and robots

In the 1970s, mainframes were about to be replaced by the emerging class of mini-computers, fridge-sized devices that cost less than US $25,000 ($165,000 in 2019 dollars). These computers did not use punch-cards, but could be programmed in Fortran and BASIC, dramatically expanding the ease with which potential applications could be created. Yet it was still unclear whether mini-computers could ever replace big mainframes in applications that require fast and efficient processing of large amounts of data, let alone enter every living room. This is very similar to the robotics industry right now, where large-scale factory robots (mainframes) that have existed since the 1960s are seeing competition from a growing industry of collaborative robots that can safely work next to humans and can easily be installed and programmed (minicomputers). As in the ’70s, applications for these devices that reach system prices comparable to that of a luxury car are quite limited, and it is hard to see how they could ever become a consumer product.

Yet, as in the computer industry, successful architectures are quickly being cloned, driving prices down, and entirely new approaches on how to construct or program robotic arms are sprouting left and right. Arm makers are joined by manufacturers of autonomous carts, robotic grippers, and sensors. These components can be combined, paving the way for standard general purpose platforms that follow the model of the IBM PC, which built a capable, open architecture relying as much on commodity parts as possible.

General purpose robotic systems have not been successful for similar reasons that general purpose, also known as “personal,” computers took decades to emerge. Mainframes were custom-built for each application, while typewriters got smarter and smarter, not really leaving room for general purpose computers in between. Indeed, given the cost of hardware and the relatively little abilities of today’s autonomous robots, it is almost always smarter to build a special purpose machine than trying to make a collaborative mobile manipulator smart.

A current example is e-commerce grocery fulfillment. The current trend is to reserve underutilized parts of a brick-and-mortar store for a micro-fulfillment center that stores goods in little crates with an automated retrieval system and a (human) picker. A number of startups like Alert Innovation, Fabric, Ocado Technology, TakeOff Technologies, and Tompkins Robotics, to just name a few, have raised hundreds of millions of venture capital recently to build mainframe equivalents of robotic fulfillment centers. This is in contrast with a robotic picker, which would drive through the aisles to restock and pick from shelves. Such a robotic store clerk would come much closer to our vision of a general purpose robot, but would require many copies of itself that crowd the aisles to churn out hundreds of orders per hour as a microwarehouse could. Although eventually more efficient, the margins in retail are already low and make it unlikely that this industry will produce the technological jump that we need to get friendly C-3POs manning the aisles.

Startups have raised hundreds of millions of venture capital recently to build mainframe equivalents of robotic fulfillment centers. This is in contrast with a robotic picker, which would drive through the aisles to restock and pick from shelves, and would come much closer to our vision of a general purpose robot.

Mainframes were also attacked from the bottom. Fascination with the new digital technology has led to a hobbyist movement to create microcomputers that were sold via mail order or at RadioShack. Initially, a large number of small businesses was selling tens, at most hundreds, of devices, usually as a kit and with wooden enclosures. This trend culminated into the “1977 Trinity” in the form of the Apple II, the Commodore PET, and the Tandy TRS-80, complete computers that were sold for prices around $2500 (TRS) to $5000 (Apple) in today’s dollars. The main application of these computers was their programmability (in BASIC), which would enable consumers to “learn to chart your biorhythms, balance your checking account, or even control your home environment,” according to an original Apple advertisement. Similarly, there exists a myriad of gadgets that explore different aspects of robotics such as mobility, manipulation, and entertainment.

As in the fledgling personal computing industry, the advertised functionality was at best a model of the real deal. A now-famous milestone in entertainment robotics was the original Sony’s Aibo, a robotic dog that was advertised to have many properties that a real dog has such as develop its own personality, play with a toy, and interact with its owner. Released in 1999, and re-launched in 2018, the platform has a solid following among hobbyists and academics who like its programmability, but probably only very few users who accept the device as a pet stand-in.

There also exist countless “build-your-own-robotic-arm” kits. One of the more successful examples is the uArm, which sells for around $800, and is advertised to perform pick and place, assembly, 3D printing, laser engraving, and many other things that sound like high value applications. Using compelling videos of the robot actually doing these things in a constrained environment has led to two successful crowd-funding campaigns, and have established the robot as a successful educational tool.

Finally, there exist platforms that allow hobbyist programmers to explore mobility to construct robots that patrol your house, deliver items, or provide their users with telepresence abilities. An example of that is the Misty II. Much like with the original Apple II, there remains a disconnect between the price of the hardware and the fidelity of the applications that were available.

For computers, this disconnect began to disappear with the invention of the first electronic spreadsheet software VisiCalc that spun out of Harvard in 1979 and prompted many people to buy an entire microcomputer just to run the program. VisiCalc was soon joined by WordStar, a word processing application, that sold for close to $2000 in today’s dollars. WordStar, too, would entice many people to buy the entire hardware just to use the software. The two programs are early examples of what became known as “killer application.”

With factory automation being mature, and robots with the price tag of a minicomputer being capable of driving around and autonomously carrying out many manipulation tasks, the robotics industry is somewhere where the PC industry was between 1973—the release of the Xerox Alto, the first computer with a graphical user interface, mouse, and special software—and 1979—when microcomputers in the under $5000 category began to take off.

Killer apps for robots
So what would it take for robotics to continue to advance like computers did? The market itself already has done a good job distilling what the possible killer apps are. VCs and customers alike push companies who have set out with lofty goals to reduce their offering to a simple value proposition. As a result, companies that started at opposite ends often converge to mirror images of each other that offer very similar autonomous carts, (bin) picking, palletizing, depalletizing, or sorting solutions. Each of these companies usually serves a single application to a single vertical—for example bin-picking clothes, transporting warehouse goods, or picking strawberries by the pound. They are trying to prove that their specific technology works without spreading themselves too thin.

Very few of these companies have really taken off. One example is Kiva Systems, which turned into the logistic robotics division of Amazon. Kiva and others are structured around sound value propositions that are grounded in well-known user needs. As these solutions are very specialized, however, it is unlikely that they result into any economies of scale of the same magnitude that early computer users who bought both a spreadsheet and a word processor application for their expensive minicomputer could enjoy. What would make these robotic solutions more interesting is when functionality becomes stackable. Instead of just being able to do bin picking, palletizing, and transportation with the same hardware, these three skills could be combined to model entire processes.

A skill that is yet little addressed by startups and is historically owned by the mainframe equivalent of robotics is assembly of simple mechatronic devices. The ability to assemble mechatronic parts is equivalent to other tasks such as changing a light bulb, changing the batteries in a remote control, or tending machines like a lever-based espresso machine. These tasks would involve the autonomous execution of complete workflows possible using a single machine, eventually leading to an explosion of industrial productivity across all sectors. For example, picking up an item from a bin, arranging it on the robot, moving it elsewhere, and placing it into a shelf or a machine is a process that equally applies to a manufacturing environment, a retail store, or someone’s kitchen.

Image: Robotic Materials Inc.

Autonomous, vision and force-based assembly of the
Siemens robot learning challenge.

Even though many of the above applications are becoming possible, it is still very hard to get a platform off the ground without added components that provide “killer app” value of their own. Interesting examples are Rethink Robotics or the Robot Operating System (ROS). Rethink Robotics’ Baxter and Sawyer robots pioneered a great user experience (like the 1973 Xerox Alto, really the first PC), but its applications were difficult to extend beyond simple pick-and-place and palletizing and depalletizing items.

ROS pioneered interprocess communication software that was adapted to robotic needs (multiple computers, different programming languages) and the idea of software modularity in robotics, but—in the absence of a common hardware platform—hasn’t yet delivered a single application, e.g. for navigation, path planning, or grasping, that performs beyond research-grade demonstration level and won’t get discarded once developers turn to production systems. At the same time, an increasing number of robotic devices, such as robot arms or 3D perception systems that offer intelligent functionality, provide other ways to wire them together that do not require an intermediary computer, while keeping close control over the real-time aspects of their hardware.

Image: Robotic Materials Inc.

Robotic Materials GPR-1 combines a MIR-100 autonomous cart with an UR-5 collaborative robotic arm, an onRobot force/torque sensor and Robotic Materials’ SmartHand to perform out-of-the-box mobile assembly, bin picking, palletizing, and depalletizing tasks.

At my company, Robotic Materials Inc., we have made strides to identify a few applications such as bin picking and assembly, making them configurable with a single click by combining machine learning and optimization with an intuitive user interface. Here, users can define object classes and how to grasp them using a web browser, which then appear as first-class objects in a robot-specific graphical programming language. We have also done this for assembly, allowing users to stack perception-based picking and force-based assembly primitives by simply dragging and dropping appropriate commands together.

While such an approach might answer the question of a killer app for robots priced in the “minicomputer” range, it is unclear how killer app-type value can be generated with robots in the less-than-$5000 category. A possible answer is two-fold: First, with low-cost arms, mobility platforms, and entertainment devices continuously improving, a confluence of technology readiness and user innovation, like with the Apple II and VisiCalc, will eventually happen. For example, there is not much innovation needed to turn Misty into a home security system; the uArm into a low-cost bin-picking system; or an Aibo-like device into a therapeutic system for the elderly or children with autism.

Second, robots and their components have to become dramatically cheaper. Indeed, computers have seen an exponential reduction in price accompanied by an exponential increase in computational power, thanks in great part to Moore’s Law. This development has helped robotics too, allowing us to reach breakthroughs in mobility and manipulation due to the ability to process massive amounts of image and depth data in real-time, and we can expect it to continue to do so.

Is there a Moore’s Law for robots?
One might ask, however, how a similar dynamics might be possible for robots as a whole, including all their motors and gears, and what a “Moore’s Law” would look like for the robotics industry. Here, it helps to remember that the perpetuation of Moore’s Law is not the reason, but the result of the PC revolution. Indeed, the first killer apps for bookkeeping, editing, and gaming were so good that they unleashed tremendous consumer demand, beating the benchmark on what was thought to be physically possible over and over again. (I vividly remember 56 kbps to be the absolute maximum data rate for copper phone lines until DSL appeared.)

That these economies of scale are also applicable to mechatronics is impressively demonstrated by the car industry. A good example is the 2020 Prius Prime, a highly computerized plug-in hybrid, that is available for one third of the cost of my company’s GPR-1 mobile manipulator while being orders of magnitude more complex, sporting an electrical motor, a combustion engine, and a myriad of sensors and computers. It is therefore very well conceivable to produce a mobile manipulator that retails at one tenth of the cost of a modern car, once robotics enjoy similar mass-market appeal. Given that these robots are part of the equation, actively lowering cost of production, this might happen as fast as never before in the history of industrialization.

It is therefore very well conceivable to produce a mobile manipulator that retails at one tenth of the cost of a modern car, once robotics enjoy similar mass-market appeal.

There is one more driver that might make robots exponentially more capable: the cloud. Once a general purpose robot has learned or was programmed with a new skill, it could share it with every other robot. At some point, a grocer who buys a robot could assume that it already knows how to recognize and handle 99 percent of the retail items in the store. Likewise, a manufacturer can assume that the robot can handle and assemble every item available from McMaster-Carr and Misumi. Finally, families could expect a robot to know every kitchen item that Ikea and Pottery Barn is selling. Sounds like a labor intense problem, but probably more manageable than collecting footage for Google’s Street View using cars, tricycles, and snowmobiles, among other vehicles.

Strategies for robot startups
While we are waiting for these two trends—better and better applications and hardware with decreasing cost—to converge, we as a community have to keep exploring what the canonical robotic applications beyond mobility, bin picking, palletizing, depalletizing, and assembly are. We must also continue to solve the fundamental challenges that stand in the way of making these solutions truly general and robust.

For both questions, it might help to look at the strategies that have been critical in the development of the personal computer, which might equally well apply to robotics:

Start with a solution to a problem your customers have. Unfortunately, their problem is almost never that they need your sensor, widget, or piece of code, but something that already costs them money or negatively affects them in some other way. Example: There are many more people who had a problem calculating their taxes (and wanted to buy VisiCalc) than writing their own solution in BASIC.

Build as little of your own hardware as necessary. Your business model should be stronger than the margin you can make on the hardware. Why taking the risk? Example: Why build your own typewriter if you can write the best typewriting application that makes it worth buying a computer just for that?

If your goal is a platform, make sure it comes with a killer application, which alone justifies the platform cost. Example: Microcomputer companies came and went until the “1977 Trinity” intersected with the killer apps spreadsheet and word processors. Corollary: You can also get lucky.

Use an open architecture, which creates an ecosystem where others compete on creating better components and peripherals, while allowing others to integrate your solution into their vertical and stack it with other devices. Example: Both the Apple II and the IBM PC were completely open architectures, enabling many clones, thereby growing the user and developer base.

It’s worthwhile pursuing this. With most business processes already being digitized, general purpose robots will allow us to fill in gaps in mobility and manipulation, increasing productivity at levels only limited by the amount of resources and energy that are available, possibly creating a utopia in which creativity becomes the ultimate currency. Maybe we’ll even get R2-D2.

Nikolaus Correll is an associate professor of computer science at the University of Colorado at Boulder where he works on mobile manipulation and other robotics applications. He’s co-founder and CTO of Robotic Materials Inc., which is supported by the National Science Foundation and the National Institute of Standards and Technology via their Small Business Innovative Research (SBIR) programs. Continue reading

Posted in Human Robots

#435773 Video Friday: Roller-Skating Quadruped ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, CA, USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today's videos.

We got a sneak peek of a new version of ANYmal equipped with actuated wheels for feet at the DARPA SubT Challenge, where it did surprisingly well at quickly and (mostly) robustly navigating some very tricky terrain. And when you're not expecting it to travel through a muddy, rocky, and dark tunnel, it looks even more capable:

[ Paper ]

Thanks Marko!

In Langley’s makerspace lab, researchers are developing a series of soft robot actuators to investigate the viability of soft robotics in space exploration and assembly. By design, the actuator has chambers, or air bladders, that expand and compress based on the amount of air in them.

[ NASA ]

I’m not normally a fan of the AdultSize RoboCup soccer competition, but NimbRo had a very impressive season.

I don’t know how it managed to not fall over at 45 seconds, but damn.

[ NimbRo ]

This is more AI than robotics, but that’s okay, because it’s totally cool.

I’m wondering whether the hiders ever tried another possibly effective strategy: trapping the seekers in a locked shelter right at the start.

[ OpenAI ]

We haven’t heard much from Piaggio Fast Forward in a while, but evidently they’ve still got a Gita robot going on, designed to be your personal autonomous caddy for absolutely anything that can fit into something the size of a portable cooler.

Available this fall, I guess?

[ Gita ]

This passively triggered robotic hand is startlingly fast, and seems almost predatory when it grabs stuff, especially once they fit it onto a drone.

[ New Dexterity ]

Thanks Fan!

Autonomous vehicles seem like a recent thing, but CMU has been working on them since the mid 1980s.

CMU was also working on drones back before drones were even really a thing:

[ CMU NavLab ] and [ CMU ]

Welcome to the most complicated and expensive robotic ice cream deployment system ever created.

[ Niska ]

Some impressive dexterity from a robot hand equipped with magnetic gears.

[ Ishikawa Senoo Lab ]

The Buddy Arduino social robot kit is now live on Kickstarter, and you can pledge for one of these little dudes for 49 bucks.

[ Kickstarter ]

Thanks Jenny!

Mobile manipulation robots have high potential to support rescue forces in disaster-response missions. Despite the difficulties imposed by real-world scenarios, robots are promising to perform mission tasks from a safe distance. In the CENTAURO project, we developed a disaster-response system which consists of the highly flexible Centauro robot and suitable control interfaces including an immersive telepresence suit and support-operator controls on different levels of autonomy.

[ CENTAURO ]

Thanks Sven!

Determined robots are the cutest robots.

[ Paper ]

The goal of the Dronument project is to create an aerial platform enabling interior and exterior documentation of heritage sites.

It’s got a base station that helps with localization, but still, flying that close to a chandelier in a UNESCO world heritage site makes me nervous.

[ Dronument ]

Thanks Fan!

Avast ye! No hornswaggling, lick-spittlering, or run-rigging over here – Only serious tech for devs. All hands hoay to check out Misty's capabilities and to build your own skills with plenty of heave ho! ARRRRRRRRGH…

International Talk Like a Pirate Day was yesterday, but I'm sure nobody will look at you funny if you keep at it today too.

[ Misty Robotics ]

This video presents an unobtrusive bimanual teleoperation setup with very low weight, consisting of two Vive visual motion trackers and two Myo surface electromyography bracelets. The video demonstrates complex, dexterous teleoperated bimanual daily-living tasks performed by the torque-controlled humanoid robot TORO.

[ DLR RMC ]

Lex Fridman interviews iRobot’s Colin Angle on the Artificial Intelligence Podcast.

Colin Angle is the CEO and co-founder of iRobot, a robotics company that for 29 years has been creating robots that operate successfully in the real world, not as a demo or on a scale of dozens, but on a scale of thousands and millions. As of this year, iRobot has sold more than 25 million robots to consumers, including the Roomba vacuum cleaning robot, the Braava floor mopping robot, and soon the Terra lawn mowing robot. 25 million robots successfully operating autonomously in people's homes to me is an incredible accomplishment of science, engineering, logistics, and all kinds of entrepreneurial innovation.

[ AI Podcast ]

This week’s CMU RI Seminar comes from CMU’s own Sarah Bergbreiter, on Microsystems-Inspired Robotics.

The ability to manufacture micro-scale sensors and actuators has inspired the robotics community for over 30 years. There have been huge success stories; MEMS inertial sensors have enabled an entire market of low-cost, small UAVs. However, the promise of ant-scale robots has largely failed. Ants can move high speeds on surfaces from picnic tables to front lawns, but the few legged microrobots that have walked have done so at slow speeds (< 1 body length/sec) on smooth silicon wafers. In addition, the vision of large numbers of microfabricated sensors interacting directly with the environment has suffered in part due to the brittle materials used in micro-fabrication. This talk will present our progress in the design of sensors, mechanisms, and actuators that utilize new microfabrication processes to incorporate materials with widely varying moduli and functionality to achieve more robustness, dynamic range, and complexity in smaller packages.

[ CMU RI ] Continue reading

Posted in Human Robots