Tag Archives: invention
#432893 These 4 Tech Trends Are Driving Us ...
From a first-principles perspective, the task of feeding eight billion people boils down to converting energy from the sun into chemical energy in our bodies.
Traditionally, solar energy is converted by photosynthesis into carbohydrates in plants (i.e., biomass), which are either eaten by the vegans amongst us, or fed to animals, for those with a carnivorous preference.
Today, the process of feeding humanity is extremely inefficient.
If we could radically reinvent what we eat, and how we create that food, what might you imagine that “future of food” would look like?
In this post we’ll cover:
Vertical farms
CRISPR engineered foods
The alt-protein revolution
Farmer 3.0
Let’s dive in.
Vertical Farming
Where we grow our food…
The average American meal travels over 1,500 miles from farm to table. Wine from France, beef from Texas, potatoes from Idaho.
Imagine instead growing all of your food in a 50-story tall vertical farm in downtown LA or off-shore on the Great Lakes where the travel distance is no longer 1,500 miles but 50 miles.
Delocalized farming will minimize travel costs at the same time that it maximizes freshness.
Perhaps more importantly, vertical farming also allows tomorrow’s farmer the ability to control the exact conditions of her plants year round.
Rather than allowing the vagaries of the weather and soil conditions to dictate crop quality and yield, we can now perfectly control the growing cycle.
LED lighting provides the crops with the maximum amount of light, at the perfect frequency, 24 hours a day, 7 days a week.
At the same time, sensors and robots provide the root system the exact pH and micronutrients required, while fine-tuning the temperature of the farm.
Such precision farming can generate yields that are 200% to 400% above normal.
Next let’s explore how we can precision-engineer the genetic properties of the plant itself.
CRISPR and Genetically Engineered Foods
What food do we grow?
A fundamental shift is occurring in our relationship with agriculture. We are going from evolution by natural selection (Darwinism) to evolution by human direction.
CRISPR (the cutting edge gene editing tool) is providing a pathway for plant breeding that is more predictable, faster and less expensive than traditional breeding methods.
Rather than our crops being subject to nature’s random, environmental whim, CRISPR unlocks our capability to modify our crops to match the available environment.
Further, using CRISPR we will be able to optimize the nutrient density of our crops, enhancing their value and volume.
CRISPR may also hold the key to eliminating common allergens from crops. As we identify the allergen gene in peanuts, for instance, we can use CRISPR to silence that gene, making the crops we raise safer for and more accessible to a rapidly growing population.
Yet another application is our ability to make plants resistant to infection or more resistant to drought or cold.
Helping to accelerate the impact of CRISPR, the USDA recently announced that genetically engineered crops will not be regulated—providing an opening for entrepreneurs to capitalize on the opportunities for optimization CRISPR enables.
CRISPR applications in agriculture are an opportunity to help a billion people and become a billionaire in the process.
Protecting crops against volatile environments, combating crop diseases and increasing nutrient values, CRISPR is a promising tool to help feed the world’s rising population.
The Alt-Protein/Lab-Grown Meat Revolution
Something like a third of the Earth’s arable land is used for raising livestock—a massive amount of land—and global demand for meat is predicted to double in the coming decade.
Today, we must grow an entire cow—all bones, skin, and internals included—to produce a steak.
Imagine if we could instead start with a single muscle stem cell and only grow the steak, without needing the rest of the cow? Think of it as cellular agriculture.
Imagine returning millions, perhaps billions, of acres of grazing land back to the wilderness? This is the promise of lab-grown meats.
Lab-grown meat can also be engineered (using technology like CRISPR) to be packed with nutrients and be the healthiest, most delicious protein possible.
We’re watching this technology develop in real time. Several startups across the globe are already working to bring artificial meats to the food industry.
JUST, Inc. (previously Hampton Creek) run by my friend Josh Tetrick, has been on a mission to build a food system where everyone can get and afford delicious, nutritious food. They started by exploring 300,000+ species of plants all around the world to see how they can make food better and now are investing heavily in stem-cell-grown meats.
Backed by Richard Branson and Bill Gates, Memphis Meats is working on ways to produce real meat from animal cells, rather than whole animals. So far, they have produced beef, chicken, and duck using cultured cells from living animals.
As with vertical farming, transitioning production of our majority protein source to a carefully cultivated environment allows for agriculture to optimize inputs (water, soil, energy, land footprint), nutrients and, importantly, taste.
Farmer 3.0
Vertical farming and cellular agriculture are reinventing how we think about our food supply chain and what food we produce.
The next question to answer is who will be producing the food?
Let’s look back at how farming evolved through history.
Farmers 0.0 (Neolithic Revolution, around 9000 BCE): The hunter-gatherer to agriculture transition gains momentum, and humans cultivated the ability to domesticate plants for food production.
Farmers 1.0 (until around the 19th century): Farmers spent all day in the field performing backbreaking labor, and agriculture accounted for most jobs.
Farmers 2.0 (mid-20th century, Green Revolution): From the invention of the first farm tractor in 1812 through today, transformative mechanical biochemical technologies (fertilizer) boosted yields and made the job of farming easier, driving the US farm job rate down to less than two percent today.
Farmers 3.0: In the near future, farmers will leverage exponential technologies (e.g., AI, networks, sensors, robotics, drones), CRISPR and genetic engineering, and new business models to solve the world’s greatest food challenges and efficiently feed the eight-billion-plus people on Earth.
An important driver of the Farmer 3.0 evolution is the delocalization of agriculture driven by vertical and urban farms. Vertical farms and urban agriculture are empowering a new breed of agriculture entrepreneurs.
Let’s take a look at an innovative incubator in Brooklyn, New York called Square Roots.
Ten farm-in-a-shipping-containers in a Brooklyn parking lot represent the first Square Roots campus. Each 8-foot x 8.5-foot x 20-foot shipping container contains an equivalent of 2 acres of produce and can yield more than 50 pounds of produce each week.
For 13 months, one cohort of next-generation food entrepreneurs takes part in a curriculum with foundations in farming, business, community and leadership.
The urban farming incubator raised a $5.4 million seed funding round in August 2017.
Training a new breed of entrepreneurs to apply exponential technology to growing food is essential to the future of farming.
One of our massive transformative purposes at the Abundance Group is to empower entrepreneurs to generate extraordinary wealth while creating a world of abundance. Vertical farms and cellular agriculture are key elements enabling the next generation of food and agriculture entrepreneurs.
Conclusion
Technology is driving food abundance.
We’re already seeing food become demonetized, as the graph below shows.
From 1960 to 2014, the percent of income spent on food in the U.S. fell from 19 percent to under 10 percent of total disposable income—a dramatic decrease over the 40 percent of household income spent on food in 1900.
The dropping percent of per-capita disposable income spent on food. Source: USDA, Economic Research Service, Food Expenditure Series
Ultimately, technology has enabled a massive variety of food at a significantly reduced cost and with fewer resources used for production.
We’re increasingly going to optimize and fortify the food supply chain to achieve more reliable, predictable, and nutritious ways to obtain basic sustenance.
And that means a world with abundant, nutritious, and inexpensive food for every man, woman, and child.
What an extraordinary time to be alive.
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital.
Abundance-Digital is my ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: Nejron Photo / Shutterstock.com Continue reading
#432262 How We Can ‘Robot-Proof’ Education ...
Like millions of other individuals in the workforce, you’re probably wondering if you will one day be replaced by a machine. If you’re a student, you’re probably wondering if your chosen profession will even exist by the time you’ve graduated. From driving to legal research, there isn’t much that technology hasn’t already automated (or begun to automate). Many of us will need to adapt to this disruption in the workforce.
But it’s not enough for students and workers to adapt, become lifelong learners, and re-skill themselves. We also need to see innovation and initiative at an institutional and governmental level. According to research by The Economist, almost half of all jobs could be automated by computers within the next two decades, and no government in the world is prepared for it.
While many see the current trend in automation as a terrifying threat, others see it as an opportunity. In Robot-Proof: Higher Education in the Age of Artificial Intelligence, Northeastern University president Joseph Aoun proposes educating students in a way that will allow them to do the things that machines can’t. He calls for a new paradigm that teaches young minds “to invent, to create, and to discover”—filling the relevant needs of our world that robots simply can’t fill. Aoun proposes a much-needed novel framework that will allow us to “robot-proof” education.
Literacies and Core Cognitive Capacities of the Future
Aoun lays a framework for a new discipline, humanics, which discusses the important capacities and literacies for emerging education systems. At its core, the framework emphasizes our uniquely human abilities and strengths.
The three key literacies include data literacy (being able to manage and analyze big data), technological literacy (being able to understand exponential technologies and conduct computational thinking), and human literacy (being able to communicate and evaluate social, ethical, and existential impact).
Beyond the literacies, at the heart of Aoun’s framework are four cognitive capacities that are crucial to develop in our students if they are to be resistant to automation: critical thinking, systems thinking, entrepreneurship, and cultural agility.
“These capacities are mindsets rather than bodies of knowledge—mental architecture rather than mental furniture,” he writes. “Going forward, people will still need to know specific bodies of knowledge to be effective in the workplace, but that alone will not be enough when intelligent machines are doing much of the heavy lifting of information. To succeed, tomorrow’s employees will have to demonstrate a higher order of thought.”
Like many other experts in education, Joseph Aoun emphasizes the importance of critical thinking. This is important not just when it comes to taking a skeptical approach to information, but also being able to logically break down a claim or problem into multiple layers of analysis. We spend so much time teaching students how to answer questions that we often neglect to teach them how to ask questions. Asking questions—and asking good ones—is a foundation of critical thinking. Before you can solve a problem, you must be able to critically analyze and question what is causing it. This is why critical thinking and problem solving are coupled together.
The second capacity, systems thinking, involves being able to think holistically about a problem. The most creative problem-solvers and thinkers are able to take a multidisciplinary perspective and connect the dots between many different fields. According to Aoun, it “involves seeing across areas that machines might be able to comprehend individually but that they cannot analyze in an integrated way, as a whole.” It represents the absolute opposite of how most traditional curricula is structured with emphasis on isolated subjects and content knowledge.
Among the most difficult-to-automate tasks or professions is entrepreneurship.
In fact, some have gone so far as to claim that in the future, everyone will be an entrepreneur. Yet traditionally, initiative has been something students show in spite of or in addition to their schoolwork. For most students, developing a sense of initiative and entrepreneurial skills has often been part of their extracurricular activities. It needs to be at the core of our curricula, not a supplement to it. At its core, teaching entrepreneurship is about teaching our youth to solve complex problems with resilience, to become global leaders, and to solve grand challenges facing our species.
Finally, with an increasingly globalized world, there is a need for more workers with cultural agility, the ability to build amongst different cultural contexts and norms.
One of the major trends today is the rise of the contingent workforce. We are seeing an increasing percentage of full-time employees working on the cloud. Multinational corporations have teams of employees collaborating at different offices across the planet. Collaboration across online networks requires a skillset of its own. As education expert Tony Wagner points out, within these digital contexts, leadership is no longer about commanding with top-down authority, but rather about leading by influence.
An Emphasis on Creativity
The framework also puts an emphasis on experiential or project-based learning, wherein the heart of the student experience is not lectures or exams but solving real-life problems and learning by doing, creating, and executing. Unsurprisingly, humans continue to outdo machines when it comes to innovating and pushing intellectual, imaginative, and creative boundaries, making jobs involving these skills the hardest to automate.
In fact, technological trends are giving rise to what many thought leaders refer to as the imagination economy. This is defined as “an economy where intuitive and creative thinking create economic value, after logical and rational thinking have been outsourced to other economies.” Consequently, we need to develop our students’ creative abilities to ensure their success against machines.
In its simplest form, creativity represents the ability to imagine radical ideas and then go about executing them in reality.
In many ways, we are already living in our creative imaginations. Consider this: every invention or human construct—whether it be the spaceship, an architectural wonder, or a device like an iPhone—once existed as a mere idea, imagined in someone’s mind. The world we have designed and built around us is an extension of our imaginations and is only possible because of our creativity. Creativity has played a powerful role in human progress—now imagine what the outcomes would be if we tapped into every young mind’s creative potential.
The Need for a Radical Overhaul
What is clear from the recommendations of Aoun and many other leading thinkers in this space is that an effective 21st-century education system is radically different from the traditional systems we currently have in place. There is a dramatic contrast between these future-oriented frameworks and the way we’ve structured our traditional, industrial-era and cookie-cutter-style education systems.
It’s time for a change, and incremental changes or subtle improvements are no longer enough. What we need to see are more moonshots and disruption in the education sector. In a world of exponential growth and accelerating change, it is never too soon for a much-needed dramatic overhaul.
Image Credit: Besjunior / Shutterstock.com Continue reading
#431399 How Is Technology Evolving Over Time?
What was humanity’s first invention? Some say it was the wheel, while others say it was fire. But perhaps it was our invention of communication. Without this, no tool can be conceptualized, built, replicated, and improved upon by others over time.
Over the years, how we communicate has evolved immensely. Today, many of our inventions are focused on creating faster ways of communicating with each other, and in the process, we’re creating more data than humans can comprehend. Now, a new tool, artificial intelligence, is emerging at the nexus of all this.
How will AI aid and even accelerate technological progress?
Watch this episode of Tech-x-planations and learn more about the evolution of technology and the incredible potential of AI.
Image Credit: leungchopan / Shuttterstock.com Continue reading