Tag Archives: international

#438738 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
A New Artificial Intelligence Makes Mistakes—on Purpose
Will Knight | Wired
“It took about 50 years for computers to eviscerate humans in the venerable game of chess. A standard smartphone can now play the kind of moves that make a grandmaster’s head spin. But one artificial intelligence program is taking a few steps backward, to appreciate how average humans play—blunders and all.”

CRYPTOCURRENCY
Bitcoin’s Price Rises to $50,000 as Mainstream Institutions Hop On
Timothy B. Lee | Ars Technica
“Bitcoin’s price is now far above the previous peak of $19,500 reached in December 2017. Bitcoin’s value has risen by almost 70 percent since the start of 2021. No single factor seems to be driving the cryptocurrency’s rise. Instead, the price is rising as more and more mainstream organizations are deciding to treat it as an ordinary investment asset.”

SCIENCE
Million-Year-Old Mammoth Teeth Contain Oldest DNA Ever Found
Jeanne Timmons | Gizmodo
“An international team of scientists has sequenced DNA from mammoth teeth that is at least a million years old, if not older. This research, published today in Nature, not only provides exciting new insight into mammoth evolutionary history, it reveals an entirely unknown lineage of ancient mammoth.”

SCIENCE
Scientists Accidentally Discover Strange Creatures Under a Half Mile of Ice
Matt Simon | Wired
“i‘It’s like, bloody hell!’ Smith says. ‘It’s just one big boulder in the middle of a relatively flat seafloor. It’s not as if the seafloor is littered with these things.’ Just his luck to drill in the only wrong place. Wrong place for collecting seafloor muck, but the absolute right place for a one-in-a-million shot at finding life in an environment that scientists didn’t reckon could support much of it.”

BIOTECH
Highest-Resolution Images of DNA Reveal It’s Surprisingly Jiggly
George Dvorsky | Gizmodo
“Scientists have captured the highest-resolution images ever taken of DNA, revealing previously unseen twisting and squirming behaviors. …These hidden movements were revealed by computer simulations fed with the highest-resolution images ever taken of a single molecule of DNA. The new study is exposing previously unseen behaviors in the self-replicating molecule, and this research could eventually lead to the development of powerful new genetic therapies.”

TRANSPORTATION
The First Battery-Powered Tanker Is Coming to Tokyo
Maria Gallucci | IEEE Spectrum
“The Japanese tanker is Corvus’s first fully-electric coastal freighter project; the company hopes the e5 will be the first of hundreds more just like it. ‘We see it [as] a beachhead for the coastal shipping market globally,’ Puchalski said. ‘There are many other coastal freighter types that are similar in size and energy demand.’ The number of battery-powered ships has ballooned from virtually zero a decade ago to hundreds worldwide.”

SPACE
Report: NASA’s Only Realistic Path for Humans on Mars Is Nuclear Propulsion
Eric Berger | Ars Technica
“Conducted at the request of NASA, a broad-based committee of experts assessed the viability of two means of propulsion—nuclear thermal and nuclear electric—for a human mission launching to Mars in 2039. ‘One of the primary takeaways of the report is that if we want to send humans to Mars, and we want to do so repeatedly and in a sustainable way, nuclear space propulsion is on the path,’ said [JPL’s] Bobby Braun.”

NASA’s Perseverance Rover Successfully Lands on Mars
Joey Roulette | The Verge
“Perseverance hit Mars’ atmosphere on time at 3:48PM ET at speeds of about 12,100 miles per hour, diving toward the surface in an infamously challenging sequence engineers call the “seven minutes of terror.” With an 11-minute comms delay between Mars and Earth, the spacecraft had to carry out its seven-minute plunge at all by itself with a wickedly complex set of pre-programmed instructions.”

ENVIRONMENT
A First-of-Its-Kind Geoengineering Experiment Is About to Take Its First Step
James Temple | MIT Technology Review
“When I visited Frank Keutsch in the fall of 2019, he walked me down to the lab, where the tube, wrapped in gray insulation, ran the length of a bench in the back corner. By filling it with the right combination of gases, at particular temperatures and pressures, Keutsch and his colleagues had simulated the conditions some 20 kilometers above Earth’s surface. In testing how various chemicals react in this rarefied air, the team hoped to conduct a crude test of a controversial scheme known as solar geoengineering.”

Image Credit: Garcia / Unsplash Continue reading

Posted in Human Robots

#437929 These Were Our Favorite Tech Stories ...

This time last year we were commemorating the end of a decade and looking ahead to the next one. Enter the year that felt like a decade all by itself: 2020. News written in January, the before-times, feels hopelessly out of touch with all that came after. Stories published in the early days of the pandemic are, for the most part, similarly naive.

The year’s news cycle was swift and brutal, ping-ponging from pandemic to extreme social and political tension, whipsawing economies, and natural disasters. Hope. Despair. Loneliness. Grief. Grit. More hope. Another lockdown. It’s been a hell of a year.

Though 2020 was dominated by big, hairy societal change, science and technology took significant steps forward. Researchers singularly focused on the pandemic and collaborated on solutions to a degree never before seen. New technologies converged to deliver vaccines in record time. The dark side of tech, from biased algorithms to the threat of omnipresent surveillance and corporate control of artificial intelligence, continued to rear its head.

Meanwhile, AI showed uncanny command of language, joined Reddit threads, and made inroads into some of science’s grandest challenges. Mars rockets flew for the first time, and a private company delivered astronauts to the International Space Station. Deprived of night life, concerts, and festivals, millions traveled to virtual worlds instead. Anonymous jet packs flew over LA. Mysterious monoliths appeared and disappeared worldwide.

It was all, you know, very 2020. For this year’s (in-no-way-all-encompassing) list of fascinating stories in tech and science, we tried to select those that weren’t totally dated by the news, but rose above it in some way. So, without further ado: This year’s picks.

How Science Beat the Virus
Ed Yong | The Atlantic
“Much like famous initiatives such as the Manhattan Project and the Apollo program, epidemics focus the energies of large groups of scientists. …But ‘nothing in history was even close to the level of pivoting that’s happening right now,’ Madhukar Pai of McGill University told me. … No other disease has been scrutinized so intensely, by so much combined intellect, in so brief a time.”

‘It Will Change Everything’: DeepMind’s AI Makes Gigantic Leap in Solving Protein Structures
Ewen Callaway | Nature
“In some cases, AlphaFold’s structure predictions were indistinguishable from those determined using ‘gold standard’ experimental methods such as X-ray crystallography and, in recent years, cryo-electron microscopy (cryo-EM). AlphaFold might not obviate the need for these laborious and expensive methods—yet—say scientists, but the AI will make it possible to study living things in new ways.”

OpenAI’s Latest Breakthrough Is Astonishingly Powerful, But Still Fighting Its Flaws
James Vincent | The Verge
“What makes GPT-3 amazing, they say, is not that it can tell you that the capital of Paraguay is Asunción (it is) or that 466 times 23.5 is 10,987 (it’s not), but that it’s capable of answering both questions and many more beside simply because it was trained on more data for longer than other programs. If there’s one thing we know that the world is creating more and more of, it’s data and computing power, which means GPT-3’s descendants are only going to get more clever.”

Artificial General Intelligence: Are We Close, and Does It Even Make Sense to Try?
Will Douglas Heaven | MIT Technology Review
“A machine that could think like a person has been the guiding vision of AI research since the earliest days—and remains its most divisive idea. …So why is AGI controversial? Why does it matter? And is it a reckless, misleading dream—or the ultimate goal?”

The Dark Side of Big Tech’s Funding for AI Research
Tom Simonite | Wired
“Timnit Gebru’s exit from Google is a powerful reminder of how thoroughly companies dominate the field, with the biggest computers and the most resources. …[Meredith] Whittaker of AI Now says properly probing the societal effects of AI is fundamentally incompatible with corporate labs. ‘That kind of research that looks at the power and politics of AI is and must be inherently adversarial to the firms that are profiting from this technology.’i”

We’re Not Prepared for the End of Moore’s Law
David Rotman | MIT Technology Review
“Quantum computing, carbon nanotube transistors, even spintronics, are enticing possibilities—but none are obvious replacements for the promise that Gordon Moore first saw in a simple integrated circuit. We need the research investments now to find out, though. Because one prediction is pretty much certain to come true: we’re always going to want more computing power.”

Inside the Race to Build the Best Quantum Computer on Earth
Gideon Lichfield | MIT Technology Review
“Regardless of whether you agree with Google’s position [on ‘quantum supremacy’] or IBM’s, the next goal is clear, Oliver says: to build a quantum computer that can do something useful. …The trouble is that it’s nearly impossible to predict what the first useful task will be, or how big a computer will be needed to perform it.”

The Secretive Company That Might End Privacy as We Know It
Kashmir Hill | The New York Times
“Searching someone by face could become as easy as Googling a name. Strangers would be able to listen in on sensitive conversations, take photos of the participants and know personal secrets. Someone walking down the street would be immediately identifiable—and his or her home address would be only a few clicks away. It would herald the end of public anonymity.”

Wrongfully Accused by an Algorithm
Kashmir Hill | The New York Times
“Mr. Williams knew that he had not committed the crime in question. What he could not have known, as he sat in the interrogation room, is that his case may be the first known account of an American being wrongfully arrested based on a flawed match from a facial recognition algorithm, according to experts on technology and the law.”

Predictive Policing Algorithms Are Racist. They Need to Be Dismantled.
Will Douglas Heaven | MIT Technology Review
“A number of studies have shown that these tools perpetuate systemic racism, and yet we still know very little about how they work, who is using them, and for what purpose. All of this needs to change before a proper reckoning can take pace. Luckily, the tide may be turning.”

The Panopticon Is Already Here
Ross Andersen | The Atlantic
“Artificial intelligence has applications in nearly every human domain, from the instant translation of spoken language to early viral-outbreak detection. But Xi [Jinping] also wants to use AI’s awesome analytical powers to push China to the cutting edge of surveillance. He wants to build an all-seeing digital system of social control, patrolled by precog algorithms that identify potential dissenters in real time.”

The Case For Cities That Aren’t Dystopian Surveillance States
Cory Doctorow | The Guardian
“Imagine a human-centered smart city that knows everything it can about things. It knows how many seats are free on every bus, it knows how busy every road is, it knows where there are short-hire bikes available and where there are potholes. …What it doesn’t know is anything about individuals in the city.”

The Modern World Has Finally Become Too Complex for Any of Us to Understand
Tim Maughan | OneZero
“One of the dominant themes of the last few years is that nothing makes sense. …I am here to tell you that the reason so much of the world seems incomprehensible is that it is incomprehensible. From social media to the global economy to supply chains, our lives rest precariously on systems that have become so complex, and we have yielded so much of it to technologies and autonomous actors that no one totally comprehends it all.”

The Conscience of Silicon Valley
Zach Baron | GQ
“What I really hoped to do, I said, was to talk about the future and how to live in it. This year feels like a crossroads; I do not need to explain what I mean by this. …I want to destroy my computer, through which I now work and ‘have drinks’ and stare at blurry simulations of my parents sometimes; I want to kneel down and pray to it like a god. I want someone—I want Jaron Lanier—to tell me where we’re going, and whether it’s going to be okay when we get there. Lanier just nodded. All right, then.”

Yes to Tech Optimism. And Pessimism.
Shira Ovide | The New York Times
“Technology is not something that exists in a bubble; it is a phenomenon that changes how we live or how our world works in ways that help and hurt. That calls for more humility and bridges across the optimism-pessimism divide from people who make technology, those of us who write about it, government officials and the public. We need to think on the bright side. And we need to consider the horribles.”

How Afrofuturism Can Help the World Mend
C. Brandon Ogbunu | Wired
“…[W. E. B. DuBois’] ‘The Comet’ helped lay the foundation for a paradigm known as Afrofuturism. A century later, as a comet carrying disease and social unrest has upended the world, Afrofuturism may be more relevant than ever. Its vision can help guide us out of the rubble, and help us to consider universes of better alternatives.”

Wikipedia Is the Last Best Place on the Internet
Richard Cooke | Wired
“More than an encyclopedia, Wikipedia has become a community, a library, a constitution, an experiment, a political manifesto—the closest thing there is to an online public square. It is one of the few remaining places that retains the faintly utopian glow of the early World Wide Web.”

Can Genetic Engineering Bring Back the American Chestnut?
Gabriel Popkin | The New York Times Magazine
“The geneticists’ research forces conservationists to confront, in a new and sometimes discomfiting way, the prospect that repairing the natural world does not necessarily mean returning to an unblemished Eden. It may instead mean embracing a role that we’ve already assumed: engineers of everything, including nature.”

At the Limits of Thought
David C. Krakauer | Aeon
“A schism is emerging in the scientific enterprise. On the one side is the human mind, the source of every story, theory, and explanation that our species holds dear. On the other stand the machines, whose algorithms possess astonishing predictive power but whose inner workings remain radically opaque to human observers.”

Is the Internet Conscious? If It Were, How Would We Know?
Meghan O’Gieblyn | Wired
“Does the internet behave like a creature with an internal life? Does it manifest the fruits of consciousness? There are certainly moments when it seems to. Google can anticipate what you’re going to type before you fully articulate it to yourself. Facebook ads can intuit that a woman is pregnant before she tells her family and friends. It is easy, in such moments, to conclude that you’re in the presence of another mind—though given the human tendency to anthropomorphize, we should be wary of quick conclusions.”

The Internet Is an Amnesia Machine
Simon Pitt | OneZero
“There was a time when I didn’t know what a Baby Yoda was. Then there was a time I couldn’t go online without reading about Baby Yoda. And now, Baby Yoda is a distant, shrugging memory. Soon there will be a generation of people who missed the whole thing and for whom Baby Yoda is as meaningless as it was for me a year ago.”

Digital Pregnancy Tests Are Almost as Powerful as the Original IBM PC
Tom Warren | The Verge
“Each test, which costs less than $5, includes a processor, RAM, a button cell battery, and a tiny LCD screen to display the result. …Foone speculates that this device is ‘probably faster at number crunching and basic I/O than the CPU used in the original IBM PC.’ IBM’s original PC was based on Intel’s 8088 microprocessor, an 8-bit chip that operated at 5Mhz. The difference here is that this is a pregnancy test you pee on and then throw away.”

The Party Goes on in Massive Online Worlds
Cecilia D’Anastasio | Wired
“We’re more stand-outside types than the types to cast a flashy glamour spell and chat up the nearest cat girl. But, hey, it’s Final Fantasy XIV online, and where my body sat in New York, the epicenter of America’s Covid-19 outbreak, there certainly weren’t any parties.”

The Facebook Groups Where People Pretend the Pandemic Isn’t Happening
Kaitlyn Tiffany | The Atlantic
“Losing track of a friend in a packed bar or screaming to be heard over a live band is not something that’s happening much in the real world at the moment, but it happens all the time in the 2,100-person Facebook group ‘a group where we all pretend we’re in the same venue.’ So does losing shoes and Juul pods, and shouting matches over which bands are the saddest, and therefore the greatest.”

Did You Fly a Jetpack Over Los Angeles This Weekend? Because the FBI Is Looking for You
Tom McKay | Gizmodo
“Did you fly a jetpack over Los Angeles at approximately 3,000 feet on Sunday? Some kind of tiny helicopter? Maybe a lawn chair with balloons tied to it? If the answer to any of the above questions is ‘yes,’ you should probably lay low for a while (by which I mean cool it on the single-occupant flying machine). That’s because passing airline pilots spotted you, and now it’s this whole thing with the FBI and the Federal Aviation Administration, both of which are investigating.”

Image Credit: Thomas Kinto / Unsplash Continue reading

Posted in Human Robots

#437820 In-Shoe Sensors and Mobile Robots Keep ...

In shoe sensor

Researchers at Stevens Institute of Technology are leveraging some of the newest mechanical and robotic technologies to help some of our oldest populations stay healthy, active, and independent.

Yi Guo, professor of electrical and computer engineering and director of the Robotics and Automation Laboratory, and Damiano Zanotto, assistant professor of mechanical engineering, and director of the Wearable Robotic Systems Laboratory, are collaborating with Ashley Lytle, assistant professor in Stevens’ College of Arts and Letters, and Ashwini K. Rao of Columbia University Medical Center, to combine an assistive mobile robot companion with wearable in-shoe sensors in a system designed to help elderly individuals maintain the balance and motion they need to thrive.

“Balance and motion can be significant issues for this population, and if elderly people fall and experience an injury, they are less likely to stay fit and exercise,” Guo said. “As a consequence, their level of fitness and performance decreases. Our mobile robot companion can help decrease the chances of falling and contribute to a healthy lifestyle by keeping their walking function at a good level.”

The mobile robots are designed to lead walking sessions and using the in-shoe sensors, monitor the user’s gait, indicate issues, and adjust the exercise speed and pace. The initiative is part of a four-year National Science Foundation research project.

“For the first time, we’re integrating our wearable sensing technology with an autonomous mobile robot,” said Zanotto, who worked with elderly people at Columbia University Medical Center for three years before coming to Stevens in 2016. “It’s exciting to be combining these different areas of expertise to leverage the strong points of wearable sensing technology, such as accurately capturing human movement, with the advantages of mobile robotics, such as much larger computational powers.”

The team is developing algorithms that fuse real-time data from smart, unobtrusive, in-shoe sensors and advanced on-board sensors to inform the robot’s navigation protocols and control the way the robot interacts with elderly individuals. It’s a promising way to assist seniors in safely doing walking exercises and maintaining their quality of life.

Bringing the benefits of the lab to life

Guo and Zanotto are working with Lytle, an expert in social and health psychology, to implement a social connectivity capability and make the bi-directional interaction between human and robot even more intuitive, engaging, and meaningful for seniors.

“Especially during COVID, it’s important for elderly people living on their own to connect socially with family and friends,” Zanotto said, “and the robot companion will also offer teleconferencing tools to provide that interaction in an intuitive and transparent way.”

“We want to use the robot for social connectedness, perhaps integrating it with a conversation agent such as Alexa,” Guo added. “The goal is to make it a companion robot that can sense, for example, that you are cooking, or you’re in the living room, and help with things you would do there.”

It’s a powerful example of how abstract concepts can have meaningful real-life benefits.

“As engineers, we tend to work in the lab, trying to optimize our algorithms and devices and technologies,” Zanotto noted, “but at the end of the day, what we do has limited value unless it has impact on real life. It’s fascinating to see how the devices and technologies we’re developing in the lab can be applied to make a difference for real people.”

Maintaining balance in a global pandemic

Although COVID-19 has delayed the planned testing at a senior center in New York City, it has not stopped the team’s progress.

“Although we can’t test on elderly populations yet, our students are still testing in the lab,” Guo said. “This summer and fall, for the first time, the students validated the system’s real-time ability to monitor and assess the dynamic margin of stability during walking—in other words, to evaluate whether the person following the robot is walking normally or has a risk of falling. They’re also designing parameters for the robot to give early warnings and feedback that help the human subjects correct posture and gait issues while walking.”

Those warnings would be literally underfoot, as the in-shoe sensors would pulse like a vibrating cell phone to deliver immediate directional information to the subject.

“We’re not the first to use this vibrotactile stimuli technology, but this application is new,” Zanotto said.

So far, the team has published papers in top robotics publication venues including IEEE Transactions on Neural Systems and Rehabilitation Engineering and the 2020 IEEE International Conference on Robotics and Automation (ICRA). It’s a big step toward realizing the synergies of bringing the technical expertise of engineers to bear on the clinical focus on biometrics—and the real lives of seniors everywhere. Continue reading

Posted in Human Robots

#437689 GITAI Sending Autonomous Robot to Space ...

We’ve been keeping a close watch on GITAI since early last year—what caught our interest initially is the history of the company, which includes a bunch of folks who started in the JSK Lab at the University of Tokyo, won the DARPA Robotics Challenge Trials as SCHAFT, got swallowed by Google, narrowly avoided being swallowed by SoftBank, and are now designing robots that can work in space.

The GITAI YouTube channel has kept us more to less up to date on their progress so far, and GITAI has recently announced the next step in this effort: The deployment of one of their robots on board the International Space Station in 2021.

Photo: GITAI

GITAI’s S1 is a task-specific 8-degrees-of-freedom arm with an integrated sensing and computing system and 1-meter reach.

GITAI has been working on a variety of robots for space operations, the most sophisticated of which is a humanoid torso called G1, which is controlled through an immersive telepresence system. What will be launching into space next year is a more task-specific system called the S1, which is an 8-degrees-of-freedom arm with an integrated sensing and computing system that can be wall-mounted and has a 1-meter reach.

The S1 will be living on board a commercially funded, pressurized airlock-extension module called Bishop, developed by NanoRacks. Mounted on the inside of the Bishop module, the S1 will have access to a task board and a small assembly area, where it will demonstrate common crew intra-vehicular activity, or IVA—tasks like flipping switches, turning knobs, and managing cables. It’ll also do some in-space assembly, or ISA, attaching panels to create a solar array.

Here’s a demonstration of some task board activities, conducted on Earth in a mockup of Bishop:

GITAI says that “all operations conducted by the S1 GITAI robotic arm will be autonomous, followed by some teleoperations from Nanoracks’ in-house mission control.” This is interesting, because from what we’ve seen until now, GITAI has had a heavy emphasis on telepresence, with a human in the loop to get stuff done. As GITAI’s founder and CEO Sho Nakanose commented to us a year ago, “Telepresence robots have far better performance and can be made practical much quicker than autonomous robots, so first we are working on making telepresence robots practical.”

So what’s changed? “GITAI has been concentrating on teleoperations to demonstrate the dexterity of our robot, but now it’s time to show our capabilities to do the same this time with autonomy,” Nakanose told us last week. “In an environment with minimum communication latency, it would be preferable to operate a robot more with teleoperations to enhance the capability of the robot, since with the current technology level of AI, what a robot can do autonomously is very limited. However, in an environment where the latency becomes noticeable, it would become more efficient to have a mixture of autonomy and teleoperations depending on the application. Eventually, in an ideal world, a robot will operate almost fully autonomously with minimum human cognizance.”

“In an environment where the latency becomes noticeable, it would become more efficient to have a mixture of autonomy and teleoperations depending on the application. Eventually, in an ideal world, a robot will operate almost fully autonomously with minimum human cognizance.”
—Sho Nakanose, GITAI founder and CEO

Nakanose says that this mission will help GITAI to “acquire the skills, know-how, and experience necessary to prepare a robot to be ISS compatible, prov[ing] the maturity of our technology in the microgravity environment.” Success would mean conducting both IVA and ISA experiments as planned (autonomous and teleop for IVA, fully autonomous for ISA), which would be pretty awesome, but we’re told that GITAI has already received a research and development order for space robots from a private space company, and Nakanose expects that “by the mid-2020s, we will be able to show GITAI's robots working in space on an actual mission.”

NanoRacks is schedule to launch the Bishop module on SpaceX CRS-21 in November. The S1 will be launched separately in 2021, and a NASA astronaut will install the robot and then leave it alone to let it start demonstrating how work in space can be made both safer and cheaper once the humans have gotten out of the way. Continue reading

Posted in Human Robots

#437673 Can AI and Automation Deliver a COVID-19 ...

Illustration: Marysia Machulska

Within moments of meeting each other at a conference last year, Nathan Collins and Yann Gaston-Mathé began devising a plan to work together. Gaston-Mathé runs a startup that applies automated software to the design of new drug candidates. Collins leads a team that uses an automated chemistry platform to synthesize new drug candidates.

“There was an obvious synergy between their technology and ours,” recalls Gaston-Mathé, CEO and cofounder of Paris-based Iktos.

In late 2019, the pair launched a project to create a brand-new antiviral drug that would block a specific protein exploited by influenza viruses. Then the COVID-19 pandemic erupted across the world stage, and Gaston-Mathé and Collins learned that the viral culprit, SARS-CoV-2, relied on a protein that was 97 percent similar to their influenza protein. The partners pivoted.

Their companies are just two of hundreds of biotech firms eager to overhaul the drug-discovery process, often with the aid of artificial intelligence (AI) tools. The first set of antiviral drugs to treat COVID-19 will likely come from sifting through existing drugs. Remdesivir, for example, was originally developed to treat Ebola, and it has been shown to speed the recovery of hospitalized COVID-19 patients. But a drug made for one condition often has side effects and limited potency when applied to another. If researchers can produce an ­antiviral that specifically targets SARS-CoV-2, the drug would likely be safer and more effective than a repurposed drug.

There’s one big problem: Traditional drug discovery is far too slow to react to a pandemic. Designing a drug from scratch typically takes three to five years—and that’s before human clinical trials. “Our goal, with the combination of AI and automation, is to reduce that down to six months or less,” says Collins, who is chief strategy officer at SRI Biosciences, a division of the Silicon Valley research nonprofit SRI International. “We want to get this to be very, very fast.”

That sentiment is shared by small biotech firms and big pharmaceutical companies alike, many of which are now ramping up automated technologies backed by supercomputing power to predict, design, and test new antivirals—for this pandemic as well as the next—with unprecedented speed and scope.

“The entire industry is embracing these tools,” says Kara Carter, president of the International Society for Antiviral Research and executive vice president of infectious disease at Evotec, a drug-discovery company in Hamburg. “Not only do we need [new antivirals] to treat the SARS-CoV-2 infection in the population, which is probably here to stay, but we’ll also need them to treat future agents that arrive.”

There are currentlyabout 200 known viruses that infect humans. Although viruses represent less than 14 percent of all known human pathogens, they make up two-thirds of all new human pathogens discovered since 1980.

Antiviral drugs are fundamentally different from vaccines, which teach a person’s immune system to mount a defense against a viral invader, and antibody treatments, which enhance the body’s immune response. By contrast, anti­virals are chemical compounds that directly block a virus after a person has become infected. They do this by binding to specific proteins and preventing them from functioning, so that the virus cannot copy itself or enter or exit a cell.

The SARS-CoV-2 virus has an estimated 25 to 29 proteins, but not all of them are suitable drug targets. Researchers are investigating, among other targets, the virus’s exterior spike protein, which binds to a receptor on a human cell; two scissorlike enzymes, called proteases, that cut up long strings of viral proteins into functional pieces inside the cell; and a polymerase complex that makes the cell churn out copies of the virus’s genetic material, in the form of single-stranded RNA.

But it’s not enough for a drug candidate to simply attach to a target protein. Chemists also consider how tightly the compound binds to its target, whether it binds to other things as well, how quickly it metabolizes in the body, and so on. A drug candidate may have 10 to 20 such objectives. “Very often those objectives can appear to be anticorrelated or contradictory with each other,” says Gaston-Mathé.

Compared with antibiotics, antiviral drug discovery has proceeded at a snail’s pace. Scientists advanced from isolating the first antibacterial molecules in 1910 to developing an arsenal of powerful antibiotics by 1944. By contrast, it took until 1951 for researchers to be able to routinely grow large amounts of virus particles in cells in a dish, a breakthrough that earned the inventors a Nobel Prize in Medicine in 1954.

And the lag between the discovery of a virus and the creation of a treatment can be heartbreaking. According to the World Health Organization, 71 million people worldwide have chronic hepatitis C, a major cause of liver cancer. The virus that causes the infection was discovered in 1989, but effective antiviral drugs didn’t hit the market until 2014.

While many antibiotics work on a range of microbes, most antivirals are highly specific to a single virus—what those in the business call “one bug, one drug.” It takes a detailed understanding of a virus to develop an antiviral against it, says Che Colpitts, a virologist at Queen’s University, in Canada, who works on antivirals against RNA viruses. “When a new virus emerges, like SARS-CoV-2, we’re at a big disadvantage.”

Making drugs to stop viruses is hard for three main reasons. First, viruses are the Spartans of the pathogen world: They’re frugal, brutal, and expert at evading the human immune system. About 20 to 250 nanometers in diameter, viruses rely on just a few parts to operate, hijacking host cells to reproduce and often destroying those cells upon departure. They employ tricks to camouflage their presence from the host’s immune system, including preventing infected cells from sending out molecular distress beacons. “Viruses are really small, so they only have a few components, so there’s not that many drug targets available to start with,” says Colpitts.

Second, viruses replicate quickly, typically doubling in number in hours or days. This constant copying of their genetic material enables viruses to evolve quickly, producing mutations able to sidestep drug effects. The virus that causes AIDS soon develops resistance when exposed to a single drug. That’s why a cocktail of antiviral drugs is used to treat HIV infection.

Finally, unlike bacteria, which can exist independently outside human cells, viruses invade human cells to propagate, so any drug designed to eliminate a virus needs to spare the host cell. A drug that fails to distinguish between a virus and a cell can cause serious side effects. “Discriminating between the two is really quite difficult,” says Evotec’s Carter, who has worked in antiviral drug discovery for over three decades.

And then there’s the money barrier. Developing antivirals is rarely profitable. Health-policy researchers at the London School of Economics recently estimated that the average cost of developing a new drug is US $1 billion, and up to $2.8 billion for cancer and other specialty drugs. Because antivirals are usually taken for only short periods of time or during short outbreaks of disease, companies rarely recoup what they spent developing the drug, much less turn a profit, says Carter.

To change the status quo, drug discovery needs fresh approaches that leverage new technologies, rather than incremental improvements, says Christian Tidona, managing director of BioMed X, an independent research institute in Heidelberg, Germany. “We need breakthroughs.”

Putting Drug Development on Autopilot
Earlier this year, SRI Biosciences and Iktos began collaborating on a way to use artificial intelligence and automated chemistry to rapidly identify new drugs to target the COVID-19 virus. Within four months, they had designed and synthesized a first round of antiviral candidates. Here’s how they’re doing it.

1/5

STEP 1: Iktos’s AI platform uses deep-learning algorithms in an iterative process to come up with new molecular structures likely to bind to and disable a specific coronavirus protein. Illustrations: Chris Philpot

2/5

STEP 2: SRI Biosciences’s SynFini system is a three-part automated chemistry suite for producing new compounds. Starting with a target compound from Iktos, SynRoute uses machine learning to analyze and optimize routes for creating that compound, with results in about 10 seconds. It prioritizes routes based on cost, likelihood of success, and ease of implementation.

3/5

STEP 3: SynJet, an automated inkjet printer platform, tests the routes by printing out tiny quantities of chemical ingredients to see how they react. If the right compound is produced, the platform tests it.

4/5

STEP 4: AutoSyn, an automated tabletop chemical plant, synthesizes milligrams to grams of the desired compound for further testing. Computer-selected “maps” dictate paths through the plant’s modular components.

5/5

STEP 5: The most promising compounds are tested against live virus samples.

Previous
Next

Iktos’s AI platform was created by a medicinal chemist and an AI expert. To tackle SARS-CoV-2, the company used generative models—deep-learning algorithms that generate new data—to “imagine” molecular structures with a good chance of disabling a key coronavirus protein.

For a new drug target, the software proposes and evaluates roughly 1 million compounds, says Gaston-Mathé. It’s an iterative process: At each step, the system generates 100 virtual compounds, which are tested in silico with predictive models to see how closely they meet the objectives. The test results are then used to design the next batch of compounds. “It’s like we have a very, very fast chemist who is designing compounds, testing compounds, getting back the data, then designing another batch of compounds,” he says.

The computer isn’t as smart as a human chemist, Gaston-Mathé notes, but it’s much faster, so it can explore far more of what people in the field call “chemical space”—the set of all possible organic compounds. Unexplored chemical space is huge: Biochemists estimate that there are at least 1063 possible druglike molecules, and that 99.9 percent of all possible small molecules or compounds have never been synthesized.

Still, designing a chemical compound isn’t the hardest part of creating a new drug. After a drug candidate is designed, it must be synthesized, and the highly manual process for synthesizing a new chemical hasn’t changed much in 200 years. It can take days to plan a synthesis process and then months to years to optimize it for manufacture.

That’s why Gaston-Mathé was eager to send Iktos’s AI-generated designs to Collins’s team at SRI Biosciences. With $13.8 million from the Defense Advanced Research Projects Agency, SRI Biosciences spent the last four years automating the synthesis process. The company’s automated suite of three technologies, called SynFini, can produce new chemical compounds in just hours or days, says Collins.

First, machine-learning software devises possible routes for making a desired molecule. Next, an inkjet printer platform tests the routes by printing out and mixing tiny quantities of chemical ingredients to see how they react with one another; if the right compound is produced, the platform runs tests on it. Finally, a tabletop chemical plant synthesizes milligrams to grams of the desired compound.

Less than four months after Iktos and SRI Biosciences announced their collaboration, they had designed and synthesized a first round of antiviral candidates for SARS-CoV-2. Now they’re testing how well the compounds work on actual samples of the virus.

Out of 10
63 possible druglike molecules, 99.9 percent have never been synthesized.

Theirs isn’t the only collaborationapplying new tools to drug discovery. In late March, Alex Zhavoronkov, CEO of Hong Kong–based Insilico Medicine, came across a YouTube video showing three virtual-reality avatars positioning colorful, sticklike fragments in the side of a bulbous blue protein. The three researchers were using VR to explore how compounds might bind to a SARS-CoV-2 enzyme. Zhavoronkov contacted the startup that created the simulation—Nanome, in San Diego—and invited it to examine Insilico’s ­AI-generated molecules in virtual reality.

Insilico runs an AI platform that uses biological data to train deep-learning algorithms, then uses those algorithms to identify molecules with druglike features that will likely bind to a protein target. A four-day training sprint in late January yielded 100 molecules that appear to bind to an important SARS-CoV-2 protease. The company recently began synthesizing some of those molecules for laboratory testing.

Nanome’s VR software, meanwhile, allows researchers to import a molecular structure, then view and manipulate it on the scale of individual atoms. Like human chess players who use computer programs to explore potential moves, chemists can use VR to predict how to make molecules more druglike, says Nanome CEO Steve McCloskey. “The tighter the interface between the human and the computer, the more information goes both ways,” he says.

Zhavoronkov sent data about several of Insilico’s compounds to Nanome, which re-created them in VR. Nanome’s chemist demonstrated chemical tweaks to potentially improve each compound. “It was a very good experience,” says Zhavoronkov.

Meanwhile, in March, Takeda Pharmaceutical Co., of Japan, invited Schrödinger, a New York–based company that develops chemical-simulation software, to join an alliance working on antivirals. Schrödinger’s AI focuses on the physics of how proteins interact with small molecules and one another.

The software sifts through billions of molecules per week to predict a compound’s properties, and it optimizes for multiple desired properties simultaneously, says Karen Akinsanya, chief biomedical scientist and head of discovery R&D at Schrödinger. “There’s a huge sense of urgency here to come up with a potent molecule, but also to come up with molecules that are going to be well tolerated” by the body, she says. Drug developers are seeking compounds that can be broadly used and easily administered, such as an oral drug rather than an intravenous drug, she adds.

Schrödinger evaluated four protein targets and performed virtual screens for two of them, a computing-intensive process. In June, Google Cloud donated the equivalent of 16 million hours of Nvidia GPU time for the company’s calculations. Next, the alliance’s drug companies will synthesize and test the most promising compounds identified by the virtual screens.

Other companies, including Amazon Web Services, IBM, and Intel, as well as several U.S. national labs are also donating time and resources to the Covid-19 High Performance Computing Consortium. The consortium is supporting 87 projects, which now have access to 6.8 million CPU cores, 50,000 GPUs, and 600 petaflops of computational resources.

While advanced technologies could transform early drug discovery, any new drug candidate still has a long road after that. It must be tested in animals, manufactured in large batches for clinical trials, then tested in a series of trials that, for antivirals, lasts an average of seven years.

In May, the BioMed X Institute in Germany launched a five-year project to build a Rapid Antiviral Response Platform, which would speed drug discovery all the way through manufacturing for clinical trials. The €40 million ($47 million) project, backed by drug companies, will identify ­outside-the-box proposals from young scientists, then provide space and funding to develop their ideas.

“We’ll focus on technologies that allow us to go from identification of a new virus to 10,000 doses of a novel potential therapeutic ready for trials in less than six months,” says BioMed X’s Tidona, who leads the project.

While a vaccine will likely arrive long before a bespoke antiviral does, experts expect COVID-19 to be with us for a long time, so the effort to develop a direct-acting, potent antiviral continues. Plus, having new antivirals—and tools to rapidly create more—can only help us prepare for the next pandemic, whether it comes next month or in another 102 years.

“We’ve got to start thinking differently about how to be more responsive to these kinds of threats,” says Collins. “It’s pushing us out of our comfort zones.”

This article appears in the October 2020 print issue as “Automating Antivirals.” Continue reading

Posted in Human Robots