Tag Archives: intelligence

#437150 AI Is Getting More Creative. But Who ...

Creativity is a trait that makes humans unique from other species. We alone have the ability to make music and art that speak to our experiences or illuminate truths about our world. But suddenly, humans’ artistic abilities have some competition—and from a decidedly non-human source.

Over the last couple years there have been some remarkable examples of art produced by deep learning algorithms. They have challenged the notion of an elusive definition of creativity and put into perspective how professionals can use artificial intelligence to enhance their abilities and produce beyond the known boundaries.

But when creativity is the result of code written by a programmer, using a format given by a software engineer, featuring private and public datasets, how do we assign ownership of AI-generated content, and particularly that of artwork? McKinsey estimates AI will annually generate value of $3.5 to $5.8 trillion across various sectors.

In 2018, a portrait that was christened Edmond de Belamy was made in a French art collective called Obvious. It used a database with 15,000 portraits from the 1300s to the 1900s to train a deep learning algorithm to produce a unique portrait. The painting sold for $432,500 in a New York auction. Similarly, a program called Aiva, trained on thousands of classical compositions, has released albums whose pieces are being used by ad agencies and movies.

The datasets used by these algorithms were different, but behind both there was a programmer who changed the brush strokes or musical notes into lines of code and a data scientist or engineer who fitted and “curated” the datasets to use for the model. There could also have been user-based input, and the output may be biased towards certain styles or unintentionally infringe on similar pieces of art. This shows that there are many collaborators with distinct roles in producing AI-generated content, and it’s important to discuss how they can protect their proprietary interests.

A perspective article published in Nature Machine Intelligence by Jason K. Eshraghian in March looks into how AI artists and the collaborators involved should assess their ownership, laying out some guiding principles that are “only applicable for as long as AI does not have legal parenthood, the way humans and corporations are accorded.”

Before looking at how collaborators can protect their interests, it’s useful to understand the basic requirements of copyright law. The artwork in question must be an “original work of authorship fixed in a tangible medium.” Given this principle, the author asked whether it’s possible for AI to exercise creativity, skill, or any other indicator of originality. The answer is still straightforward—no—or at least not yet. Currently, AI’s range of creativity doesn’t exceed the standard used by the US Copyright Office, which states that copyright law protects the “fruits of intellectual labor founded in the creative powers of the mind.”

Due to the current limitations of narrow AI, it must have some form of initial input that helps develop its ability to create. At the moment AI is a tool that can be used to produce creative work in the same way that a video camera is a tool used to film creative content. Video producers don’t need to comprehend the inner workings of their cameras; as long as their content shows creativity and originality, they have a proprietary claim over their creations.

The same concept applies to programmers developing a neural network. As long as the dataset they use as input yields an original and creative result, it will be protected by copyright law; they don’t need to understand the high-level mathematics, which in this case are often black box algorithms whose output it’s impossible to analyze.

Will robots and algorithms eventually be treated as creative sources able to own copyrights? The author pointed to the recent patent case of Warner-Lambert Co Ltd versus Generics where Lord Briggs, Justice of the Supreme Court of the UK, determined that “the court is well versed in identifying the governing mind of a corporation and, when the need arises, will no doubt be able to do the same for robots.”

In the meantime, Dr. Eshraghian suggests four guiding principles to allow artists who collaborate with AI to protect themselves.

First, programmers need to document their process through online code repositories like GitHub or BitBucket.

Second, data engineers should also document and catalog their datasets and the process they used to curate their models, indicating selectivity in their criteria as much as possible to demonstrate their involvement and creativity.

Third, in cases where user data is utilized, the engineer should “catalog all runs of the program” to distinguish the data selection process. This could be interpreted as a way of determining whether user-based input has a right to claim the copyright too.

Finally, the output should avoid infringing on others’ content through methods like reverse image searches and version control, as mentioned above.

AI-generated artwork is still a very new concept, and the ambiguous copyright laws around it give a lot of flexibility to AI artists and programmers worldwide. The guiding principles Eshraghian lays out will hopefully shed some light on the legislation we’ll eventually need for this kind of art, and start an important conversation between all the stakeholders involved.

Image Credit: Wikimedia Commons Continue reading

Posted in Human Robots

#437145 3 Major Materials Science ...

Few recognize the vast implications of materials science.

To build today’s smartphone in the 1980s, it would cost about $110 million, require nearly 200 kilowatts of energy (compared to 2kW per year today), and the device would be 14 meters tall, according to Applied Materials CTO Omkaram Nalamasu.

That’s the power of materials advances. Materials science has democratized smartphones, bringing the technology to the pockets of over 3.5 billion people. But far beyond devices and circuitry, materials science stands at the center of innumerable breakthroughs across energy, future cities, transit, and medicine. And at the forefront of Covid-19, materials scientists are forging ahead with biomaterials, nanotechnology, and other materials research to accelerate a solution.

As the name suggests, materials science is the branch devoted to the discovery and development of new materials. It’s an outgrowth of both physics and chemistry, using the periodic table as its grocery store and the laws of physics as its cookbook.

And today, we are in the middle of a materials science revolution. In this article, we’ll unpack the most important materials advancements happening now.

Let’s dive in.

The Materials Genome Initiative
In June 2011 at Carnegie Mellon University, President Obama announced the Materials Genome Initiative, a nationwide effort to use open source methods and AI to double the pace of innovation in materials science. Obama felt this acceleration was critical to the US’s global competitiveness, and held the key to solving significant challenges in clean energy, national security, and human welfare. And it worked.

By using AI to map the hundreds of millions of different possible combinations of elements—hydrogen, boron, lithium, carbon, etc.—the initiative created an enormous database that allows scientists to play a kind of improv jazz with the periodic table.

This new map of the physical world lets scientists combine elements faster than ever before and is helping them create all sorts of novel elements. And an array of new fabrication tools are further amplifying this process, allowing us to work at altogether new scales and sizes, including the atomic scale, where we’re now building materials one atom at a time.

Biggest Materials Science Breakthroughs
These tools have helped create the metamaterials used in carbon fiber composites for lighter-weight vehicles, advanced alloys for more durable jet engines, and biomaterials to replace human joints. We’re also seeing breakthroughs in energy storage and quantum computing. In robotics, new materials are helping us create the artificial muscles needed for humanoid, soft robots—think Westworld in your world.

Let’s unpack some of the leading materials science breakthroughs of the past decade.

(1) Lithium-ion batteries

The lithium-ion battery, which today powers everything from our smartphones to our autonomous cars, was first proposed in the 1970s. It couldn’t make it to market until the 1990s, and didn’t begin to reach maturity until the past few years.

An exponential technology, these batteries have been dropping in price for three decades, plummeting 90 percent between 1990 and 2010, and 80 percent since. Concurrently, they’ve seen an eleven-fold increase in capacity.

But producing enough of them to meet demand has been an ongoing problem. Tesla has stepped up to the challenge: one of the company’s Gigafactories in Nevada churns out 20 gigawatts of energy storage per year, marking the first time we’ve seen lithium-ion batteries produced at scale.

Musk predicts 100 Gigafactories could store the energy needs of the entire globe. Other companies are moving quickly to integrate this technology as well: Renault is building a home energy storage based on their Zoe batteries, BMW’s 500 i3 battery packs are being integrated into the UK’s national energy grid, and Toyota, Nissan, and Audi have all announced pilot projects.

Lithium-ion batteries will continue to play a major role in renewable energy storage, helping bring down solar and wind energy prices to compete with those of coal and gasoline.

(2) Graphene

Derived from the same graphite found in everyday pencils, graphene is a sheet of carbon just one atom thick. It is nearly weightless, but 200 times stronger than steel. Conducting electricity and dissipating heat faster than any other known substance, this super-material has transformative applications.

Graphene enables sensors, high-performance transistors, and even gel that helps neurons communicate in the spinal cord. Many flexible device screens, drug delivery systems, 3D printers, solar panels, and protective fabric use graphene.

As manufacturing costs decrease, this material has the power to accelerate advancements of all kinds.

(3) Perovskite

Right now, the “conversion efficiency” of the average solar panel—a measure of how much captured sunlight can be turned into electricity—hovers around 16 percent, at a cost of roughly $3 per watt.

Perovskite, a light-sensitive crystal and one of our newer new materials, has the potential to get that up to 66 percent, which would double what silicon panels can muster.

Perovskite’s ingredients are widely available and inexpensive to combine. What do all these factors add up to? Affordable solar energy for everyone.

Materials of the Nano-World
Nanotechnology is the outer edge of materials science, the point where matter manipulation gets nano-small—that’s a million times smaller than an ant, 8,000 times smaller than a red blood cell, and 2.5 times smaller than a strand of DNA.

Nanobots are machines that can be directed to produce more of themselves, or more of whatever else you’d like. And because this takes place at an atomic scale, these nanobots can pull apart any kind of material—soil, water, air—atom by atom, and use these now raw materials to construct just about anything.

Progress has been surprisingly swift in the nano-world, with a bevy of nano-products now on the market. Never want to fold clothes again? Nanoscale additives to fabrics help them resist wrinkling and staining. Don’t do windows? Not a problem! Nano-films make windows self-cleaning, anti-reflective, and capable of conducting electricity. Want to add solar to your house? We’ve got nano-coatings that capture the sun’s energy.

Nanomaterials make lighter automobiles, airplanes, baseball bats, helmets, bicycles, luggage, power tools—the list goes on. Researchers at Harvard built a nanoscale 3D printer capable of producing miniature batteries less than one millimeter wide. And if you don’t like those bulky VR goggles, researchers are now using nanotech to create smart contact lenses with a resolution six times greater than that of today’s smartphones.

And even more is coming. Right now, in medicine, drug delivery nanobots are proving especially useful in fighting cancer. Computing is a stranger story, as a bioengineer at Harvard recently stored 700 terabytes of data in a single gram of DNA.

On the environmental front, scientists can take carbon dioxide from the atmosphere and convert it into super-strong carbon nanofibers for use in manufacturing. If we can do this at scale—powered by solar—a system one-tenth the size of the Sahara Desert could reduce CO2 in the atmosphere to pre-industrial levels in about a decade.

The applications are endless. And coming fast. Over the next decade, the impact of the very, very small is about to get very, very large.

Final Thoughts
With the help of artificial intelligence and quantum computing over the next decade, the discovery of new materials will accelerate exponentially.

And with these new discoveries, customized materials will grow commonplace. Future knee implants will be personalized to meet the exact needs of each body, both in terms of structure and composition.

Though invisible to the naked eye, nanoscale materials will integrate into our everyday lives, seamlessly improving medicine, energy, smartphones, and more.

Ultimately, the path to demonetization and democratization of advanced technologies starts with re-designing materials— the invisible enabler and catalyst. Our future depends on the materials we create.

(Note: This article is an excerpt from The Future Is Faster Than You Think—my new book, just released on January 28th! To get your own copy, click here!)

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2021 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University—your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: Anand Kumar from Pixabay Continue reading

Posted in Human Robots

#437133 The robots weeding organic farms and ...

Robots that use artificial intelligence to recognise the health of fruit and vegetable crops and when they're ready to harvest are being trialled to help small, organic and greenhouse farmers with weeding and patrolling for pests. Continue reading

Posted in Human Robots

#437128 Smarter, lighter exoskeletons to provide ...

In health technology, wearable robots are programmable devices designed to mechanically interact with the body of the wearer. Sometimes referred to as exoskeletons, their purpose is to support motor function for people with severe mobility impairments. But market adoption of exoskeletons has been limited due to factors such as the weight of the equipment and the sometimes inaccurate predictions of wearer's movements when walking on uneven ground or approaching an obstacle. However, recent advances in robotics, materials science and artificial intelligence could make these mobility assistance and rehabilitation tools more compact, lightweight and effective for the wearer. Continue reading

Posted in Human Robots

#437120 The New Indiana Jones? AI. Here’s How ...

Archaeologists have uncovered scores of long-abandoned settlements along coastal Madagascar that reveal environmental connections to modern-day communities. They have detected the nearly indiscernible bumps of earthen mounds left behind by prehistoric North American cultures. Still other researchers have mapped Bronze Age river systems in the Indus Valley, one of the cradles of civilization.

All of these recent discoveries are examples of landscape archaeology. They’re also examples of how artificial intelligence is helping scientists hunt for new archaeological digs on a scale and at a pace unimaginable even a decade ago.

“AI in archaeology has been increasing substantially over the past few years,” said Dylan Davis, a PhD candidate in the Department of Anthropology at Penn State University. “One of the major uses of AI in archaeology is for the detection of new archaeological sites.”

The near-ubiquitous availability of satellite data and other types of aerial imagery for many parts of the world has been both a boon and a bane to archaeologists. They can cover far more ground, but the job of manually mowing their way across digitized landscapes is still time-consuming and laborious. Machine learning algorithms offer a way to parse through complex data far more quickly.

AI Gives Archaeologists a Bird’s Eye View
Davis developed an automated algorithm for identifying large earthen and shell mounds built by native populations long before Europeans arrived with far-off visions of skyscrapers and superhighways in their eyes. The sites still hidden in places like the South Carolina wilderness contain a wealth of information about how people lived, even what they ate, and the ways they interacted with the local environment and other cultures.

In this particular case, the imagery comes from LiDAR, which uses light pulses that can penetrate tree canopies to map forest floors. The team taught the computer the shape, size, and texture characteristics of the mounds so it could identify potential sites from the digital 3D datasets that it analyzed.

“The process resulted in several thousand possible features that my colleagues and I checked by hand,” Davis told Singularity Hub. “While not entirely automated, this saved the equivalent of years of manual labor that would have been required for analyzing the whole LiDAR image by hand.”

In Madagascar—where Davis is studying human settlement history across the world’s fourth largest island over a timescale of millennia—he developed a predictive algorithm to help locate archaeological sites using freely available satellite imagery. His team was able to survey and identify more than 70 new archaeological sites—and potentially hundreds more—across an area of more than 1,000 square kilometers during the course of about a year.

Machines Learning From the Past Prepare Us for the Future
One impetus behind the rapid identification of archaeological sites is that many are under threat from climate change, such as coastal erosion from sea level rise, or other human impacts. Meanwhile, traditional archaeological approaches are expensive and laborious—serious handicaps in a race against time.

“It is imperative to record as many archaeological sites as we can in a short period of time. That is why AI and machine learning are useful for my research,” Davis said.

Studying the rise and fall of past civilizations can also teach modern humans a thing or two about how to grapple with these current challenges.

Researchers at the Institut Català d’Arqueologia Clàssica (ICAC) turned to machine-learning algorithms to reconstruct more than 20,000 kilometers of paleo-rivers along the Indus Valley civilization of what is now part of modern Pakistan and India. Such AI-powered mapping techniques wouldn’t be possible using satellite images alone.

That effort helped locate many previously unknown archaeological sites and unlocked new insights into those Bronze Age cultures. However, the analytics can also assist governments with important water resource management today, according to Hèctor A. Orengo Romeu, co-director of the Landscape Archaeology Research Group at ICAC.

“Our analyses can contribute to the forecasts of the evolution of aquifers in the area and provide valuable information on aspects such as the variability of agricultural productivity or the influence of climate change on the expansion of the Thar desert, in addition to providing cultural management tools to the government,” he said.

Leveraging AI for Language and Lots More
While landscape archaeology is one major application of AI in archaeology, it’s far from the only one. In 2000, only about a half-dozen scientific papers referred to the use of AI, according to the Web of Science, reputedly the world’s largest global citation database. Last year, more than 65 papers were published concerning the use of machine intelligence technologies in archaeology, with a significant uptick beginning in 2015.

AI methods, for instance, are being used to understand the chemical makeup of artifacts like pottery and ceramics, according to Davis. “This can help identify where these materials were made and how far they were transported. It can also help us to understand the extent of past trading networks.”

Linguistic anthropologists have also used machine intelligence methods to trace the evolution of different languages, Davis said. “Using AI, we can learn when and where languages emerged around the world.”

In other cases, AI has helped reconstruct or decipher ancient texts. Last year, researchers at Google’s DeepMind used a deep neural network called PYTHIA to recreate missing inscriptions in ancient Greek from damaged surfaces of objects made of stone or ceramics.

Named after the Oracle at Delphi, PYTHIA “takes a sequence of damaged text as input, and is trained to predict character sequences comprising hypothesised restorations of ancient Greek inscriptions,” the researchers reported.

In a similar fashion, Chinese scientists applied a convolutional neural network (CNN) to untangle another ancient tongue once found on turtle shells and ox bones. The CNN managed to classify oracle bone morphology in order to piece together fragments of these divination objects, some with inscriptions that represent the earliest evidence of China’s recorded history.

“Differentiating the materials of oracle bones is one of the most basic steps for oracle bone morphology—we need to first make sure we don’t assemble pieces of ox bones with tortoise shells,” lead author of the study, associate professor Shanxiong Chen at China’s Southwest University, told Synced, an online tech publication in China.

AI Helps Archaeologists Get the Scoop…
And then there are applications of AI in archaeology that are simply … interesting. Just last month, researchers published a paper about a machine learning method trained to differentiate between human and canine paleofeces.

The algorithm, dubbed CoproID, compares the gut microbiome DNA found in the ancient material with DNA found in modern feces, enabling it to get the scoop on the origin of the poop.

Also known as coprolites, paleo-feces from humans and dogs are often found in the same archaeological sites. Scientists need to know which is which if they’re trying to understand something like past diets or disease.

“CoproID is the first line of identification in coprolite analysis to confirm that what we’re looking for is actually human, or a dog if we’re interested in dogs,” Maxime Borry, a bioinformatics PhD student at the Max Planck Institute for the Science of Human History, told Vice.

…But Machine Intelligence Is Just Another Tool
There is obviously quite a bit of work that can be automated through AI. But there’s no reason for archaeologists to hit the unemployment line any time soon. There are also plenty of instances where machines can’t yet match humans in identifying objects or patterns. At other times, it’s just faster doing the analysis yourself, Davis noted.

“For ‘big data’ tasks like detecting archaeological materials over a continental scale, AI is useful,” he said. “But for some tasks, it is sometimes more time-consuming to train an entire computer algorithm to complete a task that you can do on your own in an hour.”

Still, there’s no telling what the future will hold for studying the past using artificial intelligence.

“We have already started to see real improvements in the accuracy and reliability of these approaches, but there is a lot more to do,” Davis said. “Hopefully, we start to see these methods being directly applied to a variety of interesting questions around the world, as these methods can produce datasets that would have been impossible a few decades ago.”

Image Credit: James Wheeler from Pixabay Continue reading

Posted in Human Robots