Tag Archives: kind

#431869 When Will We Finally Achieve True ...

The field of artificial intelligence goes back a long way, but many consider it was officially born when a group of scientists at Dartmouth College got together for a summer, back in 1956. Computers had, over the last few decades, come on in incredible leaps and bounds; they could now perform calculations far faster than humans. Optimism, given the incredible progress that had been made, was rational. Genius computer scientist Alan Turing had already mooted the idea of thinking machines just a few years before. The scientists had a fairly simple idea: intelligence is, after all, just a mathematical process. The human brain was a type of machine. Pick apart that process, and you can make a machine simulate it.
The problem didn’t seem too hard: the Dartmouth scientists wrote, “We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer.” This research proposal, by the way, contains one of the earliest uses of the term artificial intelligence. They had a number of ideas—maybe simulating the human brain’s pattern of neurons could work and teaching machines the abstract rules of human language would be important.
The scientists were optimistic, and their efforts were rewarded. Before too long, they had computer programs that seemed to understand human language and could solve algebra problems. People were confidently predicting there would be a human-level intelligent machine built within, oh, let’s say, the next twenty years.
It’s fitting that the industry of predicting when we’d have human-level intelligent AI was born at around the same time as the AI industry itself. In fact, it goes all the way back to Turing’s first paper on “thinking machines,” where he predicted that the Turing Test—machines that could convince humans they were human—would be passed in 50 years, by 2000. Nowadays, of course, people are still predicting it will happen within the next 20 years, perhaps most famously Ray Kurzweil. There are so many different surveys of experts and analyses that you almost wonder if AI researchers aren’t tempted to come up with an auto reply: “I’ve already predicted what your question will be, and no, I can’t really predict that.”
The issue with trying to predict the exact date of human-level AI is that we don’t know how far is left to go. This is unlike Moore’s Law. Moore’s Law, the doubling of processing power roughly every couple of years, makes a very concrete prediction about a very specific phenomenon. We understand roughly how to get there—improved engineering of silicon wafers—and we know we’re not at the fundamental limits of our current approach (at least, not until you’re trying to work on chips at the atomic scale). You cannot say the same about artificial intelligence.
Common Mistakes
Stuart Armstrong’s survey looked for trends in these predictions. Specifically, there were two major cognitive biases he was looking for. The first was the idea that AI experts predict true AI will arrive (and make them immortal) conveniently just before they’d be due to die. This is the “Rapture of the Nerds” criticism people have leveled at Kurzweil—his predictions are motivated by fear of death, desire for immortality, and are fundamentally irrational. The ability to create a superintelligence is taken as an article of faith. There are also criticisms by people working in the AI field who know first-hand the frustrations and limitations of today’s AI.
The second was the idea that people always pick a time span of 15 to 20 years. That’s enough to convince people they’re working on something that could prove revolutionary very soon (people are less impressed by efforts that will lead to tangible results centuries down the line), but not enough for you to be embarrassingly proved wrong. Of the two, Armstrong found more evidence for the second one—people were perfectly happy to predict AI after they died, although most didn’t, but there was a clear bias towards “15–20 years from now” in predictions throughout history.
Measuring Progress
Armstrong points out that, if you want to assess the validity of a specific prediction, there are plenty of parameters you can look at. For example, the idea that human-level intelligence will be developed by simulating the human brain does at least give you a clear pathway that allows you to assess progress. Every time we get a more detailed map of the brain, or successfully simulate another part of it, we can tell that we are progressing towards this eventual goal, which will presumably end in human-level AI. We may not be 20 years away on that path, but at least you can scientifically evaluate the progress.
Compare this to those that say AI, or else consciousness, will “emerge” if a network is sufficiently complex, given enough processing power. This might be how we imagine human intelligence and consciousness emerged during evolution—although evolution had billions of years, not just decades. The issue with this is that we have no empirical evidence: we have never seen consciousness manifest itself out of a complex network. Not only do we not know if this is possible, we cannot know how far away we are from reaching this, as we can’t even measure progress along the way.
There is an immense difficulty in understanding which tasks are hard, which has continued from the birth of AI to the present day. Just look at that original research proposal, where understanding human language, randomness and creativity, and self-improvement are all mentioned in the same breath. We have great natural language processing, but do our computers understand what they’re processing? We have AI that can randomly vary to be “creative,” but is it creative? Exponential self-improvement of the kind the singularity often relies on seems far away.
We also struggle to understand what’s meant by intelligence. For example, AI experts consistently underestimated the ability of AI to play Go. Many thought, in 2015, it would take until 2027. In the end, it took two years, not twelve. But does that mean AI is any closer to being able to write the Great American Novel, say? Does it mean it’s any closer to conceptually understanding the world around it? Does it mean that it’s any closer to human-level intelligence? That’s not necessarily clear.
Not Human, But Smarter Than Humans
But perhaps we’ve been looking at the wrong problem. For example, the Turing test has not yet been passed in the sense that AI cannot convince people it’s human in conversation; but of course the calculating ability, and perhaps soon the ability to perform other tasks like pattern recognition and driving cars, far exceed human levels. As “weak” AI algorithms make more decisions, and Internet of Things evangelists and tech optimists seek to find more ways to feed more data into more algorithms, the impact on society from this “artificial intelligence” can only grow.
It may be that we don’t yet have the mechanism for human-level intelligence, but it’s also true that we don’t know how far we can go with the current generation of algorithms. Those scary surveys that state automation will disrupt society and change it in fundamental ways don’t rely on nearly as many assumptions about some nebulous superintelligence.
Then there are those that point out we should be worried about AI for other reasons. Just because we can’t say for sure if human-level AI will arrive this century, or never, it doesn’t mean we shouldn’t prepare for the possibility that the optimistic predictors could be correct. We need to ensure that human values are programmed into these algorithms, so that they understand the value of human life and can act in “moral, responsible” ways.
Phil Torres, at the Project for Future Human Flourishing, expressed it well in an interview with me. He points out that if we suddenly decided, as a society, that we had to solve the problem of morality—determine what was right and wrong and feed it into a machine—in the next twenty years…would we even be able to do it?
So, we should take predictions with a grain of salt. Remember, it turned out the problems the AI pioneers foresaw were far more complicated than they anticipated. The same could be true today. At the same time, we cannot be unprepared. We should understand the risks and take our precautions. When those scientists met in Dartmouth in 1956, they had no idea of the vast, foggy terrain before them. Sixty years later, we still don’t know how much further there is to go, or how far we can go. But we’re going somewhere.
Image Credit: Ico Maker / Shutterstock.com Continue reading

Posted in Human Robots

#431839 The Hidden Human Workforce Powering ...

The tech industry touts its ability to automate tasks and remove slow and expensive humans from the equation. But in the background, a lot of the legwork training machine learning systems, solving problems software can’t, and cleaning up its mistakes is still done by people.
This was highlighted recently when Expensify, which promises to automatically scan photos of receipts to extract data for expense reports, was criticized for sending customers’ personally identifiable receipts to workers on Amazon’s Mechanical Turk (MTurk) crowdsourcing platform.
The company uses text analysis software to read the receipts, but if the automated system falls down then the images are passed to a human for review. While entrusting this job to random workers on MTurk was maybe not so wise—and the company quickly stopped after the furor—the incident brought to light that this kind of human safety net behind AI-powered services is actually very common.
As Wired notes, similar services like Ibotta and Receipt Hog that collect receipt information for marketing purposes also use crowdsourced workers. In a similar vein, while most users might assume their Facebook newsfeed is governed by faceless algorithms, the company has been ramping up the number of human moderators it employs to catch objectionable content that slips through the net, as has YouTube. Twitter also has thousands of human overseers.
Humans aren’t always witting contributors either. The old text-based reCAPTCHA problems Google used to use to distinguish humans from machines was actually simultaneously helping the company digitize books by getting humans to interpret hard-to-read text.
“Every product that uses AI also uses people,” Jeffrey Bigham, a crowdsourcing expert at Carnegie Mellon University, told Wired. “I wouldn’t even say it’s a backstop so much as a core part of the process.”
Some companies are not shy about their use of crowdsourced workers. Startup Eloquent Labs wants to insert them between customer service chatbots and human agents who step in when the machines fail. Many times the AI is pretty certain what particular work means, and an MTurk worker can step in and quickly classify them faster and cheaper than a service agent.
Fashion retailer Gilt provides “pre-emptive shipping,” which uses data analytics to predict what people will buy to get products to them faster. The company uses MTurk workers to provide subjective critiques of clothing that feed into their models.
MTurk isn’t the only player. Companies like Cloudfactory and Crowdflower provide crowdsourced human manpower tailored to particular niches, and some companies prefer to maintain their own communities of workers. Unlabel uses an army of 50,000 humans to check and edit the translations its artificial intelligence system produces for customers.
Most of the time these human workers aren’t just filling in the gaps, they’re also helping to train the machine learning component of these companies’ services by providing new examples of how to solve problems. Other times humans aren’t used “in-the-loop” with AI systems, but to prepare data sets they can learn from by labeling images, text, or audio.
It’s even possible to use crowdsourced workers to carry out tasks typically tackled by machine learning, such as large-scale image analysis and forecasting.
Zooniverse gets citizen scientists to classify images of distant galaxies or videos of animals to help academics analyze large data sets too complex for computers. Almanis creates forecasts on everything from economics to politics with impressive accuracy by giving those who sign up to the website incentives for backing the correct answer to a question. Researchers have used MTurkers to power a chatbot, and there’s even a toolkit for building algorithms to control this human intelligence called TurKit.
So what does this prominent role for humans in AI services mean? Firstly, it suggests that many tools people assume are powered by AI may in fact be relying on humans. This has obvious privacy implications, as the Expensify story highlighted, but should also raise concerns about whether customers are really getting what they pay for.
One example of this is IBM’s Watson for oncology, which is marketed as a data-driven AI system for providing cancer treatment recommendations. But an investigation by STAT highlighted that it’s actually largely driven by recommendations from a handful of (admittedly highly skilled) doctors at Memorial Sloan Kettering Cancer Center in New York.
Secondly, humans intervening in AI-run processes also suggests AI is still largely helpless without us, which is somewhat comforting to know among all the doomsday predictions of AI destroying jobs. At the same time, though, much of this crowdsourced work is monotonous, poorly paid, and isolating.
As machines trained by human workers get better at all kinds of tasks, this kind of piecemeal work filling in the increasingly small gaps in their capabilities may get more common. While tech companies often talk about AI augmenting human intelligence, for many it may actually end up being the other way around.
Image Credit: kentoh / Shutterstock.com Continue reading

Posted in Human Robots

#431690 Oxford Study Says Alien Life Would ...

The alternative universe known as science fiction has given our culture a menagerie of alien species. From overstuffed teddy bears like Ewoks and Wookies to terrifying nightmares such as Alien and Predator, our collective imagination of what form alien life from another world may take has been irrevocably imprinted by Hollywood.
It might all be possible, or all these bug-eyed critters might turn out to be just B-movie versions of how real extraterrestrials will appear if and when they finally make the evening news.
One thing for certain is that aliens from another world will be shaped by the same evolutionary forces as here on Earth—natural selection. That’s the conclusion of a team of scientists from the University of Oxford in a study published this month in the International Journal of Astrobiology.
A complex alien that comprises a hierarchy of entities, where each lower level collection of entities has aligned evolutionary interests.Image Credit: Helen S. Cooper/University of Oxford.
The researchers suggest that evolutionary theory—famously put forth by Charles Darwin in his seminal book On the Origin of Species 158 years ago this month—can be used to make some predictions about alien species. In particular, the team argues that extraterrestrials will undergo natural selection, because that is the only process by which organisms can adapt to their environment.
“Adaptation is what defines life,” lead author Samuel Levin tells Singularity Hub.
While it’s likely that NASA or some SpaceX-like private venture will eventually kick over a few space rocks and discover microbial life in the not-too-distant future, the sorts of aliens Levin and his colleagues are interested in describing are more complex. That’s because natural selection is at work.
A quick evolutionary theory 101 refresher: Natural selection is the process by which certain traits are favored over others in a given population. For example, take a group of brown and green beetles. It just so happens that birds prefer foraging on green beetles, allowing more brown beetles to survive and reproduce than the more delectable green ones. Eventually, if these population pressures persist, brown beetles will become the dominant type. Brown wins, green loses.
And just as human beings are the result of millions of years of adaptations—eyes and thumbs, for example—aliens will similarly be constructed from parts that were once free living but through time came together to work as one organism.
“Life has so many intricate parts, so much complexity, for that to happen (randomly),” Levin explains. “It’s too complex and too many things working together in a purposeful way for that to happen by chance, as how certain molecules come about. Instead you need a process for making it, and natural selection is that process.”
Just don’t expect ET to show up as a bipedal humanoid with a large head and almond-shaped eyes, Levin says.
“They can be built from entirely different chemicals and so visually, superficially, unfamiliar,” he explains. “They will have passed through the same evolutionary history as us. To me, that’s way cooler and more exciting than them having two legs.”
Need for Data
Seth Shostak, a lead astronomer at the SETI Institute and host of the organization’s Big Picture Science radio show, wrote that while the argument is interesting, it doesn’t answer the question of ET’s appearance.
Shostak argues that a more productive approach would invoke convergent evolution, where similar environments lead to similar adaptations, at least assuming a range of Earth-like conditions such as liquid oceans and thick atmospheres. For example, an alien species that evolved in a liquid environment would evolve a streamlined body to move through water.
“Happenstance and the specifics of the environment will produce variations on an alien species’ planet as it has on ours, and there’s really no way to predict these,” Shostak concludes. “Alas, an accurate cosmic bestiary cannot be written by the invocation of biological mechanisms alone. We need data. That requires more than simply thinking about alien life. We need to actually discover it.”
Search Is On
The search is on. On one hand, the task seems easy enough: There are at least 100 billion planets in the Milky Way alone, and at least 20 percent of those are likely to be capable of producing a biosphere. Even if the evolution of life is exceedingly rare—take a conservative estimate of .001 percent or 200,000 planets, as proposed by the Oxford paper—you have to like the odds.
Of course, it’s not that easy by a billion light years.
Planet hunters can’t even agree on what signatures of life they should focus on. The idea is that where there’s smoke there’s fire. In the case of an alien world home to biological life, astrobiologists are searching for the presence of “biosignature gases,” vapors that could only be produced by alien life.
As Quanta Magazine reported, scientists do this by measuring a planet’s atmosphere against starlight. Gases in the atmosphere absorb certain frequencies of starlight, offering a clue as to what is brewing around a particular planet.
The presence of oxygen would seem to be a biological no-brainer, but there are instances where a planet can produce a false positive, meaning non-biological processes are responsible for the exoplanet’s oxygen. Scientists like Sara Seager, an astrophysicist at MIT, have argued there are plenty of examples of other types of gases produced by organisms right here on Earth that could also produce the smoking gun, er, planet.

Life as We Know It
Indeed, the existence of Earth-bound extremophiles—organisms that defy conventional wisdom about where life can exist, such as in the vacuum of space—offer another clue as to what kind of aliens we might eventually meet.
Lynn Rothschild, an astrobiologist and synthetic biologist in the Earth Science Division at NASA’s Ames Research Center in Silicon Valley, takes extremophiles as a baseline and then supersizes them through synthetic biology.
For example, say a bacteria is capable of surviving at 120 degrees Celsius. Rothschild’s lab might tweak an organism’s DNA to see if it could metabolize at 150 degrees. The idea, as she explains, is to expand the envelope for life without ever getting into a rocket ship.

While researchers may not always agree on the “where” and “how” and “what” of the search for extraterrestrial life, most do share one belief: Alien life must be out there.
“It would shock me if there weren’t [extraterrestrials],” Levin says. “There are few things that would shock me more than to find out there aren’t any aliens…If I had to bet on it, I would bet on the side of there being lots and lots of aliens out there.”
Image Credit: NASA Continue reading

Posted in Human Robots

#431689 Robotic Materials Will Distribute ...

The classical view of a robot as a mechanical body with a central “brain” that controls its behavior could soon be on its way out. The authors of a recent article in Science Robotics argue that future robots will have intelligence distributed throughout their bodies.
The concept, and the emerging discipline behind it, are variously referred to as “material robotics” or “robotic materials” and are essentially a synthesis of ideas from robotics and materials science. Proponents say advances in both fields are making it possible to create composite materials capable of combining sensing, actuation, computation, and communication and operating independently of a central processing unit.
Much of the inspiration for the field comes from nature, with practitioners pointing to the adaptive camouflage of the cuttlefish’s skin, the ability of bird wings to morph in response to different maneuvers, or the banyan tree’s ability to grow roots above ground to support new branches.
Adaptive camouflage and morphing wings have clear applications in the defense and aerospace sector, but the authors say similar principles could be used to create everything from smart tires able to calculate the traction needed for specific surfaces to grippers that can tailor their force to the kind of object they are grasping.
“Material robotics represents an acknowledgment that materials can absorb some of the challenges of acting and reacting to an uncertain world,” the authors write. “Embedding distributed sensors and actuators directly into the material of the robot’s body engages computational capabilities and offloads the rigid information and computational requirements from the central processing system.”
The idea of making materials more adaptive is not new, and there are already a host of “smart materials” that can respond to stimuli like heat, mechanical stress, or magnetic fields by doing things like producing a voltage or changing shape. These properties can be carefully tuned to create materials capable of a wide variety of functions such as movement, self-repair, or sensing.
The authors say synthesizing these kinds of smart materials, alongside other advanced materials like biocompatible conductors or biodegradable elastomers, is foundational to material robotics. But the approach also involves integration of many different capabilities in the same material, careful mechanical design to make the most of mechanical capabilities, and closing the loop between sensing and control within the materials themselves.
While there are stand-alone applications for such materials in the near term, like smart fabrics or robotic grippers, the long-term promise of the field is to distribute decision-making in future advanced robots. As they are imbued with ever more senses and capabilities, these machines will be required to shuttle huge amounts of control and feedback data to and fro, placing a strain on both their communication and computation abilities.
Materials that can process sensor data at the source and either autonomously react to it or filter the most relevant information to be passed on to the central processing unit could significantly ease this bottleneck. In a press release related to an earlier study, Nikolaus Correll, an assistant professor of computer science at the University of Colorado Boulder who is also an author of the current paper, pointed out this is a tactic used by the human body.
“The human sensory system automatically filters out things like the feeling of clothing rubbing on the skin,” he said. “An artificial skin with possibly thousands of sensors could do the same thing, and only report to a central ‘brain’ if it touches something new.”
There are still considerable challenges to realizing this vision, though, the authors say, noting that so far the young field has only produced proof of concepts. The biggest challenge remains manufacturing robotic materials in a way that combines all these capabilities in a small enough package at an affordable cost.
Luckily, the authors note, the field can draw on convergent advances in both materials science, such as the development of new bulk materials with inherent multifunctionality, and robotics, such as the ever tighter integration of components.
And they predict that doing away with the prevailing dichotomy of “brain versus body” could lay the foundations for the emergence of “robots with brains in their bodies—the foundation of inexpensive and ubiquitous robots that will step into the real world.”
Image Credit: Anatomy Insider / Shutterstock.com Continue reading

Posted in Human Robots

#431682 Oxford Study Says Alien Life Would ...

The alternative universe known as science fiction has given our culture a menagerie of alien species. From overstuffed teddy bears like Ewoks and Wookies to terrifying nightmares such as Alien and Predator, our collective imagination of what form alien life from another world may take has been irrevocably imprinted by Hollywood.
It might all be possible, or all these bug-eyed critters might turn out to be just B-movie versions of how real extraterrestrials will appear if and when they finally make the evening news.
One thing for certain is that aliens from another world will be shaped by the same evolutionary forces as here on Earth—natural selection. That’s the conclusion of a team of scientists from the University of Oxford in a study published this month in the International Journal of Astrobiology.
A complex alien that comprises a hierarchy of entities, where each lower level collection of entities has aligned evolutionary interests.Image Credit: Helen S. Cooper/University of Oxford.
The researchers suggest that evolutionary theory—famously put forth by Charles Darwin in his seminal book On the Origin of Species 158 years ago this month—can be used to make some predictions about alien species. In particular, the team argues that extraterrestrials will undergo natural selection, because that is the only process by which organisms can adapt to their environment.
“Adaptation is what defines life,” lead author Samuel Levin tells Singularity Hub.
While it’s likely that NASA or some SpaceX-like private venture will eventually kick over a few space rocks and discover microbial life in the not-too-distant future, the sorts of aliens Levin and his colleagues are interested in describing are more complex. That’s because natural selection is at work.
A quick evolutionary theory 101 refresher: Natural selection is the process by which certain traits are favored over others in a given population. For example, take a group of brown and green beetles. It just so happens that birds prefer foraging on green beetles, allowing more brown beetles to survive and reproduce than the more delectable green ones. Eventually, if these population pressures persist, brown beetles will become the dominant type. Brown wins, green loses.
And just as human beings are the result of millions of years of adaptations—eyes and thumbs, for example—aliens will similarly be constructed from parts that were once free living but through time came together to work as one organism.
“Life has so many intricate parts, so much complexity, for that to happen (randomly),” Levin explains. “It’s too complex and too many things working together in a purposeful way for that to happen by chance, as how certain molecules come about. Instead you need a process for making it, and natural selection is that process.”
Just don’t expect ET to show up as a bipedal humanoid with a large head and almond-shaped eyes, Levin says.
“They can be built from entirely different chemicals and so visually, superficially, unfamiliar,” he explains. “They will have passed through the same evolutionary history as us. To me, that’s way cooler and more exciting than them having two legs.”
Need for Data
Seth Shostak, a lead astronomer at the SETI Institute and host of the organization’s Big Picture Science radio show, wrote that while the argument is interesting, it doesn’t answer the question of ET’s appearance.
Shostak argues that a more productive approach would invoke convergent evolution, where similar environments lead to similar adaptations, at least assuming a range of Earth-like conditions such as liquid oceans and thick atmospheres. For example, an alien species that evolved in a liquid environment would evolve a streamlined body to move through water.
“Happenstance and the specifics of the environment will produce variations on an alien species’ planet as it has on ours, and there’s really no way to predict these,” Shostak concludes. “Alas, an accurate cosmic bestiary cannot be written by the invocation of biological mechanisms alone. We need data. That requires more than simply thinking about alien life. We need to actually discover it.”
Search is On
The search is on. On one hand, the task seems easy enough: There are at least 100 billion planets in the Milky Way alone, and at least 20 percent of those are likely to be capable of producing a biosphere. Even if the evolution of life is exceedingly rare—take a conservative estimate of .001 percent or 200,000 planets, as proposed by the Oxford paper—you have to like the odds.
Of course, it’s not that easy by a billion light years.
Planet hunters can’t even agree on what signatures of life they should focus on. The idea is that where there’s smoke there’s fire. In the case of an alien world home to biological life, astrobiologists are searching for the presence of “biosignature gases,” vapors that could only be produced by alien life.
As Quanta Magazine reported, scientists do this by measuring a planet’s atmosphere against starlight. Gases in the atmosphere absorb certain frequencies of starlight, offering a clue as to what is brewing around a particular planet.
The presence of oxygen would seem to be a biological no-brainer, but there are instances where a planet can produce a false positive, meaning non-biological processes are responsible for the exoplanet’s oxygen. Scientists like Sara Seager, an astrophysicist at MIT, have argued there are plenty of examples of other types of gases produced by organisms right here on Earth that could also produce the smoking gun, er, planet.

Life as We Know It
Indeed, the existence of Earth-bound extremophiles—organisms that defy conventional wisdom about where life can exist, such as in the vacuum of space—offer another clue as to what kind of aliens we might eventually meet.
Lynn Rothschild, an astrobiologist and synthetic biologist in the Earth Science Division at NASA’s Ames Research Center in Silicon Valley, takes extremophiles as a baseline and then supersizes them through synthetic biology.
For example, say a bacteria is capable of surviving at 120 degrees Celsius. Rothschild’s lab might tweak an organism’s DNA to see if it could metabolize at 150 degrees. The idea, as she explains, is to expand the envelope for life without ever getting into a rocket ship.

While researchers may not always agree on the “where” and “how” and “what” of the search for extraterrestrial life, most do share one belief: Alien life must be out there.
“It would shock me if there weren’t [extraterrestrials],” Levin says. “There are few things that would shock me more than to find out there aren’t any aliens…If I had to bet on it, I would bet on the side of there being lots and lots of aliens out there.”
Image Credit: NASA Continue reading

Posted in Human Robots