Tag Archives: IoT
#433748 Could Tech Make Government As We Know It ...
Governments are one of the last strongholds of an undigitized, linear sector of humanity, and they are falling behind fast. Apart from their struggle to keep up with private sector digitization, federal governments are in a crisis of trust.
At almost a 60-year low, only 18 percent of Americans reported that they could trust their government “always” or “most of the time” in a recent Pew survey. And the US is not alone. The Edelman Trust Barometer revealed last year that 41 percent of the world population distrust their nations’ governments.
In many cases, the private sector—particularly tech—is driving greater progress in regulation-targeted issues like climate change than state leaders. And as decentralized systems, digital disruption, and private sector leadership take the world by storm, traditional forms of government are beginning to fear irrelevance. However, the fight for exponential governance is not a lost battle.
Early visionaries like Estonia and the UAE are leading the way in digital governance, empowered by a host of converging technologies.
In this article, we will cover three key trends:
Digital governance divorced from land
AI-driven service delivery and regulation
Blockchain-enforced transparency
Let’s dive in.
Governments Going Digital
States and their governments have forever been tied to physical territories, and public services are often delivered through brick-and-mortar institutions. Yet public sector infrastructure and services will soon be hosted on servers, detached from land and physical form.
Enter e-Estonia. Perhaps the least expected on a list of innovative nations, this former Soviet Republic-turned digital society is ushering in an age of technological statecraft.
Hosting every digitizable government function on the cloud, Estonia could run its government almost entirely on a server. Starting in the 1990s, Estonia’s government has covered the nation with ultra-high-speed data connectivity, laying down tremendous amounts of fiber optic cable. By 2007, citizens could vote from their living rooms.
With digitized law, Estonia signs policies into effect using cryptographically secure digital signatures, and every stage of the legislative process is available to citizens online.
Citizens’ healthcare registry is run on the blockchain, allowing patients to own and access their own health data from anywhere in the world—X-rays, digital prescriptions, medical case notes—all the while tracking who has access.
Today, most banks have closed their offices, as 99 percent of banking transactions occur online (with 67 percent of citizens regularly using cryptographically secured e-IDs). And by 2020, e-tax will be entirely automated with Estonia’s new e-Tax and Customs Board portal, allowing companies and tax authority to exchange data automatically. And i-Voting, civil courts, land registries, banking, taxes, and countless e-facilities allow citizens to access almost any government service with an electronic ID and personal PIN online.
But perhaps Estonia’s most revolutionary breakthrough is its recently introduced e-residency. With over 30,000 e-residents, Estonia issues electronic IDs to global residents anywhere in the world. While e-residency doesn’t grant territorial rights, over 5,000 e-residents have already established companies within Estonia’s jurisdiction.
After registering companies online, entrepreneurs pay automated taxes—calculated in minutes and transmitted to the Estonian government with unprecedented ease.
The implications of e-residency and digital governance are huge. As with any software, open-source code for digital governance could be copied perfectly at almost zero cost, lowering the barrier to entry for any group or movement seeking statehood.
We may soon see the rise of competitive governing ecosystems, each testing new infrastructure and public e-services to compete with mainstream governments for taxpaying citizens.
And what better to accelerate digital governance than AI?
Legal Compliance Through AI
Just last year, the UAE became the first nation to appoint a State Minister for AI (actually a friend of mine, H.E. Omar Al Olama), aiming to digitize government services and halve annual costs. Among multiple sector initiatives, the UAE hopes to deploy robotic cops by 2030.
Meanwhile, the U.K. now has a Select Committee on Artificial Intelligence, and just last month, world leaders convened at the World Government Summit to discuss guidelines for AI’s global regulation.
As AI infuses government services, emerging applications have caught my eye:
Smart Borders and Checkpoints
With biometrics and facial recognition, traditional checkpoints will soon be a thing of the past. Cubic Transportation Systems—the company behind London’s ticketless public transit—is currently developing facial recognition for automated transport barriers. Digital security company Gemalto predicts that biometric systems will soon cross-reference individual faces with passport databases at security checkpoints, and China has already begun to test this at scale. While the Alibaba Ant Financial affiliate’s “Smile to Pay” feature allows users to authenticate digital payments with their faces, nationally overseen facial recognition technologies allow passengers to board planes, employees to enter office spaces, and students to access university halls. With biometric-geared surveillance at national borders, supply chains and international travelers could be tracked automatically, and granted or denied access according to biometrics and cross-referenced databases.
Policing and Security
Leveraging predictive analytics, China is also working to integrate security footage into a national surveillance and data-sharing system. By merging citizen data in its “Police Cloud”—including everything from criminal and medical records, transaction data, travel records and social media—it may soon be able to spot suspects and predict crime in advance. But China is not alone. During London’s Notting Hill Carnival this year, the Metropolitan Police used facial recognition cross-referenced with crime data to pre-identify and track likely offenders.
Smart Courts
AI may soon be reaching legal trials as well. UCL computer scientists have developed software capable of predicting courtroom outcomes based on data patterns with unprecedented accuracy. Assessing risk of flight, the National Bureau of Economic Research now uses an algorithm leveraging data from hundreds of thousands of NYC cases to recommend whether defendants should be granted bail. But while AI allows for streamlined governance, the public sector’s power to misuse our data is a valid concern and issues with bias as a result of historical data still remain. As tons of new information is generated about our every move, how do we keep governments accountable?
Enter the blockchain.
Transparent Governance and Accountability
Without doubt, alongside AI, government’s greatest disruptor is the newly-minted blockchain. Relying on a decentralized web of nodes, blockchain can securely verify transactions, signatures, and other information. This makes it essentially impossible for hackers, companies, officials, or even governments to falsify information on the blockchain.
As you’d expect, many government elites are therefore slow to adopt the technology, fearing enforced accountability. But blockchain’s benefits to government may be too great to ignore.
First, blockchain will be a boon for regulatory compliance.
As transactions on a blockchain are irreversible and transparent, uploaded sensor data can’t be corrupted. This means middlemen have no way of falsifying information to shirk regulation, and governments eliminate the need to enforce charges after the fact.
Apply this to carbon pricing, for instance, and emission sensors could fluidly log carbon credits onto a carbon credit blockchain, such as that developed by Ecosphere+. As carbon values are added to the price of everyday products or to corporations’ automated taxes, compliance and transparency would soon be digitally embedded.
Blockchain could also bolster government efforts in cybersecurity. As supercities and nation-states build IoT-connected traffic systems, surveillance networks, and sensor-tracked supply chain management, blockchain is critical in protecting connected devices from cyberattack.
But blockchain will inevitably hold governments accountable as well. By automating and tracking high-risk transactions, blockchain may soon eliminate fraud in cash transfers, public contracts and aid funds. Already, the UN World Food Program has piloted blockchain to manage cash-based transfers and aid flows to Syrian refugees in Jordan.
Blockchain-enabled “smart contracts” could automate exchange of real assets according to publicly visible, pre-programmed conditions, disrupting the $9.5 trillion market of public-sector contracts and public investment projects.
Eliminating leakages and increasing transparency, a distributed ledger has the potential to save trillions.
Future Implications
It is truly difficult to experiment with new forms of government. It’s not like there are new countries waiting to be discovered where we can begin fresh. And with entrenched bureaucracies and dominant industrial players, changing an existing nation’s form of government is extremely difficult and usually only happens during times of crisis or outright revolution.
Perhaps we will develop and explore new forms of government in the virtual world (to be explored during a future blog), or perhaps Sea Steading will allow us to physically build new island nations. And ultimately, as we move off the earth to Mars and space colonies, we will have yet another chance to start fresh.
But, without question, 90 percent or more of today’s political processes herald back to a day before technology, and it shows in terms of speed and efficiency.
Ultimately, there will be a shift to digital governments enabled with blockchain’s transparency, and we will redefine the relationship between citizens and the public sector.
One day I hope i-voting will allow anyone anywhere to participate in policy, and cloud-based governments will start to compete in e-services. As four billion new minds come online over the next several years, people may soon have the opportunity to choose their preferred government and citizenship digitally, independent of birthplace.
In 50 years, what will our governments look like? Will we have an interplanetary order, or a multitude of publicly-run ecosystems? Will cyber-ocracies rule our physical worlds with machine intelligence, or will blockchains allow for hive mind-like democracy?
The possibilities are endless, and only we can shape them.
Join Me
Abundance-Digital Online Community: I’ve created a digital community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: ArtisticPhoto / Shutterstock.com Continue reading →
#433282 The 4 Waves of AI: Who Will Own the ...
Recently, I picked up Kai-Fu Lee’s newest book, AI Superpowers.
Kai-Fu Lee is one of the most plugged-in AI investors on the planet, managing over $2 billion between six funds and over 300 portfolio companies in the US and China.
Drawing from his pioneering work in AI, executive leadership at Microsoft, Apple, and Google (where he served as founding president of Google China), and his founding of VC fund Sinovation Ventures, Lee shares invaluable insights about:
The four factors driving today’s AI ecosystems;
China’s extraordinary inroads in AI implementation;
Where autonomous systems are headed;
How we’ll need to adapt.
With a foothold in both Beijing and Silicon Valley, Lee looks at the power balance between Chinese and US tech behemoths—each turbocharging new applications of deep learning and sweeping up global markets in the process.
In this post, I’ll be discussing Lee’s “Four Waves of AI,” an excellent framework for discussing where AI is today and where it’s going. I’ll also be featuring some of the hottest Chinese tech companies leading the charge, worth watching right now.
I’m super excited that this Tuesday, I’ve scored the opportunity to sit down with Kai-Fu Lee to discuss his book in detail via a webinar.
With Sino-US competition heating up, who will own the future of technology?
Let’s dive in.
The First Wave: Internet AI
In this first stage of AI deployment, we’re dealing primarily with recommendation engines—algorithmic systems that learn from masses of user data to curate online content personalized to each one of us.
Think Amazon’s spot-on product recommendations, or that “Up Next” YouTube video you just have to watch before getting back to work, or Facebook ads that seem to know what you’ll buy before you do.
Powered by the data flowing through our networks, internet AI leverages the fact that users automatically label data as we browse. Clicking versus not clicking; lingering on a web page longer than we did on another; hovering over a Facebook video to see what happens at the end.
These cascades of labeled data build a detailed picture of our personalities, habits, demands, and desires: the perfect recipe for more tailored content to keep us on a given platform.
Currently, Lee estimates that Chinese and American companies stand head-to-head when it comes to deployment of internet AI. But given China’s data advantage, he predicts that Chinese tech giants will have a slight lead (60-40) over their US counterparts in the next five years.
While you’ve most definitely heard of Alibaba and Baidu, you’ve probably never stumbled upon Toutiao.
Starting out as a copycat of America’s wildly popular Buzzfeed, Toutiao reached a valuation of $20 billion by 2017, dwarfing Buzzfeed’s valuation by more than a factor of 10. But with almost 120 million daily active users, Toutiao doesn’t just stop at creating viral content.
Equipped with natural-language processing and computer vision, Toutiao’s AI engines survey a vast network of different sites and contributors, rewriting headlines to optimize for user engagement, and processing each user’s online behavior—clicks, comments, engagement time—to curate individualized news feeds for millions of consumers.
And as users grow more engaged with Toutiao’s content, the company’s algorithms get better and better at recommending content, optimizing headlines, and delivering a truly personalized feed.
It’s this kind of positive feedback loop that fuels today’s AI giants surfing the wave of internet AI.
The Second Wave: Business AI
While internet AI takes advantage of the fact that netizens are constantly labeling data via clicks and other engagement metrics, business AI jumps on the data that traditional companies have already labeled in the past.
Think banks issuing loans and recording repayment rates; hospitals archiving diagnoses, imaging data, and subsequent health outcomes; or courts noting conviction history, recidivism, and flight.
While we humans make predictions based on obvious root causes (strong features), AI algorithms can process thousands of weakly correlated variables (weak features) that may have much more to do with a given outcome than the usual suspects.
By scouting out hidden correlations that escape our linear cause-and-effect logic, business AI leverages labeled data to train algorithms that outperform even the most veteran of experts.
Apply these data-trained AI engines to banking, insurance, and legal sentencing, and you get minimized default rates, optimized premiums, and plummeting recidivism rates.
While Lee confidently places America in the lead (90-10) for business AI, China’s substantial lag in structured industry data could actually work in its favor going forward.
In industries where Chinese startups can leapfrog over legacy systems, China has a major advantage.
Take Chinese app Smart Finance, for instance.
While Americans embraced credit and debit cards in the 1970s, China was still in the throes of its Cultural Revolution, largely missing the bus on this technology.
Fast forward to 2017, and China’s mobile payment spending outnumbered that of Americans’ by a ratio of 50 to 1. Without the competition of deeply entrenched credit cards, mobile payments were an obvious upgrade to China’s cash-heavy economy, embraced by 70 percent of China’s 753 million smartphone users by the end of 2017.
But by leapfrogging over credit cards and into mobile payments, China largely left behind the notion of credit.
And here’s where Smart Finance comes in.
An AI-powered app for microfinance, Smart Finance depends almost exclusively on its algorithms to make millions of microloans. For each potential borrower, the app simply requests access to a portion of the user’s phone data.
On the basis of variables as subtle as your typing speed and battery percentage, Smart Finance can predict with astounding accuracy your likelihood of repaying a $300 loan.
Such deployments of business AI and internet AI are already revolutionizing our industries and individual lifestyles. But still on the horizon lie two even more monumental waves— perception AI and autonomous AI.
The Third Wave: Perception AI
In this wave, AI gets an upgrade with eyes, ears, and myriad other senses, merging the digital world with our physical environments.
As sensors and smart devices proliferate through our homes and cities, we are on the verge of entering a trillion-sensor economy.
Companies like China’s Xiaomi are putting out millions of IoT-connected devices, and teams of researchers have already begun prototyping smart dust—solar cell- and sensor-geared particulates that can store and communicate troves of data anywhere, anytime.
As Kai-Fu explains, perception AI “will bring the convenience and abundance of the online world into our offline reality.” Sensor-enabled hardware devices will turn everything from hospitals to cars to schools into online-merge-offline (OMO) environments.
Imagine walking into a grocery store, scanning your face to pull up your most common purchases, and then picking up a virtual assistant (VA) shopping cart. Having pre-loaded your data, the cart adjusts your usual grocery list with voice input, reminds you to get your spouse’s favorite wine for an upcoming anniversary, and guides you through a personalized store route.
While we haven’t yet leveraged the full potential of perception AI, China and the US are already making incredible strides. Given China’s hardware advantage, Lee predicts China currently has a 60-40 edge over its American tech counterparts.
Now the go-to city for startups building robots, drones, wearable technology, and IoT infrastructure, Shenzhen has turned into a powerhouse for intelligent hardware, as I discussed last week. Turbocharging output of sensors and electronic parts via thousands of factories, Shenzhen’s skilled engineers can prototype and iterate new products at unprecedented scale and speed.
With the added fuel of Chinese government support and a relaxed Chinese attitude toward data privacy, China’s lead may even reach 80-20 in the next five years.
Jumping on this wave are companies like Xiaomi, which aims to turn bathrooms, kitchens, and living rooms into smart OMO environments. Having invested in 220 companies and incubated 29 startups that produce its products, Xiaomi surpassed 85 million intelligent home devices by the end of 2017, making it the world’s largest network of these connected products.
One KFC restaurant in China has even teamed up with Alipay (Alibaba’s mobile payments platform) to pioneer a ‘pay-with-your-face’ feature. Forget cash, cards, and cell phones, and let OMO do the work.
The Fourth Wave: Autonomous AI
But the most monumental—and unpredictable—wave is the fourth and final: autonomous AI.
Integrating all previous waves, autonomous AI gives machines the ability to sense and respond to the world around them, enabling AI to move and act productively.
While today’s machines can outperform us on repetitive tasks in structured and even unstructured environments (think Boston Dynamics’ humanoid Atlas or oncoming autonomous vehicles), machines with the power to see, hear, touch and optimize data will be a whole new ballgame.
Think: swarms of drones that can selectively spray and harvest entire farms with computer vision and remarkable dexterity, heat-resistant drones that can put out forest fires 100X more efficiently, or Level 5 autonomous vehicles that navigate smart roads and traffic systems all on their own.
While autonomous AI will first involve robots that create direct economic value—automating tasks on a one-to-one replacement basis—these intelligent machines will ultimately revamp entire industries from the ground up.
Kai-Fu Lee currently puts America in a commanding lead of 90-10 in autonomous AI, especially when it comes to self-driving vehicles. But Chinese government efforts are quickly ramping up the competition.
Already in China’s Zhejiang province, highway regulators and government officials have plans to build China’s first intelligent superhighway, outfitted with sensors, road-embedded solar panels and wireless communication between cars, roads and drivers.
Aimed at increasing transit efficiency by up to 30 percent while minimizing fatalities, the project may one day allow autonomous electric vehicles to continuously charge as they drive.
A similar government-fueled project involves Beijing’s new neighbor Xiong’an. Projected to take in over $580 billion in infrastructure spending over the next 20 years, Xiong’an New Area could one day become the world’s first city built around autonomous vehicles.
Baidu is already working with Xiong’an’s local government to build out this AI city with an environmental focus. Possibilities include sensor-geared cement, computer vision-enabled traffic lights, intersections with facial recognition, and parking lots-turned parks.
Lastly, Lee predicts China will almost certainly lead the charge in autonomous drones. Already, Shenzhen is home to premier drone maker DJI—a company I’ll be visiting with 24 top executives later this month as part of my annual China Platinum Trip.
Named “the best company I have ever encountered” by Chris Anderson, DJI owns an estimated 50 percent of the North American drone market, supercharged by Shenzhen’s extraordinary maker movement.
While the long-term Sino-US competitive balance in fourth wave AI remains to be seen, one thing is certain: in a matter of decades, we will witness the rise of AI-embedded cityscapes and autonomous machines that can interact with the real world and help solve today’s most pressing grand challenges.
Join Me
Webinar with Dr. Kai-Fu Lee: Dr. Kai-Fu Lee — one of the world’s most respected experts on AI — and I will discuss his latest book AI Superpowers: China, Silicon Valley, and the New World Order. Artificial Intelligence is reshaping the world as we know it. With U.S.-Sino competition heating up, who will own the future of technology? Register here for the free webinar on September 4th, 2018 from 11:00am–12:30pm PST.
Image Credit: Elena11 / Shutterstock.com Continue reading →
#432998 “Internet Of Things” ...
This new IoT Humanoid Robot from Greece is operated by an Android Application. I dunno, it’s all Greek to me! 😉
#432456 This Planned Solar Farm in Saudi Arabia ...
Right now it only exists on paper, in the form of a memorandum of understanding. But if constructed, the newly-announced solar photovoltaic project in Saudi Arabia would break an astonishing array of records. It’s larger than any solar project currently planned by a factor of 100. When completed, nominally in 2030, it would have a capacity of an astonishing 200 gigawatts (GW). The project is backed by Softbank Group and Saudi Arabia’s new crown prince, Mohammed Bin Salman, and was announced in New York on March 27.
The Tengger Desert Solar Park in China, affectionately known as the “Great Wall of Solar,” is the world’s largest operating solar farm, with a capacity of 1.5 GW. Larger farms are under construction, including the Westlands Solar Park, which plans to finish with 2.7 GW of capacity. But even those that are only in the planning phases are dwarfed by the Saudi project; two early-stage solar parks will have capacity of 7.2 GW, and the plan involves them generating electricity as early as next year.
It makes more sense to compare to slightly larger projects, like nations, or even planets. Saudi Arabia’s current electricity generation capacity is 77 GW. This project would almost triple it. The current total solar photovoltaic generation capacity installed worldwide is 303 GW. In other words, this single solar farm would account for a similar installed capacity as the entire world’s capacity in 2015, and over a thousand times more than we had in 2000.
That’s exponential growth for you, folks.
Of course, practically doubling the world’s solar capacity doesn’t come cheap; the nominal estimate for the budget is around $200 billion (compared to $20 billion for around half a gigawatt of fusion, though, it may not seem so bad.) But the project would help solve a number of pressing problems for Saudi Arabia.
For a start, solar power works well in the desert. The irradiance is high, you have plenty of empty space, and peak demand is driven by air conditioning in the cities and so corresponds with peak supply. Even if oil companies might seem blasé about the global supply of oil running out, individual countries are aware that their own reserves won’t last forever, and they don’t want to miss the energy transition. The country’s Vision 2030 project aims to diversify its heavily oil-dependent economy by that year. If they can construct solar farms on this scale, alongside the $80 billion the government plans to spend on a fleet of nuclear reactors, it seems logical to export that power to other countries in the region, especially given the amount of energy storage that would be required otherwise.
We’ve already discussed a large-scale project to build solar panels in the desert then export the electricity: the DESERTEC initiative in the Sahara. Although DESERTEC planned a range of different demonstration plants on scales of around 500 MW, its ultimate ambition was to “provide 20 percent of Europe’s electricity by 2050.” It seems that this project is similar in scale to what they were planning. Weaning ourselves off fossil fuels is going to be incredibly difficult. Only large-scale nuclear, wind, or solar can really supply the world’s energy needs if consumption is anything like what it is today; in all likelihood, we’ll need a combination of all three.
To make a sizeable contribution to that effort, the renewable projects have to be truly epic in scale. The planned 2 GW solar park at Bulli Creek in Australia would cover 5 square kilometers, so it’s not unreasonable to suggest that, across many farms, this project could cover around 500 square kilometers—around the size of Chicago.
It will come as no surprise that Softbank is involved in this project. The founder, Masayoshi Son, is well-known for large-scale “visionary” investments. This is suggested by the name of his $100 billion VC fund, the Softbank Vision Fund, and the focus of its investments. It has invested millions of dollars in tech companies like Uber, IoT, NVIDIA and ARM, and startups across fields like VR, agritech, and AI.
Of course, Softbank is also the company that bought infamous robot-makers Boston Dynamics from Google when their not-at-all-sinister “Project Replicant” was sidelined. Softbank is famous in Japan in part due to their mascot, Pepper, which is probably the most widespread humanoid robot on the planet. Suffice it to say that Softbank is keen to be a part of any technological development, and they’re not afraid of projects that are truly vast in scope.
Since the Fukushima disaster in 2011 led Japan to turn away from nuclear power, Son has also been focused on green electricity, floating the idea of an Asia Super Grid. Similar to DESERTEC, it aims to get around the main issues with renewable energy (the land use and the intermittency of supply) with a vast super-grid that would connect Mongolia, India, Japan, China, Russia, and South Korea with high-voltage DC power cables. “Since this is such a grandiose project, many people told me it is crazy,” Son said. “They said it is impossible both economically and politically.” The first stage of the project, a demonstration wind farm of 50 megawatts in Mongolia, began operating in October of last year.
Given that Saudi Arabia put up $45 billion of the Vision Fund, it’s also not surprising to see the location of the project; Softbank reportedly had plans to invest $25 billion of the Vision Fund in Saudi Arabia, and $1 billion will be spent on the first solar farms there. Prince Mohammed Bin Salman, 32, who recently consolidated power, is looking to be seen on the global stage as a modernizer. He was effusive about the project. “It’s a huge step in human history,” he said. “It’s bold, risky, and we hope we succeed doing that.”
It is the risk that will keep renewable energy enthusiasts concerned.
Every visionary plan contains the potential for immense disappointment. As yet, the Asian Super Grid and the Saudi power plan are more or less at the conceptual stage. The fact that a memorandum of understanding exists between the Saudi government and Softbank is no guarantee that it will ever be built. Some analysts in the industry are a little skeptical.
“It’s an unprecedented construction effort; it’s an unprecedented financing effort,” said Benjamin Attia, a global solar analyst for Green Tech Media Research. “But there are so many questions, so few details, and a lot of headwinds, like grid instability, the availability of commercial debt, construction, and logistics challenges.”
We have already seen with the DESERTEC initiative that these vast-scale renewable energy projects can fail, despite immense enthusiasm. They are not easy to accomplish. But in a world without fossil fuels, they will be required. This project could be a flagship example for how to run a country on renewable energy—or another example of grand designs and good intentions. We’ll have to wait to find out which.
Image Credit: Love Silhouette / Shutterstock.com Continue reading →