Tag Archives: interactive

#437303 The Deck Is Not Rigged: Poker and the ...

Tuomas Sandholm, a computer scientist at Carnegie Mellon University, is not a poker player—or much of a poker fan, in fact—but he is fascinated by the game for much the same reason as the great game theorist John von Neumann before him. Von Neumann, who died in 1957, viewed poker as the perfect model for human decision making, for finding the balance between skill and chance that accompanies our every choice. He saw poker as the ultimate strategic challenge, combining as it does not just the mathematical elements of a game like chess but the uniquely human, psychological angles that are more difficult to model precisely—a view shared years later by Sandholm in his research with artificial intelligence.

“Poker is the main benchmark and challenge program for games of imperfect information,” Sandholm told me on a warm spring afternoon in 2018, when we met in his offices in Pittsburgh. The game, it turns out, has become the gold standard for developing artificial intelligence.

Tall and thin, with wire-frame glasses and neat brow hair framing a friendly face, Sandholm is behind the creation of three computer programs designed to test their mettle against human poker players: Claudico, Libratus, and most recently, Pluribus. (When we met, Libratus was still a toddler and Pluribus didn’t yet exist.) The goal isn’t to solve poker, as such, but to create algorithms whose decision making prowess in poker’s world of imperfect information and stochastic situations—situations that are randomly determined and unable to be predicted—can then be applied to other stochastic realms, like the military, business, government, cybersecurity, even health care.

While the first program, Claudico, was summarily beaten by human poker players—“one broke-ass robot,” an observer called it—Libratus has triumphed in a series of one-on-one, or heads-up, matches against some of the best online players in the United States.

Libratus relies on three main modules. The first involves a basic blueprint strategy for the whole game, allowing it to reach a much faster equilibrium than its predecessor. It includes an algorithm called the Monte Carlo Counterfactual Regret Minimization, which evaluates all future actions to figure out which one would cause the least amount of regret. Regret, of course, is a human emotion. Regret for a computer simply means realizing that an action that wasn’t chosen would have yielded a better outcome than one that was. “Intuitively, regret represents how much the AI regrets having not chosen that action in the past,” says Sandholm. The higher the regret, the higher the chance of choosing that action next time.

It’s a useful way of thinking—but one that is incredibly difficult for the human mind to implement. We are notoriously bad at anticipating our future emotions. How much will we regret doing something? How much will we regret not doing something else? For us, it’s an emotionally laden calculus, and we typically fail to apply it in quite the right way. For a computer, it’s all about the computation of values. What does it regret not doing the most, the thing that would have yielded the highest possible expected value?

The second module is a sub-game solver that takes into account the mistakes the opponent has made so far and accounts for every hand she could possibly have. And finally, there is a self-improver. This is the area where data and machine learning come into play. It’s dangerous to try to exploit your opponent—it opens you up to the risk that you’ll get exploited right back, especially if you’re a computer program and your opponent is human. So instead of attempting to do that, the self-improver lets the opponent’s actions inform the areas where the program should focus. “That lets the opponent’s actions tell us where [they] think they’ve found holes in our strategy,” Sandholm explained. This allows the algorithm to develop a blueprint strategy to patch those holes.

It’s a very human-like adaptation, if you think about it. I’m not going to try to outmaneuver you head on. Instead, I’m going to see how you’re trying to outmaneuver me and respond accordingly. Sun-Tzu would surely approve. Watch how you’re perceived, not how you perceive yourself—because in the end, you’re playing against those who are doing the perceiving, and their opinion, right or not, is the only one that matters when you craft your strategy. Overnight, the algorithm patches up its overall approach according to the resulting analysis.

There’s one final thing Libratus is able to do: play in situations with unknown probabilities. There’s a concept in game theory known as the trembling hand: There are branches of the game tree that, under an optimal strategy, one should theoretically never get to; but with some probability, your all-too-human opponent’s hand trembles, they take a wrong action, and you’re suddenly in a totally unmapped part of the game. Before, that would spell disaster for the computer: An unmapped part of the tree means the program no longer knows how to respond. Now, there’s a contingency plan.

Of course, no algorithm is perfect. When Libratus is playing poker, it’s essentially working in a zero-sum environment. It wins, the opponent loses. The opponent wins, it loses. But while some real-life interactions really are zero-sum—cyber warfare comes to mind—many others are not nearly as straightforward: My win does not necessarily mean your loss. The pie is not fixed, and our interactions may be more positive-sum than not.

What’s more, real-life applications have to contend with something that a poker algorithm does not: the weights that are assigned to different elements of a decision. In poker, this is a simple value-maximizing process. But what is value in the human realm? Sandholm had to contend with this before, when he helped craft the world’s first kidney exchange. Do you want to be more efficient, giving the maximum number of kidneys as quickly as possible—or more fair, which may come at a cost to efficiency? Do you want as many lives as possible saved—or do some take priority at the cost of reaching more? Is there a preference for the length of the wait until a transplant? Do kids get preference? And on and on. It’s essential, Sandholm says, to separate means and the ends. To figure out the ends, a human has to decide what the goal is.

“The world will ultimately become a lot safer with the help of algorithms like Libratus,” Sandholm told me. I wasn’t sure what he meant. The last thing that most people would do is call poker, with its competition, its winners and losers, its quest to gain the maximum edge over your opponent, a haven of safety.

“Logic is good, and the AI is much better at strategic reasoning than humans can ever be,” he explained. “It’s taking out irrationality, emotionality. And it’s fairer. If you have an AI on your side, it can lift non-experts to the level of experts. Naïve negotiators will suddenly have a better weapon. We can start to close off the digital divide.”

It was an optimistic note to end on—a zero-sum, competitive game yielding a more ultimately fair and rational world.

I wanted to learn more, to see if it was really possible that mathematics and algorithms could ultimately be the future of more human, more psychological interactions. And so, later that day, I accompanied Nick Nystrom, the chief scientist of the Pittsburgh Supercomputing Center—the place that runs all of Sandholm’s poker-AI programs—to the actual processing center that make undertakings like Libratus possible.

A half-hour drive found us in a parking lot by a large glass building. I’d expected something more futuristic, not the same square, corporate glass squares I’ve seen countless times before. The inside, however, was more promising. First the security checkpoint. Then the ride in the elevator — down, not up, to roughly three stories below ground, where we found ourselves in a maze of corridors with card readers at every juncture to make sure you don’t slip through undetected. A red-lit panel formed the final barrier, leading to a small sliver of space between two sets of doors. I could hear a loud hum coming from the far side.

“Let me tell you what you’re going to see before we walk in,” Nystrom told me. “Once we get inside, it will be too loud to hear.”

I was about to witness the heart of the supercomputing center: 27 large containers, in neat rows, each housing multiple processors with speeds and abilities too great for my mind to wrap around. Inside, the temperature is by turns arctic and tropic, so-called “cold” rows alternating with “hot”—fans operate around the clock to cool the processors as they churn through millions of giga, mega, tera, peta and other ever-increasing scales of data bytes. In the cool rows, robotic-looking lights blink green and blue in orderly progression. In the hot rows, a jumble of multicolored wires crisscrosses in tangled skeins.

In the corners stood machines that had outlived their heyday. There was Sherlock, an old Cray model, that warmed my heart. There was a sad nameless computer, whose anonymity was partially compensated for by the Warhol soup cans adorning its cage (an homage to Warhol’s Pittsburghian origins).

And where does Libratus live, I asked? Which of these computers is Bridges, the computer that runs the AI Sandholm and I had been discussing?

Bridges, it turned out, isn’t a single computer. It’s a system with processing power beyond comprehension. It takes over two and a half petabytes to run Libratus. A single petabyte is a million gigabytes: You could watch over 13 years of HD video, store 10 billion photos, catalog the contents of the entire Library of Congress word for word. That’s a whole lot of computing power. And that’s only to succeed at heads-up poker, in limited circumstances.

Yet despite the breathtaking computing power at its disposal, Libratus is still severely limited. Yes, it beat its opponents where Claudico failed. But the poker professionals weren’t allowed to use many of the tools of their trade, including the opponent analysis software that they depend on in actual online games. And humans tire. Libratus can churn for a two-week marathon, where the human mind falters.

But there’s still much it can’t do: play more opponents, play live, or win every time. There’s more humanity in poker than Libratus has yet conquered. “There’s this belief that it’s all about statistics and correlations. And we actually don’t believe that,” Nystrom explained as we left Bridges behind. “Once in a while correlations are good, but in general, they can also be really misleading.”

Two years later, the Sandholm lab will produce Pluribus. Pluribus will be able to play against five players—and will run on a single computer. Much of the human edge will have evaporated in a short, very short time. The algorithms have improved, as have the computers. AI, it seems, has gained by leaps and bounds.

So does that mean that, ultimately, the algorithmic can indeed beat out the human, that computation can untangle the web of human interaction by discerning “the little tactics of deception, of asking yourself what is the other man going to think I mean to do,” as von Neumann put it?

Long before I’d spoken to Sandholm, I’d met Kevin Slavin, a polymath of sorts whose past careers have including founding a game design company and an interactive art space and launching the Playful Systems group at MIT’s Media Lab. Slavin has a decidedly different view from the creators of Pluribus. “On the one hand, [von Neumann] was a genius,” Kevin Slavin reflects. “But the presumptuousness of it.”

Slavin is firmly on the side of the gambler, who recognizes uncertainty for what it is and thus is able to take calculated risks when necessary, all the while tampering confidence at the outcome. The most you can do is put yourself in the path of luck—but to think you can guess with certainty the actual outcome is a presumptuousness the true poker player foregoes. For Slavin, the wonder of computers is “That they can generate this fabulous, complex randomness.” His opinion of the algorithmic assaults on chance? “This is their moment,” he said. “But it’s the exact opposite of what’s really beautiful about a computer, which is that it can do something that’s actually unpredictable. That, to me, is the magic.”

Will they actually succeed in making the unpredictable predictable, though? That’s what I want to know. Because everything I’ve seen tells me that absolute success is impossible. The deck is not rigged.

“It’s an unbelievable amount of work to get there. What do you get at the end? Let’s say they’re successful. Then we live in a world where there’s no God, agency, or luck,” Slavin responded.

“I don’t want to live there,’’ he added “I just don’t want to live there.”

Luckily, it seems that for now, he won’t have to. There are more things in life than are yet written in the algorithms. We have no reliable lie detection software—whether in the face, the skin, or the brain. In a recent test of bluffing in poker, computer face recognition failed miserably. We can get at discomfort, but we can’t get at the reasons for that discomfort: lying, fatigue, stress—they all look much the same. And humans, of course, can also mimic stress where none exists, complicating the picture even further.

Pluribus may turn out to be powerful, but von Neumann’s challenge still stands: The true nature of games, the most human of the human, remains to be conquered.

This article was originally published on Undark. Read the original article.

Image Credit: José Pablo Iglesias / Unsplash Continue reading

Posted in Human Robots

#436550 Work in the Age of Web 3.0

What is the future of work? Is our future one of ‘technological socialism’ (where technology is taking care of our needs)? Or will tomorrow’s workplace be completely virtualized, allowing us to hang out at home in our PJs while “walking” about our virtual corporate headquarters?

This blog will look at the future of work during the age of Web 3.0, examining scenarios in which artificial intelligence, virtual reality, and the spatial web converge to transform every element of our careers, from training, to execution, to free time.

To offer a quick recap on what the Spatial Web is and how it works, let’s cover some brief history.

A Quick Recap on Web 3.0
While Web 1.0 consisted of static documents and read-only data (static web pages), Web 2.0 introduced multimedia content, interactive web applications, and participatory social media, all of these mediated by two-dimensional screens.

But over the next two to five years, the convergence of 5G, artificial intelligence, VR/AR, and a trillion-sensor economy will enable us to both map our physical world into virtual space and superimpose a digital data layer onto our physical environments. Suddenly, all our information will be manipulated, stored, understood and experienced in spatial ways.

In this blog, I’ll be discussing the Spatial Web’s vast implications for:

Professional Training
Delocalized Business & the Virtual Workplace
Smart Permissions & Data Security

Let’s dive in.

Virtual Training, Real-World Results
Virtual and augmented reality have already begun disrupting the professional training market. As projected by ABI Research, the enterprise VR training market is on track to exceed $6.3 billion in value by 2022.

Leading the charge, Walmart has already implemented VR across 200 Academy training centers, running over 45 modules and simulating everything from unusual customer requests to a Black Friday shopping rush.

Then in September 2018, Walmart committed to a 17,000-headset order of the Oculus Go to equip every US Supercenter, neighborhood market, and discount store with VR-based employee training. By mid-2019, Walmart had tracked a 10-15 percent boost in employee confidence as a result of newly implemented VR training.

In the engineering world, Bell Helicopter is using VR to massively expedite development and testing of its latest aircraft, FCX-001. Partnering with Sector 5 Digital and HTC VIVE, Bell found it could concentrate a typical 6-year aircraft design process into the course of 6 months, turning physical mock-ups into CAD-designed virtual replicas.

But beyond the design process itself, Bell is now one of a slew of companies pioneering VR pilot tests and simulations with real-world accuracy. Seated in a true-to-life virtual cockpit, pilots have now tested countless iterations of the FCX-001 in virtual flight, drawing directly onto the 3D model and enacting aircraft modifications in real-time.

And in an expansion of our virtual senses, several key players are already working on haptic feedback. In the case of VR flight, French company Go Touch VR is now partnering with software developer FlyInside on fingertip-mounted haptic tech for aviation.

Dramatically reducing time and trouble required for VR-testing pilots, they aim to give touch-based confirmation of every switch and dial activated on virtual flights, just as one would experience in a full-sized cockpit mockup. Replicating texture, stiffness, and even the sensation of holding an object, these piloted devices contain a suite of actuators to simulate everything from a light touch to higher-pressured contact, all controlled by gaze and finger movements.

When it comes to other high-risk simulations, virtual and augmented reality have barely scratched the surface.

Firefighters can now combat virtual wildfires with new platforms like FLAIM Trainer or TargetSolutions. And thanks to the expansion of medical AR/VR services like 3D4Medical or Echopixel, surgeons might soon perform operations on annotated organs and magnified incision sites, speeding up reaction times and vastly improving precision.

But perhaps most urgent, Web 3.0 and its VR interface will offer an immediate solution for today’s constant industry turnover and large-scale re-education demands. VR educational facilities with exact replicas of anything from large industrial equipment to minute circuitry will soon give anyone a second chance at the 21st-century job market.

Want to be an electric, autonomous vehicle mechanic at age 15? Throw on a demonetized VR module and learn by doing, testing your prototype iterations at almost zero cost and with no risk of harming others.

Want to be a plasma physicist and play around with a virtual nuclear fusion reactor? Now you’ll be able to simulate results and test out different tweaks, logging Smart Educational Record credits in the process.

As tomorrow’s career model shifts from a “one-and-done graduate degree” to continuous lifelong education, professional VR-based re-education will allow for a continuous education loop, reducing the barrier to entry for anyone wanting to enter a new industry.

But beyond professional training and virtually enriched, real-world work scenarios, Web 3.0 promises entirely virtual workplaces and blockchain-secured authorization systems.

Rise of the Virtual Workplace & Digital Data Integrity
In addition to enabling a virtual goods marketplace, the Spatial Web is also giving way to “virtual company headquarters” and completely virtualized companies, where employees can work from home or any place on the planet.

Too good to be true? Check out an incredible publicly listed company called eXp Realty.

Launched on the heels of the 2008 financial crisis, eXp Realty beat the odds, going public this past May and surpassing a $1B market cap on day one of trading. But how? Opting for a demonetized virtual model, eXp’s founder Glenn Sanford decided to ditch brick and mortar from the get-go, instead building out an online virtual campus for employees, contractors, and thousands of agents.

And after years of hosting team meetings, training seminars, and even agent discussions with potential buyers through 2D digital interfaces, eXp’s virtual headquarters went spatial. What is eXp’s primary corporate value? FUN! And Glenn Sanford’s employees love their jobs.

In a bid to transition from 2D interfaces to immersive, 3D work experiences, virtual platform VirBELA built out the company’s office space in VR, unlocking indefinite scaling potential and an extraordinary new precedent. Foregoing any physical locations for a centralized VR campus, eXp Realty has essentially thrown out all overhead and entered a lucrative market with barely any upfront costs.

Delocalize with VR, and you can now hire anyone with Internet access (right next door or on the other side of the planet), redesign your corporate office every month, throw in an ocean-view office or impromptu conference room for client meetings, and forget about guzzled-up hours in traffic.

Throw in the Spatial Web’s fundamental blockchain-based data layer, and now cryptographically secured virtual IDs will let you validate colleagues’ identities or any of the virtual avatars we will soon inhabit.

This becomes critically important for spatial information logs—keeping incorruptible records of who’s present at a meeting, which data each person has access to, and AI-translated reports of everything discussed and contracts agreed to.

But as I discussed in a previous Spatial Web blog, not only will Web 3.0 and VR advancements allow us to build out virtual worlds, but we’ll soon be able to digitally map our real-world physical offices or entire commercial high rises too.

As data gets added and linked to any given employee’s office, conference room, or security system, we might then access online-merge-offline environments and information through augmented reality.

Imagine showing up at your building’s concierge and your AR glasses automatically check you into the building, authenticating your identity and pulling up any reminders you’ve linked to that specific location.

You stop by a friend’s office, and his smart security system lets you know he’ll arrive in an hour. Need to book a public conference room that’s already been scheduled by another firm’s marketing team? Offer to pay them a fee and, once accepted, a smart transaction will automatically deliver a payment to their company account.

With blockchain-verified digital identities, spatially logged data, and virtually manifest information, business logistics take a fraction of the time, operations grow seamless, and corporate data will be safer than ever.

Final Thoughts
While converging technologies slash the lifespan of Fortune 500 companies, bring on the rise of vast new industries, and transform the job market, Web 3.0 is changing the way we work, where we work, and who we work with.

Life-like virtual modules are already unlocking countless professional training camps, modifiable in real time and easily updated. Virtual programming and blockchain-based authentication are enabling smart data logging, identity protection, and on-demand smart asset trading. And VR/AR-accessible worlds (and corporate campuses) not only demonetize, dematerialize, and delocalize our everyday workplaces, but enrich our physical worlds with AI-driven, context-specific data.

Welcome to the Spatial Web workplace.

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2021 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University—your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: Image by Gerd Altmann from Pixabay Continue reading

Posted in Human Robots

#436484 If Machines Want to Make Art, Will ...

Assuming that the emergence of consciousness in artificial minds is possible, those minds will feel the urge to create art. But will we be able to understand it? To answer this question, we need to consider two subquestions: when does the machine become an author of an artwork? And how can we form an understanding of the art that it makes?

Empathy, we argue, is the force behind our capacity to understand works of art. Think of what happens when you are confronted with an artwork. We maintain that, to understand the piece, you use your own conscious experience to ask what could possibly motivate you to make such an artwork yourself—and then you use that first-person perspective to try to come to a plausible explanation that allows you to relate to the artwork. Your interpretation of the work will be personal and could differ significantly from the artist’s own reasons, but if we share sufficient experiences and cultural references, it might be a plausible one, even for the artist. This is why we can relate so differently to a work of art after learning that it is a forgery or imitation: the artist’s intent to deceive or imitate is very different from the attempt to express something original. Gathering contextual information before jumping to conclusions about other people’s actions—in art, as in life—can enable us to relate better to their intentions.

But the artist and you share something far more important than cultural references: you share a similar kind of body and, with it, a similar kind of embodied perspective. Our subjective human experience stems, among many other things, from being born and slowly educated within a society of fellow humans, from fighting the inevitability of our own death, from cherishing memories, from the lonely curiosity of our own mind, from the omnipresence of the needs and quirks of our biological body, and from the way it dictates the space- and time-scales we can grasp. All conscious machines will have embodied experiences of their own, but in bodies that will be entirely alien to us.

We are able to empathize with nonhuman characters or intelligent machines in human-made fiction because they have been conceived by other human beings from the only subjective perspective accessible to us: “What would it be like for a human to behave as x?” In order to understand machinic art as such—and assuming that we stand a chance of even recognizing it in the first place—we would need a way to conceive a first-person experience of what it is like to be that machine. That is something we cannot do even for beings that are much closer to us. It might very well happen that we understand some actions or artifacts created by machines of their own volition as art, but in doing so we will inevitably anthropomorphize the machine’s intentions. Art made by a machine can be meaningfully interpreted in a way that is plausible only from the perspective of that machine, and any coherent anthropomorphized interpretation will be implausibly alien from the machine perspective. As such, it will be a misinterpretation of the artwork.

But what if we grant the machine privileged access to our ways of reasoning, to the peculiarities of our perception apparatus, to endless examples of human culture? Wouldn’t that enable the machine to make art that a human could understand? Our answer is yes, but this would also make the artworks human—not authentically machinic. All examples so far of “art made by machines” are actually just straightforward examples of human art made with computers, with the artists being the computer programmers. It might seem like a strange claim: how can the programmers be the authors of the artwork if, most of the time, they can’t control—or even anticipate—the actual materializations of the artwork? It turns out that this is a long-standing artistic practice.

Suppose that your local orchestra is playing Beethoven’s Symphony No 7 (1812). Even though Beethoven will not be directly responsible for any of the sounds produced there, you would still say that you are listening to Beethoven. Your experience might depend considerably on the interpretation of the performers, the acoustics of the room, the behavior of fellow audience members or your state of mind. Those and other aspects are the result of choices made by specific individuals or of accidents happening to them. But the author of the music? Ludwig van Beethoven. Let’s say that, as a somewhat odd choice for the program, John Cage’s Imaginary Landscape No 4 (March No 2) (1951) is also played, with 24 performers controlling 12 radios according to a musical score. In this case, the responsibility for the sounds being heard should be attributed to unsuspecting radio hosts, or even to electromagnetic fields. Yet, the shaping of sounds over time—the composition—should be credited to Cage. Each performance of this piece will vary immensely in its sonic materialization, but it will always be a performance of Imaginary Landscape No 4.

Why should we change these principles when artists use computers if, in these respects at least, computer art does not bring anything new to the table? The (human) artists might not be in direct control of the final materializations, or even be able to predict them but, despite that, they are the authors of the work. Various materializations of the same idea—in this case formalized as an algorithm—are instantiations of the same work manifesting different contextual conditions. In fact, a common use of computation in the arts is the production of variations of a process, and artists make extensive use of systems that are sensitive to initial conditions, external inputs, or pseudo-randomness to deliberately avoid repetition of outputs. Having a computer executing a procedure to build an artwork, even if using pseudo-random processes or machine-learning algorithms, is no different than throwing dice to arrange a piece of music, or to pursuing innumerable variations of the same formula. After all, the idea of machines that make art has an artistic tradition that long predates the current trend of artworks made by artificial intelligence.

Machinic art is a term that we believe should be reserved for art made by an artificial mind’s own volition, not for that based on (or directed towards) an anthropocentric view of art. From a human point of view, machinic artworks will still be procedural, algorithmic, and computational. They will be generative, because they will be autonomous from a human artist. And they might be interactive, with humans or other systems. But they will not be the result of a human deferring decisions to a machine, because the first of those—the decision to make art—needs to be the result of a machine’s volition, intentions, and decisions. Only then will we no longer have human art made with computers, but proper machinic art.

The problem is not whether machines will or will not develop a sense of self that leads to an eagerness to create art. The problem is that if—or when—they do, they will have such a different Umwelt that we will be completely unable to relate to it from our own subjective, embodied perspective. Machinic art will always lie beyond our ability to understand it because the boundaries of our comprehension—in art, as in life—are those of the human experience.

This article was originally published at Aeon and has been republished under Creative Commons.

Image Credit: Rene Böhmer / Unsplash Continue reading

Posted in Human Robots

#436220 How Boston Dynamics Is Redefining Robot ...

Gif: Bob O’Connor/IEEE Spectrum

With their jaw-dropping agility and animal-like reflexes, Boston Dynamics’ bioinspired robots have always seemed to have no equal. But that preeminence hasn’t stopped the company from pushing its technology to new heights, sometimes literally. Its latest crop of legged machines can trudge up and down hills, clamber over obstacles, and even leap into the air like a gymnast. There’s no denying their appeal: Every time Boston Dynamics uploads a new video to YouTube, it quickly racks up millions of views. These are probably the first robots you could call Internet stars.

Spot

Photo: Bob O’Connor

84 cm HEIGHT

25 kg WEIGHT

5.76 km/h SPEED

SENSING: Stereo cameras, inertial measurement unit, position/force sensors

ACTUATION: 12 DC motors

POWER: Battery (90 minutes per charge)

Boston Dynamics, once owned by Google’s parent company, Alphabet, and now by the Japanese conglomerate SoftBank, has long been secretive about its designs. Few publications have been granted access to its Waltham, Mass., headquarters, near Boston. But one morning this past August, IEEE Spectrum got in. We were given permission to do a unique kind of photo shoot that day. We set out to capture the company’s robots in action—running, climbing, jumping—by using high-speed cameras coupled with powerful strobes. The results you see on this page: freeze-frames of pure robotic agility.

We also used the photos to create interactive views, which you can explore online on our Robots Guide. These interactives let you spin the robots 360 degrees, or make them walk and jump on your screen.

Boston Dynamics has amassed a minizoo of robotic beasts over the years, with names like BigDog, SandFlea, and WildCat. When we visited, we focused on the two most advanced machines the company has ever built: Spot, a nimble quadruped, and Atlas, an adult-size humanoid.

Spot can navigate almost any kind of terrain while sensing its environment. Boston Dynamics recently made it available for lease, with plans to manufacture something like a thousand units per year. It envisions Spot, or even packs of them, inspecting industrial sites, carrying out hazmat missions, and delivering packages. And its YouTube fame has not gone unnoticed: Even entertainment is a possibility, with Cirque du Soleil auditioning Spot as a potential new troupe member.

“It’s really a milestone for us going from robots that work in the lab to these that are hardened for work out in the field,” Boston Dynamics CEO Marc Raibert says in an interview.

Atlas

Photo: Bob O’Connor

150 cm HEIGHT

80 kg WEIGHT

5.4 km/h SPEED

SENSING: Lidar and stereo vision

ACTUATION: 28 hydraulic actuators

POWER: Battery

Our other photographic subject, Atlas, is Boston Dynamics’ biggest celebrity. This 150-centimeter-tall (4-foot-11-inch-tall) humanoid is capable of impressive athletic feats. Its actuators are driven by a compact yet powerful hydraulic system that the company engineered from scratch. The unique system gives the 80-kilogram (176-pound) robot the explosive strength needed to perform acrobatic leaps and flips that don’t seem possible for such a large humanoid to do. Atlas has inspired a string of parody videos on YouTube and more than a few jokes about a robot takeover.

While Boston Dynamics excels at making robots, it has yet to prove that it can sell them. Ever since its founding in 1992 as a spin-off from MIT, the company has been an R&D-centric operation, with most of its early funding coming from U.S. military programs. The emphasis on commercialization seems to have intensified after the acquisition by SoftBank, in 2017. SoftBank’s founder and CEO, Masayoshi Son, is known to love robots—and profits.

The launch of Spot is a significant step for Boston Dynamics as it seeks to “productize” its creations. Still, Raibert says his long-term goals have remained the same: He wants to build machines that interact with the world dynamically, just as animals and humans do. Has anything changed at all? Yes, one thing, he adds with a grin. In his early career as a roboticist, he used to write papers and count his citations. Now he counts YouTube views.

In the Spotlight

Photo: Bob O’Connor

Boston Dynamics designed Spot as a versatile mobile machine suitable for a variety of applications. The company has not announced how much Spot will cost, saying only that it is being made available to select customers, which will be able to lease the robot. A payload bay lets you add up to 14 kilograms of extra hardware to the robot’s back. One of the accessories that Boston Dynamics plans to offer is a 6-degrees-of-freedom arm, which will allow Spot to grasp objects and open doors.

Super Senses

Photo: Bob O’Connor

Spot’s hardware is almost entirely custom-designed. It includes powerful processing boards for control as well as sensor modules for perception. The ­sensors are located on the front, rear, and sides of the robot’s body. Each module consists of a pair of stereo cameras, a wide-angle camera, and a texture projector, which enhances 3D sensing in low light. The sensors allow the robot to use the navigation method known as SLAM, or simultaneous localization and mapping, to get around autonomously.

Stepping Up

Photo: Bob O’Connor

In addition to its autonomous behaviors, Spot can also be steered by a remote operator with a game-style controller. But even when in manual mode, the robot still exhibits a high degree of autonomy. If there’s an obstacle ahead, Spot will go around it. If there are stairs, Spot will climb them. The robot goes into these operating modes and then performs the related actions completely on its own, without any input from the operator. To go down a flight of stairs, Spot walks backward, an approach Boston Dynamics says provides greater stability.

Funky Feet

Gif: Bob O’Connor/IEEE Spectrum

Spot’s legs are powered by 12 custom DC motors, each geared down to provide high torque. The robot can walk forward, sideways, and backward, and trot at a top speed of 1.6 meters per second. It can also turn in place. Other gaits include crawling and pacing. In one wildly popular YouTube video, Spot shows off its fancy footwork by dancing to the pop hit “Uptown Funk.”

Robot Blood

Photo: Bob O’Connor

Atlas is powered by a hydraulic system consisting of 28 actuators. These actuators are basically cylinders filled with pressurized fluid that can drive a piston with great force. Their high performance is due in part to custom servo valves that are significantly smaller and lighter than the aerospace models that Boston Dynamics had been using in earlier designs. Though not visible from the outside, the innards of an Atlas are filled with these hydraulic actuators as well as the lines of fluid that connect them. When one of those lines ruptures, Atlas bleeds the hydraulic fluid, which happens to be red.

Next Generation

Gif: Bob O’Connor/IEEE Spectrum

The current version of Atlas is a thorough upgrade of the original model, which was built for the DARPA Robotics Challenge in 2015. The newest robot is lighter and more agile. Boston Dynamics used industrial-grade 3D printers to make key structural parts, giving the robot greater strength-to-weight ratio than earlier designs. The next-gen Atlas can also do something that its predecessor, famously, could not: It can get up after a fall.

Walk This Way

Photo: Bob O’Connor

To control Atlas, an operator provides general steering via a manual controller while the robot uses its stereo cameras and lidar to adjust to changes in the environment. Atlas can also perform certain tasks autonomously. For example, if you add special bar-code-type tags to cardboard boxes, Atlas can pick them up and stack them or place them on shelves.

Biologically Inspired

Photos: Bob O’Connor

Atlas’s control software doesn’t explicitly tell the robot how to move its joints, but rather it employs mathematical models of the underlying physics of the robot’s body and how it interacts with the environment. Atlas relies on its whole body to balance and move. When jumping over an obstacle or doing acrobatic stunts, the robot uses not only its legs but also its upper body, swinging its arms to propel itself just as an athlete would.

This article appears in the December 2019 print issue as “By Leaps and Bounds.” Continue reading

Posted in Human Robots

#436149 Blue Frog Robotics Answers (Some of) Our ...

In September of 2015, Buddy the social home robot closed its Indiegogo crowdfunding campaign more than 600 percent over its funding goal. A thousand people pledged for a robot originally scheduled to be delivered in December of 2016. But nearly three years later, the future of Buddy is still unclear. Last May, Blue Frog Robotics asked for forgiveness from its backers and announced the launch of an “equity crowdfunding campaign” to try to raise the additional funding necessary to deliver the robot in April of 2020.

By the time the crowdfunding campaign launched in August, the delivery date had slipped again, to September 2020, even as Blue Frog attempted to draw investors by estimating that sales of Buddy would “increase from 2000 robots in 2020 to 20,000 in 2023.” Blue Frog’s most recent communication with backers, in September, mentions a new CTO and a North American office, but does little to reassure backers of Buddy that they’ll ever be receiving their robot.

Backers of the robot are understandably concerned about the future of Buddy, so we sent a series of questions to the founder and CEO of Blue Frog Robotics, Rodolphe Hasselvander.

We’ve edited this interview slightly for clarity, but we should also note that Hasselvander was unable to provide answers to every question. In particular, we asked for some basic information about Blue Frog’s near-term financial plans, on which the entire future of Buddy seems to depend. We’ve left those questions in the interview anyway, along with Hasselvander’s response.

1. At this point, how much additional funding is necessary to deliver Buddy to backers?
2. Assuming funding is successful, when can backers expect to receive Buddy?
3. What happens if the fundraising goal is not met?
4. You estimate that sales of Buddy will increase 10x over three years. What is this estimate based on?

Rodolphe Hasselvander: Regarding the questions 1-4, unfortunately, as we are fundraising in a Regulation D, we do not comment on prospect, customer data, sales forecasts, or figures. Please refer to our press release here to have information about the fundraising.

5. Do you feel that you are currently being transparent enough about this process to satisfy backers?
6. Buddy’s launch date has moved from April 2020 to September 2020 over the last four months. Why should backers remain confident about Buddy’s schedule?

Since the last newsletter, we haven’t changed our communication, the backers will be the first to receive their Buddy, and we plan an official launch in September 2020.

7. What is the goal of My Buddy World?

At Blue Frog, we think that matching a great product with a big market can only happen through continual experimentation, iteration and incorporation of customer feedback. That’s why we created the forum My Buddy World. It has been designed for our Buddy Community to join us, discuss the world’s first emotional robot, and create with us. The objective is to deepen our conversation with Buddy’s fans and users, stay agile in testing our hypothesis and validate our product-market fit. We trust the value of collaboration. Behind Buddy, there is a team of roboticists, engineers, and programmers that are eager to know more about our consumers’ needs and are excited to work with them to create the perfect human/robot experience.

8. How is the current version of Buddy different from the 2015 version that backers pledged for during the successful crowdfunding campaign, in both hardware and software?

We have completely revised some parts of Buddy as well as replaced and/or added more accurate and reliable components to ensure we fully satisfy our customers’ requirements for a mature and high-quality robot from day one. We sourced more innovative components to make sure that Buddy has the most up-to-date technologies such as adding four microphones, a high def thermal matrix, a 3D camera, an 8-megapixel RGB camera, time-of-flight sensors, and touch sensors.
If you want more info, we just posted an article about what is Buddy here.

9. Will the version of Buddy that ships to backers in 2020 do everything that that was shown in the original crowdfunding video?

Concerning the capabilities of Buddy regarding the video published on YouTube, I confirm that Buddy will be able to do everything you can see, like patrol autonomously and secure your home, telepresence, mathematics applications, interactive stories for children, IoT/smart home management, face recognition, alarm clock, reminder, message/photo sharing, music, hands free call, people following, games like hide and seek (and more). In addition, everyone will be able to create their own apps thanks to the “BuddyLab” application.

10. What makes you confident that Buddy will be successful when Jibo, Kuri, and other social robots have not?

Consumer robotics is a new market. Some people think it is a tough one. But we, at Blue Frog Robotics, believe it is a path of learning, understanding, and finding new ways to serve consumers. Here are the five key factors that will make Buddy successful.

1) A market-fit robot

Blue Frog Robotics is a consumer-centric company. We know that a successful business model and a compelling fit to market Buddy must come up from solving consumers’ frustrations and problems in a way that’s new and exciting. We started from there.

By leveraged existing research and syndicated consumer data sets to understand our customers’ needs and aspirations, we get that creating a robot is not about the best tech innovation and features, but always about how well technology becomes a service to one’s basic human needs and assets: convenience, connection, security, fun, self-improvement, and time. To answer to these consumers’ needs and wants, we designed an all-in-one robot with four vital capabilities: intelligence, emotionality, mobility, and customization.

With his multi-purpose brain, he addresses a broad range of needs in modern-day life, from securing homes to carrying out his owners’ daily activities, from helping people with disabilities to educating children, from entertaining to just becoming a robot friend.

Buddy is a disruptive innovative robot that is about to transform the way we live, learn, utilize information, play, and even care about our health.
2) Endless possibilities

One of the major advantages of Buddy is his adaptability. Beyond to be adorable, playful, talkative, and to accompany anyone in their daily life at home whether you are comfortable with technology or not, he offers via his platform applications to engage his owners in a wide range of activities. From fitness to cooking, from health monitoring to education, from games to meditation, the combination of intelligence, sensors, mobility, multi-touch panel opens endless possibilities for consumers and organizations to adapt their Buddy to their own needs.
3) An affordable price

Buddy will be the first robot combining smart, social, and mobile capabilities and a developed platform with a personality to enter the U.S. market at affordable price.

Our competitors are social or assistant robots but rarely both. Competitors differentiate themselves by features: mobile, non-mobile; by shapes: humanoid or not; by skills: social versus smart; targeting a specific domain like entertainment, retail assistant, eldercare, or education for children; and by price. Regarding our six competitors: Moorebot, Elli-Q, and Olly are not mobile; Lynx and Nao are in toy category; Pepper is above $10k targeting B2B market; and finally, Temi can’t be considered an emotional robot.
Buddy remains highly differentiated as an all-in-one, best of his class experience, covering the needs for social interactions and assistance of his owners at each stage of their life at an affordable price.

The price range of Buddy will be between US $1700 and $2000.

4) A winning business model

Buddy’s great business model combines hardware, software, and services, and provides game-changing convenience for consumers, organizations, and developers.

Buddy offers a multi-sided value proposition focused on three vertical markets: direct consumers, corporations (healthcare, education, hospitality), and developers. The model creates engagement and sustained usage and produces stable and diverse cash flow.
5) A Passion for people and technology

From day one, we have always believed in the power of our dream: To bring the services and the fun of an emotional robot in every house, every hospital, in every care house. Each day, we refuse to think that we are stuck or limited; we work hard to make Buddy a reality that will help people all over the world and make them smile.

While we certainly appreciate Hasselvander’s consistent optimism and obvious enthusiasm, we’re obligated to point out that some of our most important questions were not directly answered. We haven’t learned anything that makes us all that much more confident that Blue Frog will be able to successfully deliver Buddy this time. Hasselvander also didn’t address our specific question about whether he feels like Blue Frog’s communication strategy with backers has been adequate, which is particularly relevant considering that over the four months between the last two newsletters, Buddy’s launch date slipped by six months.

At this point, all we can do is hope that the strategy Blue Frog has chosen will be successful. We’ll let you know if as soon as we learn more.

[ Buddy ] Continue reading

Posted in Human Robots