Tag Archives: jump
#434655 Purposeful Evolution: Creating an ...
More often than not, we fall into the trap of trying to predict and anticipate the future, forgetting that the future is up to us to envision and create. In the words of Buckminster Fuller, “We are called to be architects of the future, not its victims.”
But how, exactly, do we create a “good” future? What does such a future look like to begin with?
In Future Consciousness: The Path to Purposeful Evolution, Tom Lombardo analytically deconstructs how we can flourish in the flow of evolution and create a prosperous future for humanity. Scientifically informed, the books taps into themes that are constructive and profound, from both eastern and western philosophies.
As the executive director of the Center for Future Consciousness and an executive board member and fellow of the World Futures Studies Federation, Lombardo has dedicated his life and career to studying how we can create a “realistic, constructive, and ethical future.”
In a conversation with Singularity Hub, Lombardo discussed purposeful evolution, ethical use of technology, and the power of optimism.
Raya Bidshahri: Tell me more about the title of your book. What is future consciousness and what role does it play in what you call purposeful evolution?
Tom Lombardo: Humans have the unique capacity to purposefully evolve themselves because they possess future consciousness. Future consciousness contains all of the cognitive, motivational, and emotional aspects of the human mind that pertain to the future. It’s because we can imagine and think about the future that we can manipulate and direct our future evolution purposefully. Future consciousness empowers us to become self-responsible in our own evolutionary future. This is a jump in the process of evolution itself.
RB: In several places in the book, you discuss the importance of various eastern philosophies. What can we learn from the east that is often missing from western models?
TL: The key idea in the east that I have been intrigued by for decades is the Taoist Yin Yang, which is the idea that reality should be conceptualized as interdependent reciprocities.
In the west we think dualistically, or we attempt to think in terms of one end of the duality to the exclusion of the other, such as whole versus parts or consciousness versus physical matter. Yin Yang thinking is seeing how both sides of a “duality,” even though they appear to be opposites, are interdependent; you can’t have one without the other. You can’t have order without chaos, consciousness without the physical world, individuals without the whole, humanity without technology, and vice versa for all these complementary pairs.
RB: You talk about the importance of chaos and destruction in the trajectory of human progress. In your own words, “Creativity frequently involves destruction as a prelude to the emergence of some new reality.” Why is this an important principle for readers to keep in mind, especially in the context of today’s world?
TL: In order for there to be progress, there often has to be a disintegration of aspects of the old. Although progress and evolution involve a process of building up, growth isn’t entirely cumulative; it’s also transformative. Things fall apart and come back together again.
Throughout history, we have seen a transformation of what are the most dominant human professions or vocations. At some point, almost everybody worked in agriculture, but most of those agricultural activities were replaced by machines, and a lot of people moved over to industry. Now we’re seeing that jobs and functions are increasingly automated in industry, and humans are being pushed into vocations that involve higher cognitive and artistic skills, services, information technology, and so on.
RB: You raise valid concerns about the dark side of technological progress, especially when it’s combined with mass consumerism, materialism, and anti-intellectualism. How do we counter these destructive forces as we shape the future of humanity?
TL: We can counter such forces by always thoughtfully considering how our technologies are affecting the ongoing purposeful evolution of our conscious minds, bodies, and societies. We should ask ourselves what are the ethical values that are being served by the development of various technologies.
For example, we often hear the criticism that technologies that are driven by pure capitalism degrade human life and only benefit the few people who invented and market them. So we need to also think about what good these new technologies can serve. It’s what I mean when I talk about the “wise cyborg.” A wise cyborg is somebody who uses technology to serve wisdom, or values connected with wisdom.
RB: Creating an ideal future isn’t just about progress in technology, but also progress in morality. How we do decide what a “good” future is? What are some philosophical tools we can use to determine a code of ethics that is as objective as possible?
TL: Let’s keep in mind that ethics will always have some level of subjectivity. That being said, the way to determine a good future is to base it on the best theory of reality that we have, which is that we are evolutionary beings in an evolutionary universe and we are interdependent with everything else in that universe. Our ethics should acknowledge that we are fluid and interactive.
Hence, the “good” can’t be something static, and it can’t be something that pertains to me and not everybody else. It can’t be something that only applies to humans and ignores all other life on Earth, and it must be a mode of change rather than something stable.
RB: You present a consciousness-centered approach to creating a good future for humanity. What are some of the values we should develop in order to create a prosperous future?
TL: A sense of self-responsibility for the future is critical. This means realizing that the “good future” is something we have to take upon ourselves to create; we can’t let something or somebody else do that. We need to feel responsible both for our own futures and for the future around us.
Another one is going to be an informed and hopeful optimism about the future, because both optimism and pessimism have self-fulfilling prophecy effects. If you hope for the best, you are more likely to look deeply into your reality and increase the chance of it coming out that way. In fact, all of the positive emotions that have to do with future consciousness actually make people more intelligent and creative.
Some other important character virtues are discipline and tenacity, deep purpose, the love of learning and thinking, and creativity.
RB: Are you optimistic about the future? If so, what informs your optimism?
I justify my optimism the same way that I have seen Ray Kurzweil, Peter Diamandis, Kevin Kelly, and Steven Pinker justify theirs. If we look at the history of human civilization and even the history of nature, we see a progressive motion forward toward greater complexity and even greater intelligence. There’s lots of ups and downs, and catastrophes along the way, but the facts of nature and human history support the long-term expectation of continued evolution into the future.
You don’t have to be unrealistic to be optimistic. It’s also, psychologically, the more empowering position. That’s the position we should take if we want to maximize the chances of our individual or collective reality turning out better.
A lot of pessimists are pessimistic because they’re afraid of the future. There are lots of reasons to be afraid, but all in all, fear disempowers, whereas hope empowers.
Image Credit: Quick Shot / Shutterstock.com
We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading
#434592 Caltech Building Agile Humanoid Robot by ...
Leonardo augments humanoid legs with thrusters to help it run and jump Continue reading
#431906 Low-Cost Soft Robot Muscles Can Lift 200 ...
Jerky mechanical robots are staples of science fiction, but to seamlessly integrate into everyday life they’ll need the precise yet powerful motor control of humans. Now scientists have created a new class of artificial muscles that could soon make that a reality.
The advance is the latest breakthrough in the field of soft robotics. Scientists are increasingly designing robots using soft materials that more closely resemble biological systems, which can be more adaptable and better suited to working in close proximity to humans.
One of the main challenges has been creating soft components that match the power and control of the rigid actuators that drive mechanical robots—things like motors and pistons. Now researchers at the University of Colorado Boulder have built a series of low-cost artificial muscles—as little as 10 cents per device—using soft plastic pouches filled with electrically insulating liquids that contract with the force and speed of mammalian skeletal muscles when a voltage is applied to them.
Three different designs of the so-called hydraulically amplified self-healing electrostatic (HASEL) actuators were detailed in two papers in the journals Science and Science Robotics last week. They could carry out a variety of tasks, from gently picking up delicate objects like eggs or raspberries to lifting objects many times their own weight, such as a gallon of water, at rapid repetition rates.
“We draw our inspiration from the astonishing capabilities of biological muscle,” Christoph Keplinger, an assistant professor at UC Boulder and senior author of both papers, said in a press release. “Just like biological muscle, HASEL actuators can reproduce the adaptability of an octopus arm, the speed of a hummingbird and the strength of an elephant.”
The artificial muscles work by applying a voltage to hydrogel electrodes on either side of pouches filled with liquid insulators, which can be as simple as canola oil. This creates an attraction between the two electrodes, pulling them together and displacing the liquid. This causes a change of shape that can push or pull levers, arms or any other articulated component.
The design is essentially a synthesis of two leading approaches to actuating soft robots. Pneumatic and hydraulic actuators that pump fluids around have been popular due to their high forces, easy fabrication and ability to mimic a variety of natural motions. But they tend to be bulky and relatively slow.
Dielectric elastomer actuators apply an electric field across a solid insulating layer to make it flex. These can mimic the responsiveness of biological muscle. But they are not very versatile and can also fail catastrophically, because the high voltages required can cause a bolt of electricity to blast through the insulator, destroying it. The likelihood of this happening increases in line with the size of their electrodes, which makes it hard to scale them up. By combining the two approaches, researchers get the best of both worlds, with the power, versatility and easy fabrication of a fluid-based system and the responsiveness of electrically-powered actuators.
One of the designs holds particular promise for robotics applications, as it behaves a lot like biological muscle. The so-called Peano-HASEL actuators are made up of multiple rectangular pouches connected in series, which allows them to contract linearly, just like real muscle. They can lift more than 200 times their weight, but being electrically powered, they exceed the flexing speed of human muscle.
As the name suggests, the HASEL actuators are also self-healing. They are still prone to the same kind of electrical damage as dielectric elastomer actuators, but the liquid insulator is able to immediately self-heal by redistributing itself and regaining its insulating properties.
The muscles can even monitor the amount of strain they’re under to provide the same kind of feedback biological systems would. The muscle’s capacitance—its ability to store an electric charge—changes as the device stretches, which makes it possible to power the arm while simultaneously measuring what position it’s in.
The researchers say this could imbue robots with a similar sense of proprioception or body-awareness to that found in plants and animals. “Self-sensing allows for the development of closed-loop feedback controllers to design highly advanced and precise robots for diverse applications,” Shane Mitchell, a PhD student in Keplinger’s lab and an author on both papers, said in an email.
The researchers say the high voltages required are an ongoing challenge, though they’ve already designed devices in the lab that use a fifth of the voltage of those features in the recent papers.
In most of their demonstrations, these soft actuators were being used to power rigid arms and levers, pointing to the fact that future robots are likely to combine both rigid and soft components, much like animals do. The potential applications for the technology range from more realistic prosthetics to much more dextrous robots that can work easily alongside humans.
It will take some work before these devices appear in commercial robots. But the combination of high-performance with simple and inexpensive fabrication methods mean other researchers are likely to jump in, so innovation could be rapid.
Image Credit: Keplinger Research Group/University of Colorado Continue reading
#431671 The Doctor in the Machine: How AI Is ...
Artificial intelligence has received its fair share of hype recently. However, it’s hype that’s well-founded: IDC predicts worldwide spend on AI and cognitive computing will culminate to a whopping $46 billion (with a “b”) by 2020, and all the tech giants are jumping on board faster than you can say “ROI.” But what is AI, exactly?
According to Hilary Mason, AI today is being misused as a sort of catch-all term to basically describe “any system that uses data to do anything.” But it’s so much more than that. A truly artificially intelligent system is one that learns on its own, one that’s capable of crunching copious amounts of data in order to create associations and intelligently mimic actual human behavior.
It’s what powers the technology anticipating our next online purchase (Amazon), or the virtual assistant that deciphers our voice commands with incredible accuracy (Siri), or even the hipster-friendly recommendation engine that helps you discover new music before your friends do (Pandora). But AI is moving past these consumer-pleasing “nice-to-haves” and getting down to serious business: saving our butts.
Much in the same way robotics entered manufacturing, AI is making its mark in healthcare by automating mundane, repetitive tasks. This is especially true in the case of detecting cancer. By leveraging the power of deep learning, algorithms can now be trained to distinguish between sets of pixels in an image that represents cancer versus sets that don’t—not unlike how Facebook’s image recognition software tags pictures of our friends without us having to type in their names first. This software can then go ahead and scour millions of medical images (MRIs, CT scans, etc.) in a single day to detect anomalies on a scope that humans just aren’t capable of. That’s huge.
As if that wasn’t enough, these algorithms are constantly learning and evolving, getting better at making these associations with each new data set that gets fed to them. Radiology, dermatology, and pathology will experience a giant upheaval as tech giants and startups alike jump in to bring these deep learning algorithms to a hospital near you.
In fact, some already are: the FDA recently gave their seal of approval for an AI-powered medical imaging platform that helps doctors analyze and diagnose heart anomalies. This is the first time the FDA has approved a machine learning application for use in a clinical setting.
But how efficient is AI compared to humans, really? Well, aside from the obvious fact that software programs don’t get bored or distracted or have to check Facebook every twenty minutes, AI is exponentially better than us at analyzing data.
Take, for example, IBM’s Watson. Watson analyzed genomic data from both tumor cells and healthy cells and was ultimately able to glean actionable insights in a mere 10 minutes. Compare that to the 160 hours it would have taken a human to analyze that same data. Diagnoses aside, AI is also being leveraged in pharmaceuticals to aid in the very time-consuming grunt work of discovering new drugs, and all the big players are getting involved.
But AI is far from being just a behind-the-scenes player. Gartner recently predicted that by 2025, 50 percent of the population will rely on AI-powered “virtual personal health assistants” for their routine primary care needs. What this means is that consumer-facing voice and chat-operated “assistants” (think Siri or Cortana) would, in effect, serve as a central hub of interaction for all our connected health devices and the algorithms crunching all our real-time biometric data. These assistants would keep us apprised of our current state of well-being, acting as a sort of digital facilitator for our personal health objectives and an always-on health alert system that would notify us when we actually need to see a physician.
Slowly, and thanks to the tsunami of data and advancements in self-learning algorithms, healthcare is transitioning from a reactive model to more of a preventative model—and it’s completely upending the way care is delivered. Whether Elon Musk’s dystopian outlook on AI holds any weight or not is yet to be determined. But one thing’s certain: for the time being, artificial intelligence is saving our lives.
Image Credit: Jolygon / Shutterstock.com Continue reading