Tag Archives: interactive

#437896 Solar-based Electronic Skin Generates ...

Replicating the human sense of touch is complicated—electronic skins need to be flexible, stretchable, and sensitive to temperature, pressure and texture; they need to be able to read biological data and provide electronic readouts. Therefore, how to power electronic skin for continuous, real-time use is a big challenge.

To address this, researchers from Glasgow University have developed an energy-generating e-skin made out of miniaturized solar cells, without dedicated touch sensors. The solar cells not only generate their own power—and some surplus—but also provide tactile capabilities for touch and proximity sensing. An early-view paper of their findings was published in IEEE Transactions on Robotics.

When exposed to a light source, the solar cells on the s-skin generate energy. If a cell is shadowed by an approaching object, the intensity of the light, and therefore the energy generated, reduces, dropping to zero when the cell makes contact with the object, confirming touch. In proximity mode, the light intensity tells you how far the object is with respect to the cell. “In real time, you can then compare the light intensity…and after calibration find out the distances,” says Ravinder Dahiya of the Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, where the study was carried out. The team used infra-red LEDs with the solar cells for proximity sensing for better results.

To demonstrate their concept, the researchers wrapped a generic 3D-printed robotic hand in their solar skin, which was then recorded interacting with its environment. The proof-of-concept tests showed an energy surplus of 383.3 mW from the palm of the robotic arm. “The eSkin could generate more than 100 W if present over the whole body area,” they reported in their paper.

“If you look at autonomous, battery-powered robots, putting an electronic skin [that] is consuming energy is a big problem because then it leads to reduced operational time,” says Dahiya. “On the other hand, if you have a skin which generates energy, then…it improves the operational time because you can continue to charge [during operation].” In essence, he says, they turned a challenge—how to power the large surface area of the skin—into an opportunity—by turning it into an energy-generating resource.

Dahiya envisages numerous applications for BEST’s innovative e-skin, given its material-integrated sensing capabilities, apart from the obvious use in robotics. For instance, in prosthetics: “[As] we are using [a] solar cell as a touch sensor itself…we are also [making it] less bulkier than other electronic skins.” This, he adds, will help create prosthetics that are of optimal weight and size, thus making it easier for prosthetics users. “If you look at electronic skin research, the the real action starts after it makes contact… Solar skin is a step ahead, because it will start to work when the object is approaching…[and] have more time to prepare for action.” This could effectively reduce the time lag that is often seen in brain–computer interfaces.

There are also possibilities in the automation sector, particularly in electrical and interactive vehicles. A car covered with solar e-skin, because of its proximity-sensing capabilities, would be able to “see” an approaching obstacle or a person. It isn’t “seeing” in the biological sense, Dahiya clarifies, but from the point of view of a machine. This can be integrated with other objects, not just cars, for a variety of uses. “Gestures can be recognized as well…[which] could be used for gesture-based control…in gaming or in other sectors.”

In the lab, tests were conducted with a single source of white light at 650 lux, but Dahiya feels there are interesting possibilities if they could work with multiple light sources that the e-skin could differentiate between. “We are exploring different AI techniques [for that],” he says, “processing the data in an innovative way [so] that we can identify the the directions of the light sources as well as the object.”

The BEST team’s achievement brings us closer to a flexible, self-powered, cost-effective electronic skin that can touch as well as “see.” At the moment, however, there are still some challenges. One of them is flexibility. In their prototype, they used commercial solar cells made of amorphous silicon, each 1cm x 1cm. “They are not flexible, but they are integrated on a flexible substrate,” Dahiya says. “We are currently exploring nanowire-based solar cells…[with which] we we hope to achieve good performance in terms of energy as well as sensing functionality.” Another shortcoming is what Dahiya calls “the integration challenge”—how to make the solar skin work with different materials. Continue reading

Posted in Human Robots

#437869 Video Friday: Japan’s Gundam Robot ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ACRA 2020 – December 8-10, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today’s videos.

Another BIG step for Japan’s Gundam project.

[ Gundam Factory ]

We present an interactive design system that allows users to create sculpting styles and fabricate clay models using a standard 6-axis robot arm. Given a general mesh as input, the user iteratively selects sub-areas of the mesh through decomposition and embeds the design expression into an initial set of toolpaths by modifying key parameters that affect the visual appearance of the sculpted surface finish. We demonstrate the versatility of our approach by designing and fabricating different sculpting styles over a wide range of clay models.

[ Disney Research ]

China’s Chang’e-5 completed the drilling, sampling and sealing of lunar soil at 04:53 BJT on Wednesday, marking the first automatic sampling on the Moon, the China National Space Administration (CNSA) announced Wednesday.

[ CCTV ]

Red Hat’s been putting together an excellent documentary on Willow Garage and ROS, and all five parts have just been released. We posted Part 1 a little while ago, so here’s Part 2 and Part 3.

Parts 4 and 5 are at the link below!

[ Red Hat ]

Congratulations to ANYbotics on a well-deserved raise!

ANYbotics has origins in the Robotic Systems Lab at ETH Zurich, and ANYmal’s heritage can be traced back at least as far as StarlETH, which we first met at ICRA 2013.

[ ANYbotics ]

Most conventional robots are working with 0.05-0.1mm accuracy. Such accuracy requires high-end components like low-backlash gears, high-resolution encoders, complicated CNC parts, powerful motor drives, etc. Those in combination end up an expensive solution, which is either unaffordable or unnecessary for many applications. As a result, we found the Apicoo Robotics to provide our customers solutions with a much lower cost and higher stability.

[ Apicoo Robotics ]

The Skydio 2 is an incredible drone that can take incredible footage fully autonomously, but it definitely helps if you do incredible things in incredible places.

[ Skydio ]

Jueying is the first domestic sensitive quadruped robot for industry applications and scenarios. It can coordinate (replace) humans to reach any place that can be reached. It has superior environmental adaptability, excellent dynamic balance capabilities and precise Environmental perception capabilities. By carrying functional modules for different application scenarios in the safe load area, the mobile superiority of the quadruped robot can be organically integrated with the commercialization of functional modules, providing smart factories, smart parks, scene display and public safety application solutions.

[ DeepRobotics ]

We have developed semi-autonomous quadruped robot, called LASER-D (Legged-Agile-Smart-Efficient Robot for Disinfection) for performing disinfection in cluttered environments. The robot is equipped with a spray-based disinfection system and leverages the body motion to controlling the spray action without the need for an extra stabilization mechanism. The system includes an image processing capability to verify disinfected regions with high accuracy. This system allows the robot to successfully carry out effective disinfection tasks while safely traversing through cluttered environments, climb stairs/slopes, and navigate on slippery surfaces.

[ USC Viterbi ]

We propose the “multi-vision hand”, in which a number of small high-speed cameras are mounted on the robot hand of a common 7 degrees-of-freedom robot. Also, we propose visual-servoing control by using a multi-vision system that combines the multi-vision hand and external fixed high-speed cameras. The target task was ball catching motion, which requires high-speed operation. In the proposed catching control, the catch position of the ball, which is estimated by the external fixed high-speed cameras, is corrected by the multi-vision hand in real-time.

More details available through IROS on-demand.

[ Namiki Laboratory ]

Shunichi Kurumaya wrote in to share his work on PneuFinger, a pneumatically actuated compliant robotic gripping system.

[ Nakamura Lab ]

Thanks Shunichi!

Motivated by insights into the human teaching process, we introduce a method for incorporating unstructured natural language into imitation learning. At training time, the expert can provide demonstrations along with verbal descriptions in order to describe the underlying intent, e.g., “Go to the large green bowl’’. The training process, then, interrelates the different modalities to encode the correlations between language, perception, and motion. The resulting language-conditioned visuomotor policies can be conditioned at run time on new human commands and instructions, which allows for more fine-grained control over the trained policies while also reducing situational ambiguity.

[ ASU ]

Thanks Heni!

Gita is on sale for the holidays for only $2,000.

[ Gita ]

This video introduces a computational approach for routing thin artificial muscle actuators through hyperelastic soft robots, in order to achieve a desired deformation behavior. Provided with a robot design, and a set of example deformations, we continuously co-optimize the routing of actuators, and their actuation, to approximate example deformations as closely as possible.

[ Disney Research ]

Researchers and mountain rescuers in Switzerland are making huge progress in the field of autonomous drones as the technology becomes more in-demand for global search-and-rescue operations.

[ SWI ]

This short clip of the Ghost Robotics V60 features an interesting, if awkward looking, righting behavior at the end.

[ Ghost Robotics ]

Europe’s Rosalind Franklin ExoMars rover has a younger ’sibling’, ExoMy. The blueprints and software for this mini-version of the full-size Mars explorer are available for free so that anyone can 3D print, assemble and program their own ExoMy.

[ ESA ]

The holiday season is here, and with the added impact of Covid-19 consumer demand is at an all-time high. Berkshire Grey is the partner that today’s leading organizations turn to when it comes to fulfillment automation.

[ Berkshire Grey ]

Until very recently, the vast majority of studies and reports on the use of cargo drones for public health were almost exclusively focused on the technology. The driving interest from was on the range that these drones could travel, how much they could carry and how they worked. Little to no attention was placed on the human side of these projects. Community perception, community engagement, consent and stakeholder feedback were rarely if ever addressed. This webinar presents the findings from a very recent study that finally sheds some light on the human side of drone delivery projects.

[ WeRobotics ] Continue reading

Posted in Human Robots

#437826 Video Friday: Skydio 2 Drone Is Back on ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Skydio, which makes what we’re pretty sure is the most intelligent consumer drone (or maybe just drone period) in existence, has been dealing with COVID-19 just like the rest of us. Even so, they’ve managed to push out a major software update, and pre-orders for the Skydio 2 are now open again.

If you think you might want one, read our review, after which you’ll be sure you want one.

[ Skydio ]

Worried about people with COVID entering your workplace? Misty II has your front desk covered, in a way that’s quite a bit friendlier than many other options.

Misty II provides a dynamic and interactive screening experience that delivers a joyful experience in an otherwise depressing moment while also delivering state of the art thermal scanning and health screening. We have already found that employees, customers, and visitors appreciate the novelty of interacting with a clever and personable robot. Misty II engages dynamically, both visually and verbally. Companies appreciate using a solution with a blackbody-referenced thermal camera that provides high accuracy and a short screening process for efficiency. Putting a robot to work in this role shifts not only how people look at the screening process but also how robots can take on useful assignments in business, schools and homes.

[ Misty Robotics ]

Thanks Tim!

I’m definitely the one in the middle.

[ Agility Robotics ]

NASA’s Ingenuity helicopter is traveling to Mars attached to the belly of the Perseverance rover and must safely detach to begin the first attempt at powered flight on another planet. Tests done at NASA’s Jet Propulsion Laboratory and Lockheed Martin Space show the sequence of events that will bring the helicopter down to the Martian surface.

[ JPL ]

Here’s a sequence of videos of Cassie Blue making it (or mostly making it) up a 22-degree slope.

My mood these days is Cassie at 1:09.

[ University of Michigan ]

Thanks Jesse!

This is somewhere on the line between home automation and robotics, but it’s a cool idea: A baby crib that “uses computer vision and machine learning to recognize subtle changes” in an infant’s movement, and proactively bounces them to keep them sleeping peacefully.

It costs $1000, but how much value do you put on 24 months of your own sleep?

[ Cradlewise ]

Thanks Ben!

As captive marine mammal shows have fallen from favor; and the catching, transporting and breeding of marine animals has become more restricted, the marine park industry as a viable business has become more challenging – yet the audience appetite for this type of entertainment and education has remained constant.

Real-time Animatronics provide a way to reinvent the marine entertainment industry with a sustainable, safe, and profitable future. Show venues include aquariums, marine parks, theme parks, fountain shows, cruise lines, resort hotels, shopping malls, museums, and more.

[ EdgeFX ] via [ Gizmodo ]

Robotic cabling is surprisingly complex and kinda cool to watch.

The video shows the sophisticated robot application “Automatic control cabinet cabling”, which Fraunhofer IPA implemented together with the company Rittal. The software pitasc, developed at Fraunhofer IPA, is used for force-controlled assembly processes. Two UR robot arms carry out the task together. The modular pitasc system enables the robot arms to move and rotate in parallel. They work hand in hand, with one robot holding the cable and the second bringing it to the starting position for the cabling. The robots can find, tighten, hold ready, lay, plug in, fix, move freely or immerse cables. They can also perform push-ins and pull tests.

[ Fraunhofer ]

This is from 2018, but the concept is still pretty neat.

We propose to perform a novel investigation into the ability of a propulsively hopping robot to reach targets of high science value on the icy, rugged terrains of Ocean Worlds. The employment of a multi-hop architecture allows for the rapid traverse of great distances, enabling a single mission to reach multiple geologic units within a timespan conducive to system survival in a harsh radiation environment. We further propose that the use of a propulsive hopping technique obviates the need for terrain topographic and strength assumptions and allows for complete terrain agnosticism; a key strength of this concept.

[ NASA ]

Aerial-aquatic robots possess the unique ability of operating in both air and water. However, this capability comes with tremendous challenges, such as communication incompati- bility, increased airborne mass, potentially inefficient operation in each of the environments and manufacturing difficulties. Such robots, therefore, typically have small payloads and a limited operational envelope, often making their field usage impractical. We propose a novel robotic water sampling approach that combines the robust technologies of multirotors and underwater micro-vehicles into a single integrated tool usable for field operations.

[ Imperial ]

Event cameras are bio-inspired vision sensors with microsecond latency resolution, much larger dynamic range and hundred times lower power consumption than standard cameras. This 20-minute talk gives a short tutorial on event cameras and show their applications on computer vision, drones, and cars.

[ UZH ]

We interviewed Paul Newman, Perla Maiolino and Lars Kunze, ORI academics, to hear what gets them excited about robots in the future and any advice they have for those interested in the field.

[ Oxford Robotics Institute ]

Two projects from the Rehabilitation Engineering Lab at ETH Zurich, including a self-stabilizing wheelchair and a soft exoskeleton for grasping assistance.

[ ETH Zurich ]

Silicon Valley Robotics hosted an online conversation about robotics and racism. Moderated by Andra Keay, the panel featured Maynard Holliday, Tom Williams, Monroe Kennedy III, Jasmine Lawrence, Chad Jenkins, and Ken Goldberg.

[ SVR ]

The ICRA Legged Locomotion workshop has been taking place online, and while we’re not getting a robot mosh pit, there are still some great talks. We’ll post two here, but for more, follow the legged robots YouTube channel at the link below.

[ YouTube ] Continue reading

Posted in Human Robots

#437789 Video Friday: Robotic Glove Features ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Evidently, the folks at Unitree were paying attention to last week’s Video Friday.

[ Unitree ]

RoboSoft 2020 was a virtual conference this year (along with everything else), but they still held a soft robots contest, and here are four short vids—you can watch the rest of them here.

[ RoboSoft 2020 ]

If you were wondering why SoftBank bought Aldebaran Robotics and Boston Dynamics, here’s the answer.

I am now a Hawks fan. GO HAWKS!

[ Softbank Hawks ] via [ RobotStart ]

Scientists at the University of Liverpool have developed a fully autonomous mobile robot to assist them in their research. Using a type of AI, the robot has been designed to work uninterrupted for weeks at a time, allowing it to analyse data and make decisions on what to do next. Using a flexible arm with customised gripper it can be calibrated to interact with most standard lab equipment and machinery as well as navigate safely around human co-workers and obstacles.

[ Nature ]

Oregon State’s Cassie has been on break for a couple of months, but it’s back in the lab and moving alarmingly quickly.

[ DRL ]

The current situation linked to COVID-19 sadly led to the postponing of this year RoboCup 2020 at Bordeaux. As an official sponsor of The RoboCup, SoftBank Robotics wanted to take this opportunity to thank all RoboCupers and The RoboCup Federation for their support these past 13 years. We invite you to take a look at NAO’s adventure at The RoboCup as the official robot of the Standard Platform League. See you in Bordeaux 2021!

[ RoboCup 2021 ]

Miniature SAW robot crawling inside the intestines of a pig. You’re welcome.

[ Zarrouk Lab ]

The video demonstrates fast autonomous flight experiments in cluttered unknown environments, with the support of a robust and perception-aware replanning framework called RAPTOR. The associated paper is submitted to TRO.

[ HKUST ]

Since we haven’t gotten autonomy quite right yet, there’s a lot of telepresence going on for robots that operate in public spaces. Usually, you’ve got one remote human managing multiple robots, so it would be nice to make that interface a little more friendly, right?

[ HCI Lab ]

Arguable whether or not this is a robot, but it’s cool enough to spend a minute watching.

[ Ishikawa Lab ]

Communication is critical to collaboration; however, too much of it can degrade performance. Motivated by the need for effective use of a robot’s communication modalities, in this work, we present a computational framework that decides if, when, and what to communicate during human-robot collaboration.

[ Interactive Robotics ]

Robotiq has released the next generation of the grippers for collaborative robots: the 2F-85 and 2F-140. Both models gain greater robustness, safety, and customizability while retaining the same key benefits that have inspired thousands of manufacturers to choose them since their launch 6 years ago.

[ Robotiq ]

ANYmal C, the autonomous legged robot designed for industrial challenging environments, provides the mobility, autonomy and inspection intelligence to enable safe and efficient inspection operations. In this virtual showcase, discover how ANYmal climbs stairs, recovers from a fall, performs an autonomous mission and avoids obstacles, docks to charge by itself, digitizes analogue sensors and monitors the environment.

[ ANYbotics ]

At Waymo, we are committed to addressing inequality, and we believe listening is a critical first step toward driving positive change. Earlier this year, five Waymonauts sat down to share their thoughts on equity at work, challenging the status quo, and more. This is what they had to say.

[ Waymo ]

Nice of ABB to take in old robots and upgrade them to turn them into new robots again. Robots forever!

[ ABB ]

It’s nice seeing the progress being made by GITAI, one of the teams competing in the ANA Avatar XPRIZE Challenge, and also meet the humans behind the robots.

[ GITAI ] via [ XPRIZE ]

One more talk from the ICRA Legged Robotics Workshop: Jingyu Liu from DeepRobotics and Qiuguo Zhu from Zhejiang University.

[ Deep Robotics ] Continue reading

Posted in Human Robots

#437763 Peer Review of Scholarly Research Gets ...

In the world of academics, peer review is considered the only credible validation of scholarly work. Although the process has its detractors, evaluation of academic research by a cohort of contemporaries has endured for over 350 years, with “relatively minor changes.” However, peer review may be set to undergo its biggest revolution ever—the integration of artificial intelligence.

Open-access publisher Frontiers has debuted an AI tool called the Artificial Intelligence Review Assistant (AIRA), which purports to eliminate much of the grunt work associated with peer review. Since the beginning of June 2020, every one of the 11,000-plus submissions Frontiers received has been run through AIRA, which is integrated into its collaborative peer-review platform. This also makes it accessible to external users, accounting for some 100,000 editors, authors, and reviewers. Altogether, this helps “maximize the efficiency of the publishing process and make peer-review more objective,” says Kamila Markram, founder and CEO of Frontiers.

AIRA’s interactive online platform, which is a first of its kind in the industry, has been in development for three years.. It performs three broad functions, explains Daniel Petrariu, director of project management: assessing the quality of the manuscript, assessing quality of peer review, and recommending editors and reviewers. At the initial validation stage, the AI can make up to 20 recommendations and flag potential issues, including language quality, plagiarism, integrity of images, conflicts of interest, and so on. “This happens almost instantly and with [high] accuracy, far beyond the rate at which a human could be expected to complete a similar task,” Markram says.

“We have used a wide variety of machine-learning models for a diverse set of applications, including computer vision, natural language processing, and recommender systems,” says Markram. This includes simple bag-of-words models, as well as more sophisticated deep-learning ones. AIRA also leverages a large knowledge base of publications and authors.

Markram notes that, to address issues of possible AI bias, “We…[build] our own datasets and [design] our own algorithms. We make sure no statistical biases appear in the sampling of training and testing data. For example, when building a model to assess language quality, scientific fields are equally represented so the model isn’t biased toward any specific topic.” Machine- and deep-learning approaches, along with feedback from domain experts, including errors, are captured and used as additional training data. “By regularly re-training, we make sure our models improve in terms of accuracy and stay up-to-date.”

The AI’s job is to flag concerns; humans take the final decisions, says Petrariu. As an example, he cites image manipulation detection—something AI is super-efficient at but is nearly impossible for a human to perform with the same accuracy. “About 10 percent of our flagged images have some sort of problem,” he adds. “[In academic publishing] nobody has done this kind of comprehensive check [using AI] before,” says Petrariu. AIRA, he adds, facilitates Frontiers’ mission to make science open and knowledge accessible to all. Continue reading

Posted in Human Robots