Tag Archives: instructions
#437261 How AI Will Make Drug Discovery ...
If you had to guess how long it takes for a drug to go from an idea to your pharmacy, what would you guess? Three years? Five years? How about the cost? $30 million? $100 million?
Well, here’s the sobering truth: 90 percent of all drug possibilities fail. The few that do succeed take an average of 10 years to reach the market and cost anywhere from $2.5 billion to $12 billion to get there.
But what if we could generate novel molecules to target any disease, overnight, ready for clinical trials? Imagine leveraging machine learning to accomplish with 50 people what the pharmaceutical industry can barely do with an army of 5,000.
Welcome to the future of AI and low-cost, ultra-fast, and personalized drug discovery. Let’s dive in.
GANs & Drugs
Around 2012, computer scientist-turned-biophysicist Alex Zhavoronkov started to notice that artificial intelligence was getting increasingly good at image, voice, and text recognition. He knew that all three tasks shared a critical commonality. In each, massive datasets were available, making it easy to train up an AI.
But similar datasets were present in pharmacology. So, back in 2014, Zhavoronkov started wondering if he could use these datasets and AI to significantly speed up the drug discovery process. He’d heard about a new technique in artificial intelligence known as generative adversarial networks (or GANs). By pitting two neural nets against one another (adversarial), the system can start with minimal instructions and produce novel outcomes (generative). At the time, researchers had been using GANs to do things like design new objects or create one-of-a-kind, fake human faces, but Zhavoronkov wanted to apply them to pharmacology.
He figured GANs would allow researchers to verbally describe drug attributes: “The compound should inhibit protein X at concentration Y with minimal side effects in humans,” and then the AI could construct the molecule from scratch. To turn his idea into reality, Zhavoronkov set up Insilico Medicine on the campus of Johns Hopkins University in Baltimore, Maryland, and rolled up his sleeves.
Instead of beginning their process in some exotic locale, Insilico’s “drug discovery engine” sifts millions of data samples to determine the signature biological characteristics of specific diseases. The engine then identifies the most promising treatment targets and—using GANs—generates molecules (that is, baby drugs) perfectly suited for them. “The result is an explosion in potential drug targets and a much more efficient testing process,” says Zhavoronkov. “AI allows us to do with fifty people what a typical drug company does with five thousand.”
The results have turned what was once a decade-long war into a month-long skirmish.
In late 2018, for example, Insilico was generating novel molecules in fewer than 46 days, and this included not just the initial discovery, but also the synthesis of the drug and its experimental validation in computer simulations.
Right now, they’re using the system to hunt down new drugs for cancer, aging, fibrosis, Parkinson’s, Alzheimer’s, ALS, diabetes, and many others. The first drug to result from this work, a treatment for hair loss, is slated to start Phase I trials by the end of 2020.
They’re also in the early stages of using AI to predict the outcomes of clinical trials in advance of the trial. If successful, this technique will enable researchers to strip a bundle of time and money out of the traditional testing process.
Protein Folding
Beyond inventing new drugs, AI is also being used by other scientists to identify new drug targets—that is, the place to which a drug binds in the body and another key part of the drug discovery process.
Between 1980 and 2006, despite an annual investment of $30 billion, researchers only managed to find about five new drug targets a year. The trouble is complexity. Most potential drug targets are proteins, and a protein’s structure—meaning the way a 2D sequence of amino acids folds into a 3D protein—determines its function.
But a protein with merely a hundred amino acids (a rather small protein) can produce a googol-cubed worth of potential shapes—that’s a one followed by three hundred zeroes. This is also why protein-folding has long been considered an intractably hard problem for even the most powerful of supercomputers.
Back in 1994, to monitor supercomputers’ progress in protein-folding, a biannual competition was created. Until 2018, success was fairly rare. But then the creators of DeepMind turned their neural networks loose on the problem. They created an AI that mines enormous datasets to determine the most likely distance between a protein’s base pairs and the angles of their chemical bonds—aka, the basics of protein-folding. They called it AlphaFold.
On its first foray into the competition, contestant AIs were given 43 protein-folding problems to solve. AlphaFold got 25 right. The second-place team managed a meager three. By predicting the elusive ways in which various proteins fold on the basis of their amino acid sequences, AlphaFold may soon have a tremendous impact in aiding drug discovery and fighting some of today’s most intractable diseases.
Drug Delivery
Another theater of war for improved drugs is the realm of drug delivery. Even here, converging exponential technologies are paving the way for massive implications in both human health and industry shifts.
One key contender is CRISPR, the fast-advancing gene-editing technology that stands to revolutionize synthetic biology and treatment of genetically linked diseases. And researchers have now demonstrated how this tool can be applied to create materials that shape-shift on command. Think: materials that dissolve instantaneously when faced with a programmed stimulus, releasing a specified drug at a highly targeted location.
Yet another potential boon for targeted drug delivery is nanotechnology, whereby medical nanorobots have now been used to fight incidences of cancer. In a recent review of medical micro- and nanorobotics, lead authors (from the University of Texas at Austin and University of California, San Diego) found numerous successful tests of in vivo operation of medical micro- and nanorobots.
Drugs From the Future
Covid-19 is uniting the global scientific community with its urgency, prompting scientists to cast aside nation-specific territorialism, research secrecy, and academic publishing politics in favor of expedited therapeutic and vaccine development efforts. And in the wake of rapid acceleration across healthcare technologies, Big Pharma is an area worth watching right now, no matter your industry. Converging technologies will soon enable extraordinary strides in longevity and disease prevention, with companies like Insilico leading the charge.
Riding the convergence of massive datasets, skyrocketing computational power, quantum computing, cognitive surplus capabilities, and remarkable innovations in AI, we are not far from a world in which personalized drugs, delivered directly to specified targets, will graduate from science fiction to the standard of care.
Rejuvenational biotechnology will be commercially available sooner than you think. When I asked Alex for his own projection, he set the timeline at “maybe 20 years—that’s a reasonable horizon for tangible rejuvenational biotechnology.”
How might you use an extra 20 or more healthy years in your life? What impact would you be able to make?
Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”
If you’d like to learn more and consider joining our 2021 membership, apply here.
(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.
(Both A360 and Abundance-Digital are part of Singularity University—your participation opens you to a global community.)
This article originally appeared on diamandis.com. Read the original article here.
Image Credit: andreas160578 from Pixabay Continue reading
#436234 Robot Gift Guide 2019
Welcome to the eighth edition of IEEE Spectrum’s Robot Gift Guide!
This year we’re featuring 15 robotic products that we think will make fantastic holiday gifts. As always, we tried to include a broad range of robot types and prices, focusing mostly on items released this year. (A reminder: While we provide links to places where you can buy these items, we’re not endorsing any in particular, and a little bit of research may result in better deals.)
If you need even more robot gift ideas, take a look at our past guides: 2018, 2017, 2016, 2015, 2014, 2013, and 2012. Some of those robots are still great choices and might be way cheaper now than when we first posted about them. And if you have suggestions that you’d like to share, post a comment below to help the rest of us find the perfect robot gift.
Skydio 2
Image: Skydio
What makes robots so compelling is their autonomy, and the Skydio 2 is one of the most autonomous robots we’ve ever seen. It uses an array of cameras to map its environment and avoid obstacles in real-time, making flight safe and effortless and enabling the kinds of shots that would be impossible otherwise. Seriously, this thing is magical, and it’s amazing that you can actually buy one.
$1,000
Skydio
UBTECH Jimu MeeBot 2
Image: UBTECH
The Jimu MeeBot 2.0 from UBTECH is a STEM education robot designed to be easy to build and program. It includes six servo motors, a color sensor, and LED lights. An app for iPhone or iPad provides step-by-step 3D instructions, and helps you code different behaviors for the robot. It’s available exclusively from Apple.
$130
Apple
iRobot Roomba s9+
Image: iRobot
We know that $1,400 is a crazy amount of money to spend on a robot vacuum, but the Roomba s9+ is a crazy robot vacuum. As if all of its sensors and mapping intelligence wasn’t enough, it empties itself, which means that you can have your floors vacuumed every single day for a month and you don’t have to even think about it. This is what home robots are supposed to be.
$1,400
iRobot
PFF Gita
Photo: Piaggio Fast Forward
Nobody likes carrying things, which is why Gita is perfect for everyone with an extra $3,000 lying around. Developed by Piaggio Fast Forward, this autonomous robot will follow you around with a cargo hold full of your most important stuff, and do it in a way guaranteed to attract as much attention as possible.
$3,250
Gita
DJI Mavic Mini
Photo: DJI
It’s tiny, it’s cheap, and it takes good pictures—what more could you ask for from a drone? And for $400, this is an excellent drone to get if you’re on a budget and comfortable with manual flight. Keep in mind that while the Mavic Mini is small enough that you don’t need to register it with the FAA, you do still need to follow all the same rules and regulations.
$400
DJI
LEGO Star Wars Droid Commander
Image: LEGO
Designed for kids ages 8+, this LEGO set includes more than 1,000 pieces, enough to build three different droids: R2-D2, Gonk Droid, and Mouse Droid. Using a Bluetooth-controlled robotic brick called Move Hub, which connects to the LEGO BOOST Star Wars app, kids can change how the robots behave and solve challenges, learning basic robotics and coding skills.
$200
LEGO
Sony Aibo
Photo: Sony
Robot pets don’t get much more sophisticated (or expensive) than Sony’s Aibo. Strictly speaking, it’s one of the most complex consumer robots you can buy, and Sony continues to add to Aibo’s software. Recent new features include user programmability, and the ability to “feed” it.
$2,900 (free aibone and paw pads until 12/29/2019)
Sony
Neato Botvac D4 Connected
Photo: Neato
The Neato Botvac D4 may not have all of the features of its fancier and more expensive siblings, but it does have the features that you probably care the most about: The ability to make maps of its environment for intelligent cleaning (using lasers!), along with user-defined no-go lines that keep it where you want it. And it cleans quite well, too.
$530 $350 (sale)
Neato Robotics
Cubelets Curiosity Set
Photo: Modular Robotics
Cubelets are magnetic blocks that you can snap together to make an endless variety of robots with no programming and no wires. The newest set, called Curiosity, is designed for kids ages 4+ and comes with 10 robotic cubes. These include light and distance sensors, motors, and a Bluetooth module, which connects the robot constructions to the Cubelets app.
$250
Modular Robotics
Tertill
Photo: Franklin Robotics
Tertill does one simple job: It weeds your garden. It’s waterproof, dirt proof, solar powered, and fully autonomous, meaning that you can leave it out in your garden all summer and just enjoy eating your plants rather than taking care of them.
$350
Tertill
iRobot Root
Photo: iRobot
Root was originally developed by Harvard University as a tool to help kids progressively learn to code. iRobot has taken over Root and is now supporting the curriculum, which starts for kids before they even know how to read and should keep them busy for years afterwards.
$200
iRobot
LOVOT
Image: Lovot
Let’s be honest: Nobody is really quite sure what LOVOT is. We can all agree that it’s kinda cute, though. And kinda weird. But cute. Created by Japanese robotics startup Groove X, LOVOT does have a whole bunch of tech packed into its bizarre little body and it will do its best to get you to love it.
$2,750 (¥300,000)
LOVOT
Sphero RVR
Photo: Sphero
RVR is a rugged, versatile, easy to program mobile robot. It’s a development platform designed to be a bridge between educational robots like Sphero and more sophisticated and expensive systems like Misty. It’s mostly affordable, very expandable, and comes from a company with a lot of experience making robots.
$250
Sphero
“How to Train Your Robot”
Image: Lawrence Hall of Science
Aimed at 4th and 5th graders, “How to Train Your Robot,” written by Blooma Goldberg, Ken Goldberg, and Ashley Chase, and illustrated by Dave Clegg, is a perfect introduction to robotics for kids who want to get started with designing and building robots. But the book isn’t just for beginners: It’s also a fun, inspiring read for kids who are already into robotics and want to go further—it even introduces concepts like computer simulations and deep learning. You can download a free digital copy or request hardcopies here.
Free
UC Berkeley
MIT Mini Cheetah
Photo: MIT
Yes, Boston Dynamics’ Spot, now available for lease, is probably the world’s most famous quadruped, but MIT is starting to pump out Mini Cheetahs en masse for researchers, and while we’re not exactly sure how you’d manage to get one of these things short of stealing one directly for MIT, a Mini Cheetah is our fantasy robotics gift this year. Mini Cheetah looks like a ton of fun—it’s portable, highly dynamic, super rugged, and easy to control. We want one!
Price N/A
MIT Biomimetic Robotics Lab
For more tech gift ideas, see also IEEE Spectrum’s annual Gift Guide. Continue reading
#436140 Let’s Build Robots That Are as Smart ...
Illustration: Nicholas Little
Let’s face it: Robots are dumb. At best they are idiot savants, capable of doing one thing really well. In general, even those robots require specialized environments in which to do their one thing really well. This is why autonomous cars or robots for home health care are so difficult to build. They’ll need to react to an uncountable number of situations, and they’ll need a generalized understanding of the world in order to navigate them all.
Babies as young as two months already understand that an unsupported object will fall, while five-month-old babies know materials like sand and water will pour from a container rather than plop out as a single chunk. Robots lack these understandings, which hinders them as they try to navigate the world without a prescribed task and movement.
But we could see robots with a generalized understanding of the world (and the processing power required to wield it) thanks to the video-game industry. Researchers are bringing physics engines—the software that provides real-time physical interactions in complex video-game worlds—to robotics. The goal is to develop robots’ understanding in order to learn about the world in the same way babies do.
Giving robots a baby’s sense of physics helps them navigate the real world and can even save on computing power, according to Lochlainn Wilson, the CEO of SE4, a Japanese company building robots that could operate on Mars. SE4 plans to avoid the problems of latency caused by distance from Earth to Mars by building robots that can operate independently for a few hours before receiving more instructions from Earth.
Wilson says that his company uses simple physics engines such as PhysX to help build more-independent robots. He adds that if you can tie a physics engine to a coprocessor on the robot, the real-time basic physics intuitions won’t take compute cycles away from the robot’s primary processor, which will often be focused on a more complicated task.
Wilson’s firm occasionally still turns to a traditional graphics engine, such as Unity or the Unreal Engine, to handle the demands of a robot’s movement. In certain cases, however, such as a robot accounting for friction or understanding force, you really need a robust physics engine, Wilson says, not a graphics engine that simply simulates a virtual environment. For his projects, he often turns to the open-source Bullet Physics engine built by Erwin Coumans, who is now an employee at Google.
Bullet is a popular physics-engine option, but it isn’t the only one out there. Nvidia Corp., for example, has realized that its gaming and physics engines are well-placed to handle the computing demands required by robots. In a lab in Seattle, Nvidia is working with teams from the University of Washington to build kitchen robots, fully articulated robot hands and more, all equipped with Nvidia’s tech.
When I visited the lab, I watched a robot arm move boxes of food from counters to cabinets. That’s fairly straightforward, but that same robot arm could avoid my body if I got in its way, and it could adapt if I moved a box of food or dropped it onto the floor.
The robot could also understand that less pressure is needed to grasp something like a cardboard box of Cheez-It crackers versus something more durable like an aluminum can of tomato soup.
Nvidia’s silicon has already helped advance the fields of artificial intelligence and computer vision by making it possible to process multiple decisions in parallel. It’s possible that the company’s new focus on virtual worlds will help advance the field of robotics and teach robots to think like babies.
This article appears in the November 2019 print issue as “Robots as Smart as Babies.” Continue reading