Tag Archives: Industry

#437763 Peer Review of Scholarly Research Gets ...

In the world of academics, peer review is considered the only credible validation of scholarly work. Although the process has its detractors, evaluation of academic research by a cohort of contemporaries has endured for over 350 years, with “relatively minor changes.” However, peer review may be set to undergo its biggest revolution ever—the integration of artificial intelligence.

Open-access publisher Frontiers has debuted an AI tool called the Artificial Intelligence Review Assistant (AIRA), which purports to eliminate much of the grunt work associated with peer review. Since the beginning of June 2020, every one of the 11,000-plus submissions Frontiers received has been run through AIRA, which is integrated into its collaborative peer-review platform. This also makes it accessible to external users, accounting for some 100,000 editors, authors, and reviewers. Altogether, this helps “maximize the efficiency of the publishing process and make peer-review more objective,” says Kamila Markram, founder and CEO of Frontiers.

AIRA’s interactive online platform, which is a first of its kind in the industry, has been in development for three years.. It performs three broad functions, explains Daniel Petrariu, director of project management: assessing the quality of the manuscript, assessing quality of peer review, and recommending editors and reviewers. At the initial validation stage, the AI can make up to 20 recommendations and flag potential issues, including language quality, plagiarism, integrity of images, conflicts of interest, and so on. “This happens almost instantly and with [high] accuracy, far beyond the rate at which a human could be expected to complete a similar task,” Markram says.

“We have used a wide variety of machine-learning models for a diverse set of applications, including computer vision, natural language processing, and recommender systems,” says Markram. This includes simple bag-of-words models, as well as more sophisticated deep-learning ones. AIRA also leverages a large knowledge base of publications and authors.

Markram notes that, to address issues of possible AI bias, “We…[build] our own datasets and [design] our own algorithms. We make sure no statistical biases appear in the sampling of training and testing data. For example, when building a model to assess language quality, scientific fields are equally represented so the model isn’t biased toward any specific topic.” Machine- and deep-learning approaches, along with feedback from domain experts, including errors, are captured and used as additional training data. “By regularly re-training, we make sure our models improve in terms of accuracy and stay up-to-date.”

The AI’s job is to flag concerns; humans take the final decisions, says Petrariu. As an example, he cites image manipulation detection—something AI is super-efficient at but is nearly impossible for a human to perform with the same accuracy. “About 10 percent of our flagged images have some sort of problem,” he adds. “[In academic publishing] nobody has done this kind of comprehensive check [using AI] before,” says Petrariu. AIRA, he adds, facilitates Frontiers’ mission to make science open and knowledge accessible to all. Continue reading

Posted in Human Robots

#437751 Startup and Academics Find Path to ...

Engineers have been chasing a form of AI that could drastically lower the energy required to do typical AI things like recognize words and images. This analog form of machine learning does one of the key mathematical operations of neural networks using the physics of a circuit instead of digital logic. But one of the main things limiting this approach is that deep learning’s training algorithm, back propagation, has to be done by GPUs or other separate digital systems.

Now University of Montreal AI expert Yoshua Bengio, his student Benjamin Scellier, and colleagues at startup Rain Neuromorphics have come up with way for analog AIs to train themselves. That method, called equilibrium propagation, could lead to continuously learning, low-power analog systems of a far greater computational ability than most in the industry now consider possible, according to Rain CTO Jack Kendall.

Analog circuits could save power in neural networks in part because they can efficiently perform a key calculation, called multiply and accumulate. That calculation multiplies values from inputs according to various weights, and then it sums all those values up. Two fundamental laws of electrical engineering can basically do that, too. Ohm’s Law multiplies voltage and conductance to give current, and Kirchoff’s Current Law sums the currents entering a point. By storing a neural network’s weights in resistive memory devices, such as memristors, multiply-and-accumulate can happen completely in analog, potentially reducing power consumption by orders of magnitude.

The reason analog AI systems can’t train themselves today has a lot to do with the variability of their components. Just like real neurons, those in analog neural networks don’t all behave exactly alike. To do back propagation with analog components, you must build two separate circuit pathways. One going forward to come up with an answer (called inferencing), the other going backward to do the learning so that the answer becomes more accurate. But because of the variability of analog components, the pathways don't match up.

“You end up accumulating error as you go backwards through the network,” says Bengio. To compensate, a network would need lots of power-hungry analog-to-digital and digital-to-analog circuits, defeating the point of going analog.

Equilibrium propagation allows learning and inferencing to happen on the same network, partly by adjusting the behavior of the network as a whole. “What [equilibrium propagation] allows us to do is to say how we should modify each of these devices so that the overall circuit performs the right thing,” he says. “We turn the physical computation that is happening in the analog devices directly to our advantage.”

Right now, equilibrium propagation is only working in simulation. But Rain plans to have a hardware proof-of-principle in late 2021, according to CEO and cofounder Gordon Wilson. “We are really trying to fundamentally reimagine the hardware computational substrate for artificial intelligence, find the right clues from the brain, and use those to inform the design of this,” he says. The result could be what they call end-to-end analog AI systems that capable of running sophisticated robots or even playing a role in data centers. Both of those are currently considered beyond the capabilities of analog AI, which is now focused only on adding inferencing abilities to sensors and other low-power “edge” devices, while leaving the learning to GPUs. Continue reading

Posted in Human Robots

#437745 Video Friday: Japan’s Giant Gundam ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
ICSR 2020 – November 14-16, 2020 – Golden, Co., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

It’s coming together—literally! Japan’s giant Gundam appears nearly finished and ready for its first steps. In a recent video, Gundam Factory Yokohama, which is constructing the 18-meter-tall, 25-ton walking robot, provided an update on the project. The video shows the Gundam getting its head attached—after being blessed by Shinto priests.

In the video update, they say the project is “steadily progressing” and further details will be announced around the end of September.

[ Gundam Factory Yokohama ]

Creating robots with emotional personalities will transform the usability of robots in the real-world. As previous emotive social robots are mostly based on statically stable robots whose mobility is limited, this work develops an animation to real-world pipeline that enables dynamic bipedal robots that can twist, wiggle, and walk to behave with emotions.

So that’s where Cassie’s eyes go.

[ Berkeley ]

Now that the DARPA SubT Cave Circuit is all virtual, here’s a good reminder of how it’ll work.

[ SubT ]

Since July 20, anyone 11+ years of age must wear a mask in closed public places in France. This measure also is highly recommended in many European, African and Persian Gulf countries. To support businesses and public places, SoftBank Robotics Europe unveils a new feature with Pepper: AI Face Mask Detection.

[ Softbank ]

University of Michigan researchers are developing new origami inspired methods for designing, fabricating and actuating micro-robots using heat.These improvements will expand the mechanical capabilities of the tiny bots, allowing them to fold into more complex shapes.

[ University of Michigan ]

Suzumori Endo Lab, Tokyo Tech has created various types of IPMC robots. Those robots are fabricated by novel 3D fabrication methods.

[ Suzimori Endo Lab ]

The most explode-y of drones manages not to explode this time.

[ SpaceX ]

At Amazon, we’re constantly innovating to support our employees, customers, and communities as effectively as possible. As our fulfillment and delivery teams have been hard at work supplying customers with items during the pandemic, Amazon’s robotics team has been working behind the scenes to re-engineer bots and processes to increase safety in our fulfillment centers.

While some folks are able to do their jobs at home with just a laptop and internet connection, it’s not that simple for other employees at Amazon, including those who spend their days building and testing robots. Some engineers have turned their homes into R&D labs to continue building these new technologies to better serve our customers and employees. Their creativity and resourcefulness to keep our important programs going is inspiring.

[ Amazon ]

Australian Army soldiers from 2nd/14th Light Horse Regiment (Queensland Mounted Infantry) demonstrated the PD-100 Black Hornet Nano unmanned aircraft vehicle during a training exercise at Shoalwater Bay Training Area, Queensland, on 4 May 2018.

This robot has been around for a long time—maybe 10 years or more? It makes you wonder what the next generation will look like, and if they can manage to make it even smaller.

[ FLIR ]

Event-based cameras are bio-inspired vision sensors whose pixels work independently from each other and respond asynchronously to brightness changes, with microsecond resolution. Their advantages make it possible to tackle challenging scenarios in robotics, such as high-speed and high dynamic range scenes. We present a solution to the problem of visual odometry from the data acquired by a stereo event-based camera rig.

[ Paper ] via [ HKUST ]

Emys can help keep kindergarteners sitting still for a long time, which is not small feat!

[ Emys ]

Introducing the RoboMaster EP Core, an advanced educational robot that was built to take learning to the next level and provides an all-in-one solution for STEAM-based classrooms everywhere, offering AI and programming projects for students of all ages and experience levels.

[ DJI ]

This Dutch food company Heemskerk uses ABB robots to automate their order picking. Their new solution reduces the amount of time the fresh produce spends in the supply chain, extending its shelf life, minimizing wastage, and creating a more sustainable solution for the fresh food industry.

[ ABB ]

This week’s episode of Pass the Torque features NASA’s Satellite Servicing Projects Division (NExIS) Robotics Engineer, Zakiya Tomlinson.

[ NASA ]

Massachusetts has been challenging Silicon Valley as the robotics capital of the United States. They’re not winning, yet. But they’re catching up.

[ MassTech ]

San Francisco-based Formant is letting anyone remotely take its Spot robot for a walk. Watch The Robot Report editors, based in Boston, take Spot for a walk around Golden Gate Park.

You can apply for this experience through Formant at the link below.

[ Formant ] via [ TRR ]

Thanks Steve!

An Institute for Advanced Study Seminar on “Theoretical Machine Learning,” featuring Peter Stone from UT Austin.

For autonomous robots to operate in the open, dynamically changing world, they will need to be able to learn a robust set of skills from relatively little experience. This talk begins by introducing Grounded Simulation Learning as a way to bridge the so-called reality gap between simulators and the real world in order to enable transfer learning from simulation to a real robot. It then introduces two new algorithms for imitation learning from observation that enable a robot to mimic demonstrated skills from state-only trajectories, without any knowledge of the actions selected by the demonstrator. Connections to theoretical advances in off-policy reinforcement learning will be highlighted throughout.

[ IAS ] Continue reading

Posted in Human Robots

#437733 Video Friday: MIT Media Lab Developing ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Very impressive local obstacle avoidance at a fairly high speed on a small drone, both indoors and outdoors.

[ FAST Lab ]

Matt Carney writes:

My PhD at MIT Media Lab has been the design and build of a next generation powered prosthesis. The bionic ankle, named TF8, was designed to provide biologically equivalent power and range of motion for plantarflexion-dorsiflexion. This video shows the process of going from a blank sheet of paper to people walking on it. Shown are three different people wearing the robot. About a dozen people have since been able to test the hardware.

[ MIT ]

Thanks Matt!

Exciting changes are coming to the iRobot® Home App. Get ready for new personalized experiences, improved features, and an easy-to-use interface. The update is rolling out over the next few weeks!

[ iRobot ]

MOFLIN is an AI Pet created from a totally new concept. It possesses emotional capabilities that evolve like living animals. With its warm soft fur, cute sounds, and adorable movement, you’d want to love it forever. We took a nature inspired approach and developed a unique algorithm that allows MOFLIN to learn and grow by constantly using its interactions to determine patterns and evaluate its surroundings from its sensors. MOFLIN will choose from an infinite number of mobile and sound pattern combinations to respond and express its feelings. To put it in simple terms, it’s like you’re interacting with a living pet.

You lost me at “it’s like you’re interacting with a living pet.”

[ Kickstarter ] via [ Gizmodo ]

This video is only robotics-adjacent, but it has applications for robotic insects. With a high-speed tracking system, we can now follow insects as they jump and fly, and watch how clumsy (but effective) they are at it.

[ Paper ]

Thanks Sawyer!

Suzumori Endo Lab, Tokyo Tech has developed self-excited pneumatic actuators that can be integrally molded by a 3D printer. These actuators use the “automatic flow path switching mechanism” we have devised.

[ Suzimori Endo Lab ]

Quadrupeds are getting so much better at deciding where to step rather than just stepping where they like and trying not to fall over.

[ RSL ]

Omnidirectional micro aerial vehicles are a growing field of research, with demonstrated advantages for aerial interaction and uninhibited observation. While systems with complete pose omnidirectionality and high hover efficiency have been developed independently, a robust system that combines the two has not been demonstrated to date. This paper presents the design and optimal control of a novel omnidirectional vehicle that can exert a wrench in any orientation while maintaining efficient flight configurations.

[ ASL ]

The latest in smooth humanoid walking from Dr. Guero.

[ YouTube ]

Will robots replace humans one day? When it comes to space exploration, robots are our precursors, gathering data to prepare humans for deep space. ESA robotics engineer Martin Azkarate discusses some of the upcoming missions involving robots and the unique science they will perform in this episode of Meet the Experts.

[ ESA ]

The Multi-robot Systems Group at FEE-CTU in Prague is working on an autonomous drone that detects fires and the shoots an extinguisher capsule at them.

[ MRS ]

This experiment with HEAP (Hydraulic Excavator for Autonomous Purposes) demonstrates our latest research in on-site and mobile digital fabrication with found materials. The embankment prototype in natural granular material was achieved using state of the art design and construction processes in mapping, modelling, planning and control. The entire process of building the embankment was fully autonomous. An operator was only present in the cabin for safety purposes.

[ RSL ]

The Simulation, Systems Optimization and Robotics Group (SIM) of Technische Universität Darmstadt’s Department of Computer Science conducts research on cooperating autonomous mobile robots, biologically inspired robots and numerical optimization and control methods.

[ SIM ]

Starting January 1, 2021, your drone platform of choice may be severely limited by the European Union’s new drone regulations. In this short video, senseFly’s Brock Ryder explains what that means for drone programs and operators and where senseFly drones fit in the EU’s new regulatory framework.

[ SenseFly ]

Nearly every company across every industry is looking for new ways to minimize human contact, cut costs and address the labor crunch in repetitive and dangerous jobs. WSJ explores why many are looking to robots as the solution for all three.

[ WSJ ]

You’ll need to prepare yourself emotionally for this video on “Examining Users’ Attitude Towards Robot Punishment.”

[ ACM ]

In this episode of the AI Podcast, Lex interviews Russ Tedrake (MIT and TRI) about biped locomotion, the DRC, home robots, and more.

[ AI Podcast ] Continue reading

Posted in Human Robots

#437697 These Underwater Drones Use Water ...

Yi Chao likes to describe himself as an “armchair oceanographer” because he got incredibly seasick the one time he spent a week aboard a ship. So it’s maybe not surprising that the former NASA scientist has a vision for promoting remote study of the ocean on a grand scale by enabling underwater drones to recharge on the go using his company’s energy-harvesting technology.

Many of the robotic gliders and floating sensor stations currently monitoring the world’s oceans are effectively treated as disposable devices because the research community has a limited number of both ships and funding to retrieve drones after they’ve accomplished their mission of beaming data back home. That’s not only a waste of money, but may also contribute to a growing assortment of abandoned lithium-ion batteries polluting the ocean with their leaking toxic materials—a decidedly unsustainable approach to studying the secrets of the underwater world.

“Our goal is to deploy our energy harvesting system to use renewable energy to power those robots,” says Chao, president and CEO of the startup Seatrec. “We're going to save one battery at a time, so hopefully we're going to not to dispose more toxic batteries in the ocean.”

Chao’s California-based startup claims that its SL1 Thermal Energy Harvesting System can already help save researchers money equivalent to an order of magnitude reduction in the cost of using robotic probes for oceanographic data collection. The startup is working on adapting its system to work with autonomous underwater gliders. And it has partnered with defense giant Northrop Grumman to develop an underwater recharging station for oceangoing drones that incorporates Northrop Grumman’s self-insulating electrical connector capable of operating while the powered electrical contacts are submerged.

Seatrec’s energy-harvesting system works by taking advantage of how certain substances transition from solid-to-liquid phase and liquid-to-gas phase when they heat up. The company’s technology harnesses the pressure changes that result from such phase changes in order to generate electricity.

Image: Seatrec

To make the phase changes happen, Seatrec’s solution taps the temperature differences between warmer water at the ocean surface and colder water at the ocean depths. Even a relatively simple robotic probe can generate additional electricity by changing its buoyancy to either float at the surface or sink down into the colder depths.

By attaching an external energy-harvesting module, Seatrec has already begun transforming robotic probes into assets that can be recharged and reused more affordably than sending out a ship each time to retrieve the probes. This renewable energy approach could keep such drones going almost indefinitely barring electrical or mechanical failures. “We just attach the backpack to the robots, we give them a cable providing power, and they go into the ocean,” Chao explains.

The early buyers of Seatrec’s products are primarily academic researchers who use underwater drones to collect oceanographic data. But the startup has also attracted military and government interest. It has already received small business innovation research contracts from both the U.S. Office of Naval Research and National Oceanic and Atmospheric Administration (NOAA).

Seatrec has also won two $10,000 prizes under the Powering the Blue Economy: Ocean Observing Prize administered by the U.S. Department of Energy and NOAA. The prizes awarded during the DISCOVER Competition phase back in March 2020 included one prize split with Northrop Grumman for the joint Mission Unlimited UUV Station concept. The startup and defense giant are currently looking for a robotics company to partner with for the DEVELOP Competition phase of the Ocean Observing Prize that will offer a total of $3 million in prizes.

In the long run, Seatrec hopes its energy-harvesting technology can support commercial ventures such as the aquaculture industry that operates vast underwater farms. The technology could also support underwater drones carrying out seabed surveys that pave the way for deep sea mining ventures, although those are not without controversy because of their projected environmental impacts.

Among all the possible applications Chao seems especially enthusiastic about the prospect of Seatrec’s renewable power technology enabling underwater drones and floaters to collect oceanographic data for much longer periods of time. He spent the better part of two decades working at the NASA Jet Propulsion Laboratory in Pasadena, Calif., where he helped develop a satellite designed for monitoring the Earth’s oceans. But he and the JPL engineering team that developed Seatrec’s core technology believe that swarms of underwater drones can provide a continuous monitoring network to truly begin understanding the oceans in depth.

The COVID-19 pandemic has slowed production and delivery of Seatrec’s products somewhat given local shutdowns and supply chain disruptions. Still, the startup has been able to continue operating in part because it’s considered to be a defense contractor that is operating an essential manufacturing facility. Seatrec’s engineers and other staff members are working in shifts to practice social distancing.

“Rather than building one or two for the government, we want to scale up to build thousands, hundreds of thousands, hopefully millions, so we can improve our understanding and provide that data to the community,” Chao says. Continue reading

Posted in Human Robots