Tag Archives: ISS

#439929 GITAI’s Autonomous Robot Arm Finds ...

Late last year, Japanese robotics startup GITAI sent their S1 robotic arm up to the International Space Station as part of a commercial airlock extension module to test out some useful space-based autonomy. Everything moves pretty slowly on the ISS, so it wasn't until last month that NASA astronauts installed the S1 arm and GITAI was able to put the system through its paces—or rather, sit in comfy chairs on Earth and watch the arm do most of its tasks by itself, because that's the dream, right?

The good news is that everything went well, and the arm did everything GITAI was hoping it would do. So what's next for commercial autonomous robotics in space? GITAI's CEO tells us what they're working on.

In this technology demonstration, the GITAI S1 autonomous space robot was installed inside the ISS Nanoracks Bishop Airlock and succeeded in executing two tasks: assembling structures and panels for In-Space Assembly (ISA), and operating switches & cables for Intra-Vehicular Activity (IVA).

One of the advantages of working in space is that it's a highly structured environment. Microgravity can be somewhat unpredictable, but you have a very good idea of the characteristics of objects (and even of lighting) because everything that's up there is excessively well defined. So, stuff like using a two-finger gripper for relatively high precision tasks is totally possible, because the variation that the system has to deal with is low. Of course, things can always go wrong, so GITAI also tested teleop procedures from Houston to make sure that having humans in the loop was also an effective way of completing tasks.

Since full autonomy is vastly more difficult than almost full autonomy, occasional teleop is probably going to be critical for space robots of all kinds. We spoke with GITAI CEO Sho Nakanose to learn more about their approach.

IEEE Spectrum: What do you think is the right amount of autonomy for robots working inside of the ISS?

Sho Nakanose: We believe that a combination of 95% autonomous control and 5% remote judgment and remote operation is the most efficient way to work. In this ISS demonstration, all the work was performed with 99% autonomous control and 1% remote decision making. However, in actual operations on the ISS, irregular tasks will occur that cannot be handled by autonomous control, and we believe that such irregular tasks should be handled by remote control from the ground, so we believe that the final ratio of about 5% remote judgment and remote control will be the most efficient.

GITAI will apply the general-purpose autonomous space robotics technology, know-how, and experience acquired through this tech demo to develop extra-vehicular robotics (EVR) that can execute docking, repair, and maintenance tasks for On-Orbit Servicing (OOS) or conduct various activities for lunar exploration and lunar base construction. -Sho Nakanose

I'm sure you did many tests with the system on the ground before sending it to the ISS. How was operating the robot on the ISS different from the testing you had done on Earth?

The biggest difference between experiments on the ground and on the ISS is the microgravity environment, but it was not that difficult to cope with. However, experiments on the ISS, which is an unknown environment that we have never been to before, are subject to a variety of unexpected situations that were extremely difficult to deal with, for example an unexpected communication breakdown occurred due to a failed thruster firing experiment on the Russian module. However, we were able to solve all the problems because the development team had carefully prepared for the irregularities in advance.

It looked like the robot was performing many tasks using equipment designed for humans. Do you think it would be better to design things like screws and control panels to make them easier for robots to see and operate?

Yes, I think so. Unlike the ISS that was built in the past, it is expected that humans and robots will cooperate to work together in the lunar orbiting space station Gateway and the lunar base that will be built in the future. Therefore, it is necessary to devise and implement an interface that is easy to use for both humans and robots. In 2019, GITAI received an order from JAXA to develop guidelines for an interface that is easy for both humans and robots to use on the ISS and Gateway.

What are you working on next?

We are planning to conduct an on-orbit extra-vehicular demonstration in 2023 and a lunar demonstration in 2025. We are also working on space robot development projects for several customers for which we have already received orders. Continue reading

Posted in Human Robots

#439036 Video Friday: Shadow Plays Jenga, and ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The Shadow Robot team couldn't resist! Our Operator, Joanna, is using the Shadow Teleoperation System which, fun and games aside, can help those in difficult, dangerous and distant jobs.

Shadow could challenge this MIT Jenga-playing robot, but I bet they wouldn't win:

[ Shadow Robot ]

Digit is gradually stomping the Agility Robotics logo into a big grassy field fully autonomously.

[ Agility Robotics ]

This is a pretty great and very short robotic magic show.

[ Mario the Magician ]

A research team at the Georgia Institute of Technology has developed a modular solution for drone delivery of larger packages without the need for a complex fleet of drones of varying sizes. By allowing teams of small drones to collaboratively lift objects using an adaptive control algorithm, the strategy could allow a wide range of packages to be delivered using a combination of several standard-sized vehicles.

[ GA Tech ]

I've seen this done using vision before, but Flexiv's Rizon 4s can keep a ball moving along a specific trajectory using only force sensing and control.

[ Flexiv ]

Thanks Yunfan!

This combination of a 3D aerial projection system and a sensing interface can be used as an interactive and intuitive control system for things like robot arms, but in this case, it's being used to make simulated pottery. Much less messy than the traditional way of doing it.

More details on Takafumi Matsumaru's work at the Bio-Robotics & Human-Mechatronics Laboratory at Waseda University at the link below.

[ BLHM ]

U.S. Vice President Kamala Harris called astronauts Shannon Walker and Kate Rubins on the ISS, and they brought up Astrobee, at which point Shannon reaches over and rips Honey right off of her charging dock to get her on camera.

[ NASA ]

Here's a quick three minute update on Perseverance and Ingenuity from JPL.

[ Mars 2020 ]

Rigid grippers used in existing aerial manipulators require precise positioning to achieve successful grasps and transmit large contact forces that may destabilize the drone. This limits the speed during grasping and prevents “dynamic grasping,” where the drone attempts to grasp an object while moving. On the other hand, biological systems (e.g. birds) rely on compliant and soft parts to dampen contact forces and compensate for grasping inaccuracy, enabling impressive feats. This paper presents the first prototype of a soft drone—a quadrotor where traditional (i.e. rigid) landing gears are replaced with a soft tendon-actuated gripper to enable aggressive grasping.

[ MIT ]

In this video we present results from a field deployment inside the Løkken Mine underground pyrite mine in Norway. The Løkken mine was operative from 1654 to 1987 and contains narrow but long corridors, alongside vast rooms and challenging vertical stopes. In this field study we evaluated selected autonomous exploration and visual search capabilities of a subset of the aerial robots of Team CERBERUS towards the goal of complete subterranean autonomy.

[ Team CERBERUS ]

What you can do with a 1,000 FPS projector with a high speed tracking system.

[ Ishikawa Group ]

ANYbotics’ collaboration with BASF, one of the largest global chemical manufacturers, displays the efficiency, quality, and scalability of robotic inspection and data-collection capabilities in complex industrial environments.

[ ANYbotics ]

Does your robot arm need a stylish jacket?

[ Fraunhofer ]

Trossen Robotics unboxes a Unitree A1, and it's actually an unboxing where they have to figure out everything from scratch.

[ Trossen ]

Robots have learned to drive cars, assist in surgeries―and vacuum our floors. But can they navigate the unwritten rules of a busy sidewalk? Until they can, robotics experts Leila Takayama and Chris Nicholson believe, robots won’t be able to fulfill their immense potential. In this conversation, Chris and Leila explore the future of robotics and the role open source will play in it.

[ Red Hat ]

Christoph Bartneck's keynote at the 6th Joint UAE Symposium on Social Robotics, focusing on what roles robots can play during the Covid crisis and why so many social robots fail in the market.

[ HIT Lab ]

Decision-making based on arbitrary criteria is legal in some contexts, such as employment, and not in others, such as criminal sentencing. As algorithms replace human deciders, HAI-EIS fellow Kathleen Creel argues arbitrariness at scale is morally and legally problematic. In this HAI seminar, she explains how the heart of this moral issue relates to domination and a lack of sufficient opportunity for autonomy. It relates in interesting ways to the moral wrong of discrimination. She proposes technically informed solutions that can lessen the impact of algorithms at scale and so mitigate or avoid the moral harm identified.

[ Stanford HAI ]

Sawyer B. Fuller speaks on Autonomous Insect-Sized Robots at the UC Berkeley EECS Colloquium series.

Sub-gram (insect-sized) robots have enormous potential that is largely untapped. From a research perspective, their extreme size, weight, and power (SWaP) constraints also forces us to reimagine everything from how they compute their control laws to how they are fabricated. These questions are the focus of the Autonomous Insect Robotics Laboratory at the University of Washington. I will discuss potential applications for insect robots and recent advances from our group. These include the first wireless flights of a sub-gram flapping-wing robot that weighs barely more than a toothpick. I will describe efforts to expand its capabilities, including the first multimodal ground-flight locomotion, the first demonstration of steering control, and how to find chemical plume sources by integrating the smelling apparatus of a live moth. I will also describe a backpack for live beetles with a steerable camera and conceptual design of robots that could scale all the way down to the “gnat robots” first envisioned by Flynn & Brooks in the ‘80s.

[ UC Berkeley ]

Thanks Fan!

Joshua Vander Hook, Computer Scientist, NIAC Fellow, and Technical Group Supervisor at NASA JPL, presents an overview of the AI Group(s) at JPL, and recent work on single and multi-agent autonomous systems supporting space exploration, Earth science, NASA technology development, and national defense programs.

[ UMD ] Continue reading

Posted in Human Robots

#437423 Robonaut2 joins ISS (2011)

Space Shuttle Discovery carried the humanoid robot Robonaut2 (also known as R2) to the International Space Station (ISS) as part of STS-133. Robonaut2 originally consisted only of a torso, made out of nickel-plated carbon fiber and aluminum. A pair of … Continue reading

Posted in Human Robots