Tag Archives: Industry

#431377 The Farms of the Future Will Be ...

Swarms of drones buzz overhead, while robotic vehicles crawl across the landscape. Orbiting satellites snap high-resolution images of the scene far below. Not one human being can be seen in the pre-dawn glow spreading across the land.
This isn’t some post-apocalyptic vision of the future à la The Terminator. This is a snapshot of the farm of the future. Every phase of the operation—from seed to harvest—may someday be automated, without the need to ever get one’s fingernails dirty.
In fact, it’s science fiction already being engineered into reality. Today, robots empowered with artificial intelligence can zap weeds with preternatural precision, while autonomous tractors move with tireless efficiency across the farmland. Satellites can assess crop health from outer space, providing gobs of data to help produce the sort of business intelligence once accessible only to Fortune 500 companies.
“Precision agriculture is on the brink of a new phase of development involving smart machines that can operate by themselves, which will allow production agriculture to become significantly more efficient. Precision agriculture is becoming robotic agriculture,” said professor Simon Blackmore last year during a conference in Asia on the latest developments in robotic agriculture. Blackmore is head of engineering at Harper Adams University and head of the National Centre for Precision Farming in the UK.
It’s Blackmore’s university that recently showcased what may someday be possible. The project, dubbed Hands Free Hectare and led by researchers from Harper Adams and private industry, farmed one hectare (about 2.5 acres) of spring barley without one person ever setting foot in the field.
The team re-purposed, re-wired and roboticized farm equipment ranging from a Japanese tractor to a 25-year-old combine. Drones served as scouts to survey the operation and collect samples to help the team monitor the progress of the barley. At the end of the season, the robo farmers harvested about 4.5 tons of barley at a price tag of £200,000.

“This project aimed to prove that there’s no technological reason why a field can’t be farmed without humans working the land directly now, and we’ve done that,” said Martin Abell, mechatronics researcher for Precision Decisions, which partnered with Harper Adams, in a press release.
I, Robot Farmer
The Harper Adams experiment is the latest example of how machines are disrupting the agricultural industry. Around the same time that the Hands Free Hectare combine was harvesting barley, Deere & Company announced it would acquire a startup called Blue River Technology for a reported $305 million.
Blue River has developed a “see-and-spray” system that combines computer vision and artificial intelligence to discriminate between crops and weeds. It hits the former with fertilizer and blasts the latter with herbicides with such precision that it can eliminate 90 percent of the chemicals used in conventional agriculture.
It’s not just farmland that’s getting a helping hand from robots. A California company called Abundant Robotics, spun out of the nonprofit research institute SRI International, is developing robots capable of picking apples with vacuum-like arms that suck the fruit straight off the trees in the orchards.
“Traditional robots were designed to perform very specific tasks over and over again. But the robots that will be used in food and agricultural applications will have to be much more flexible than what we’ve seen in automotive manufacturing plants in order to deal with natural variation in food products or the outdoor environment,” Dan Harburg, an associate at venture capital firm Anterra Capital who previously worked at a Massachusetts-based startup making a robotic arm capable of grabbing fruit, told AgFunder News.
“This means ag-focused robotics startups have to design systems from the ground up, which can take time and money, and their robots have to be able to complete multiple tasks to avoid sitting on the shelf for a significant portion of the year,” he noted.
Eyes in the Sky
It will take more than an army of robotic tractors to grow a successful crop. The farm of the future will rely on drones, satellites, and other airborne instruments to provide data about their crops on the ground.
Companies like Descartes Labs, for instance, employ machine learning to analyze satellite imagery to forecast soy and corn yields. The Los Alamos, New Mexico startup collects five terabytes of data every day from multiple satellite constellations, including NASA and the European Space Agency. Combined with weather readings and other real-time inputs, Descartes Labs can predict cornfield yields with 99 percent accuracy. Its AI platform can even assess crop health from infrared readings.
The US agency DARPA recently granted Descartes Labs $1.5 million to monitor and analyze wheat yields in the Middle East and Africa. The idea is that accurate forecasts may help identify regions at risk of crop failure, which could lead to famine and political unrest. Another company called TellusLabs out of Somerville, Massachusetts also employs machine learning algorithms to predict corn and soy yields with similar accuracy from satellite imagery.
Farmers don’t have to reach orbit to get insights on their cropland. A startup in Oakland, Ceres Imaging, produces high-resolution imagery from multispectral cameras flown across fields aboard small planes. The snapshots capture the landscape at different wavelengths, identifying insights into problems like water stress, as well as providing estimates of chlorophyll and nitrogen levels. The geo-tagged images mean farmers can easily locate areas that need to be addressed.
Growing From the Inside
Even the best intelligence—whether from drones, satellites, or machine learning algorithms—will be challenged to predict the unpredictable issues posed by climate change. That’s one reason more and more companies are betting the farm on what’s called controlled environment agriculture. Today, that doesn’t just mean fancy greenhouses, but everything from warehouse-sized, automated vertical farms to grow rooms run by robots, located not in the emptiness of Kansas or Nebraska but smack dab in the middle of the main streets of America.
Proponents of these new concepts argue these high-tech indoor farms can produce much higher yields while drastically reducing water usage and synthetic inputs like fertilizer and herbicides.
Iron Ox, out of San Francisco, is developing one-acre urban greenhouses that will be operated by robots and reportedly capable of producing the equivalent of 30 acres of farmland. Powered by artificial intelligence, a team of three robots will run the entire operation of planting, nurturing, and harvesting the crops.
Vertical farming startup Plenty, also based in San Francisco, uses AI to automate its operations, and got a $200 million vote of confidence from the SoftBank Vision Fund earlier this year. The company claims its system uses only 1 percent of the water consumed in conventional agriculture while producing 350 times as much produce. Plenty is part of a new crop of urban-oriented farms, including Bowery Farming and AeroFarms.
“What I can envision is locating a larger scale indoor farm in the economically disadvantaged food desert, in order to stimulate a broader economic impact that could create jobs and generate income for that area,” said Dr. Gary Stutte, an expert in space agriculture and controlled environment agriculture, in an interview with AgFunder News. “The indoor agriculture model is adaptable to becoming an engine for economic growth and food security in both rural and urban food deserts.”
Still, the model is not without its own challenges and criticisms. Most of what these farms can produce falls into the “leafy greens” category and often comes with a premium price, which seems antithetical to the proposed mission of creating oases in the food deserts of cities. While water usage may be minimized, the electricity required to power the operation, especially the LEDs (which played a huge part in revolutionizing indoor agriculture), are not cheap.
Still, all of these advances, from robo farmers to automated greenhouses, may need to be part of a future where nearly 10 billion people will inhabit the planet by 2050. An oft-quoted statistic from the Food and Agriculture Organization of the United Nations says the world must boost food production by 70 percent to meet the needs of the population. Technology may not save the world, but it will help feed it.
Image Credit: Valentin Valkov / Shutterstock.com Continue reading

Posted in Human Robots

#431371 Amazon Is Quietly Building the Robots of ...

Science fiction is the siren song of hard science. How many innocent young students have been lured into complex, abstract science, technology, engineering, or mathematics because of a reckless and irresponsible exposure to Arthur C. Clarke at a tender age? Yet Arthur C. Clarke has a very famous quote: “Any sufficiently advanced technology is indistinguishable from magic.”
It’s the prospect of making that… ahem… magic leap that entices so many people into STEM in the first place. A magic leap that would change the world. How about, for example, having humanoid robots? They could match us in dexterity and speed, perceive the world around them as we do, and be programmed to do, well, more or less anything we can do.
Such a technology would change the world forever.
But how will it arrive? While true sci-fi robots won’t get here right away—the pieces are coming together, and the company best developing them at the moment is Amazon. Where others have struggled to succeed, Amazon has been quietly progressing. Notably, Amazon has more than just a dream, it has the most practical of reasons driving it into robotics.
This practicality matters. Technological development rarely proceeds by magic; it’s a process filled with twists, turns, dead-ends, and financial constraints. New technologies often have to answer questions like “What is this good for, are you being realistic?” A good strategy, then, can be to build something more limited than your initial ambition, but useful for a niche market. That way, you can produce a prototype, have a reasonable business plan, and turn a profit within a decade. You might call these “stepping stone” applications that allow for new technologies to be developed in an economically viable way.
You need something you can sell to someone, soon: that’s how you get investment in your idea. It’s this model that iRobot, developers of the Roomba, used: migrating from military prototypes to robotic vacuum cleaners to become the “boring, successful robot company.” Compare this to Willow Garage, a genius factory if ever there was one: they clearly had ambitions towards a general-purpose, multi-functional robot. They built an impressive device—PR2—and programmed the operating system, ROS, that is still the industry and academic standard to this day.
But since they were unable to sell their robot for much less than $250,000, it was never likely to be a profitable business. This is why Willow Garage is no more, and many workers at the company went into telepresence robotics. Telepresence is essentially videoconferencing with a fancy robot attached to move the camera around. It uses some of the same software (for example, navigation and mapping) without requiring you to solve difficult problems of full autonomy for the robot, or manipulating its environment. It’s certainly one of the stepping-stone areas that various companies are investigating.
Another approach is to go to the people with very high research budgets: the military.
This was the Boston Dynamics approach, and their incredible achievements in bipedal locomotion saw them getting snapped up by Google. There was a great deal of excitement and speculation about Google’s “nightmare factory” whenever a new slick video of a futuristic militarized robot surfaced. But Google broadly backed away from Replicant, their robotics program, and Boston Dynamics was sold. This was partly due to PR concerns over the Terminator-esque designs, but partly because they didn’t see the robotics division turning a profit. They hadn’t found their stepping stones.
This is where Amazon comes in. Why Amazon? First off, they just announced that their profits are up by 30 percent, and yet the company is well-known for their constantly-moving Day One philosophy where a great deal of the profits are reinvested back into the business. But lots of companies have ambition.
One thing Amazon has that few other corporations have, as well as big financial resources, is viable stepping stones for developing the technologies needed for this sort of robotics to become a reality. They already employ 100,000 robots: these are of the “pragmatic, boring, useful” kind that we’ve profiled, which move around the shelves in warehouses. These robots are allowing Amazon to develop localization and mapping software for robots that can autonomously navigate in the simple warehouse environment.
But their ambitions don’t end there. The Amazon Robotics Challenge is a multi-million dollar competition, open to university teams, to produce a robot that can pick and package items in warehouses. The problem of grasping and manipulating a range of objects is not a solved one in robotics, so this work is still done by humans—yet it’s absolutely fundamental for any sci-fi dream robot.
Google, for example, attempted to solve this problem by hooking up 14 robot hands to machine learning algorithms and having them grasp thousands of objects. Although results were promising, the 10 to 20 percent failure rate for grasps is too high for warehouse use. This is a perfect stepping stone for Amazon; should they crack the problem, they will likely save millions in logistics.
Another area where humanoid robotics—especially bipedal locomotion, or walking, has been seriously suggested—is in the last mile delivery problem. Amazon has shown willingness to be creative in this department with their notorious drone delivery service. In other words, it’s all very well to have your self-driving car or van deliver packages to people’s doors, but who puts the package on the doorstep? It’s difficult for wheeled robots to navigate the full range of built environments that exist. That’s why bipedal robots like CASSIE, developed by Oregon State, may one day be used to deliver parcels.
Again: no one more than Amazon stands to profit from cracking this technology. The line from robotics research to profit is very clear.
So, perhaps one day Amazon will have robots that can move around and manipulate their environments. But they’re also working on intelligence that will guide those robots and make them truly useful for a variety of tasks. Amazon has an AI, or at least the framework for an AI: it’s called Alexa, and it’s in tens of millions of homes. The Alexa Prize, another multi-million-dollar competition, is attempting to make Alexa more social.
To develop a conversational AI, at least using the current methods of machine learning, you need data on tens of millions of conversations. You need to understand how people will try to interact with the AI. Amazon has access to this in Alexa, and they’re using it. As owners of the leading voice-activated personal assistant, they have an ecosystem of developers creating apps for Alexa. It will be integrated with the smart home and the Internet of Things. It is a very marketable product, a stepping stone for robot intelligence.
What’s more, the company can benefit from its huge sales infrastructure. For Amazon, having an AI in your home is ideal, because it can persuade you to buy more products through its website. Unlike companies like Google, Amazon has an easy way to make a direct profit from IoT devices, which could fuel funding.
For a humanoid robot to be truly useful, though, it will need vision and intelligence. It will have to understand and interpret its environment, and react accordingly. The way humans learn about our environment is by getting out and seeing it. This is something that, for example, an Alexa coupled to smart glasses would be very capable of doing. There are rumors that Alexa’s AI will soon be used in security cameras, which is an ideal stepping stone task to train an AI to process images from its environment, truly perceiving the world and any threats it might contain.
It’s a slight exaggeration to say that Amazon is in the process of building a secret robot army. The gulf between our sci-fi vision of robots that can intelligently serve us, rather than mindlessly assemble cars, is still vast. But in quietly assembling many of the technologies needed for intelligent, multi-purpose robotics—and with the unique stepping stones they have along the way—Amazon might just be poised to leap that gulf. As if by magic.
Image Credit: Denis Starostin / Shutterstock.com Continue reading

Posted in Human Robots

#431362 Does Regulating Artificial Intelligence ...

Some people are afraid that heavily armed artificially intelligent robots might take over the world, enslaving humanity—or perhaps exterminating us. These people, including tech-industry billionaire Elon Musk and eminent physicist Stephen Hawking, say artificial intelligence technology needs to be regulated to manage the risks. But Microsoft founder Bill Gates and Facebook’s Mark Zuckerberg disagree, saying the technology is not nearly advanced enough for those worries to be realistic.
As someone who researches how AI works in robotic decision-making, drones and self-driving vehicles, I’ve seen how beneficial it can be. I’ve developed AI software that lets robots working in teams make individual decisions as part of collective efforts to explore and solve problems. Researchers are already subject to existing rules, regulations and laws designed to protect public safety. Imposing further limitations risks reducing the potential for innovation with AI systems.
How is AI regulated now?
While the term “artificial intelligence” may conjure fantastical images of human-like robots, most people have encountered AI before. It helps us find similar products while shopping, offers movie and TV recommendations, and helps us search for websites. It grades student writing, provides personalized tutoring, and even recognizes objects carried through airport scanners.
In each case, the AI makes things easier for humans. For example, the AI software I developed could be used to plan and execute a search of a field for a plant or animal as part of a science experiment. But even as the AI frees people from doing this work, it is still basing its actions on human decisions and goals about where to search and what to look for.
In areas like these and many others, AI has the potential to do far more good than harm—if used properly. But I don’t believe additional regulations are currently needed. There are already laws on the books of nations, states, and towns governing civil and criminal liabilities for harmful actions. Our drones, for example, must obey FAA regulations, while the self-driving car AI must obey regular traffic laws to operate on public roadways.
Existing laws also cover what happens if a robot injures or kills a person, even if the injury is accidental and the robot’s programmer or operator isn’t criminally responsible. While lawmakers and regulators may need to refine responsibility for AI systems’ actions as technology advances, creating regulations beyond those that already exist could prohibit or slow the development of capabilities that would be overwhelmingly beneficial.
Potential risks from artificial intelligence
It may seem reasonable to worry about researchers developing very advanced artificial intelligence systems that can operate entirely outside human control. A common thought experiment deals with a self-driving car forced to make a decision about whether to run over a child who just stepped into the road or veer off into a guardrail, injuring the car’s occupants and perhaps even those in another vehicle.
Musk and Hawking, among others, worry that a hyper-capable AI system, no longer limited to a single set of tasks like controlling a self-driving car, might decide it doesn’t need humans anymore. It might even look at human stewardship of the planet, the interpersonal conflicts, theft, fraud, and frequent wars, and decide that the world would be better without people.
Science fiction author Isaac Asimov tried to address this potential by proposing three laws limiting robot decision-making: Robots cannot injure humans or allow them “to come to harm.” They must also obey humans—unless this would harm humans—and protect themselves, as long as this doesn’t harm humans or ignore an order.
But Asimov himself knew the three laws were not enough. And they don’t reflect the complexity of human values. What constitutes “harm” is an example: Should a robot protect humanity from suffering related to overpopulation, or should it protect individuals’ freedoms to make personal reproductive decisions?
We humans have already wrestled with these questions in our own, non-artificial intelligences. Researchers have proposed restrictions on human freedoms, including reducing reproduction, to control people’s behavior, population growth, and environmental damage. In general, society has decided against using those methods, even if their goals seem reasonable. Similarly, rather than regulating what AI systems can and can’t do, in my view it would be better to teach them human ethics and values—like parents do with human children.
Artificial intelligence benefits
People already benefit from AI every day—but this is just the beginning. AI-controlled robots could assist law enforcement in responding to human gunmen. Current police efforts must focus on preventing officers from being injured, but robots could step into harm’s way, potentially changing the outcomes of cases like the recent shooting of an armed college student at Georgia Tech and an unarmed high school student in Austin.
Intelligent robots can help humans in other ways, too. They can perform repetitive tasks, like processing sensor data, where human boredom may cause mistakes. They can limit human exposure to dangerous materials and dangerous situations, such as when decontaminating a nuclear reactor, working in areas humans can’t go. In general, AI robots can provide humans with more time to pursue whatever they define as happiness by freeing them from having to do other work.
Achieving most of these benefits will require a lot more research and development. Regulations that make it more expensive to develop AIs or prevent certain uses may delay or forestall those efforts. This is particularly true for small businesses and individuals—key drivers of new technologies—who are not as well equipped to deal with regulation compliance as larger companies. In fact, the biggest beneficiary of AI regulation may be large companies that are used to dealing with it, because startups will have a harder time competing in a regulated environment.
The need for innovation
Humanity faced a similar set of issues in the early days of the internet. But the United States actively avoided regulating the internet to avoid stunting its early growth. Musk’s PayPal and numerous other businesses helped build the modern online world while subject only to regular human-scale rules, like those preventing theft and fraud.
Artificial intelligence systems have the potential to change how humans do just about everything. Scientists, engineers, programmers, and entrepreneurs need time to develop the technologies—and deliver their benefits. Their work should be free from concern that some AIs might be banned, and from the delays and costs associated with new AI-specific regulations.
This article was originally published on The Conversation. Read the original article.
Image Credit: Tatiana Shepeleva / Shutterstock.com Continue reading

Posted in Human Robots

#431300 Benefits and Risks of Artificial ...

Introduction Robots have been part of the manufacturing industry for longer than most people are aware, but the advent of linear actuators has created a world in which they can be used in more industries and workplaces throughout the world. People aren’t stopping with robots in more minor areas – they are thinking of bringing … Continue reading

Posted in Human Robots

#431238 AI Is Easy to Fool—Why That Needs to ...

Con artistry is one of the world’s oldest and most innovative professions, and it may soon have a new target. Research suggests artificial intelligence may be uniquely susceptible to tricksters, and as its influence in the modern world grows, attacks against it are likely to become more common.
The root of the problem lies in the fact that artificial intelligence algorithms learn about the world in very different ways than people do, and so slight tweaks to the data fed into these algorithms can throw them off completely while remaining imperceptible to humans.
Much of the research into this area has been conducted on image recognition systems, in particular those relying on deep learning neural networks. These systems are trained by showing them thousands of examples of images of a particular object until they can extract common features that allow them to accurately spot the object in new images.
But the features they extract are not necessarily the same high-level features a human would be looking for, like the word STOP on a sign or a tail on a dog. These systems analyze images at the individual pixel level to detect patterns shared between examples. These patterns can be obscure combinations of pixel values, in small pockets or spread across the image, that would be impossible to discern for a human, but highly accurate at predicting a particular object.

“An attacker can trick the object recognition algorithm into seeing something that isn’t there, without these alterations being obvious to a human.”

What this means is that by identifying these patterns and overlaying them over a different image, an attacker can trick the object recognition algorithm into seeing something that isn’t there, without these alterations being obvious to a human. This kind of manipulation is known as an “adversarial attack.”
Early attempts to trick image recognition systems this way required access to the algorithm’s inner workings to decipher these patterns. But in 2016 researchers demonstrated a “black box” attack that enabled them to trick such a system without knowing its inner workings.
By feeding the system doctored images and seeing how it classified them, they were able to work out what it was focusing on and therefore generate images they knew would fool it. Importantly, the doctored images were not obviously different to human eyes.
These approaches were tested by feeding doctored image data directly into the algorithm, but more recently, similar approaches have been applied in the real world. Last year it was shown that printouts of doctored images that were then photographed on a smartphone successfully tricked an image classification system.
Another group showed that wearing specially designed, psychedelically-colored spectacles could trick a facial recognition system into thinking people were celebrities. In August scientists showed that adding stickers to stop signs in particular configurations could cause a neural net designed to spot them to misclassify the signs.
These last two examples highlight some of the potential nefarious applications for this technology. Getting a self-driving car to miss a stop sign could cause an accident, either for insurance fraud or to do someone harm. If facial recognition becomes increasingly popular for biometric security applications, being able to pose as someone else could be very useful to a con artist.
Unsurprisingly, there are already efforts to counteract the threat of adversarial attacks. In particular, it has been shown that deep neural networks can be trained to detect adversarial images. One study from the Bosch Center for AI demonstrated such a detector, an adversarial attack that fools the detector, and a training regime for the detector that nullifies the attack, hinting at the kind of arms race we are likely to see in the future.
While image recognition systems provide an easy-to-visualize demonstration, they’re not the only machine learning systems at risk. The techniques used to perturb pixel data can be applied to other kinds of data too.

“Bypassing cybersecurity defenses is one of the more worrying and probable near-term applications for this approach.”

Chinese researchers showed that adding specific words to a sentence or misspelling a word can completely throw off machine learning systems designed to analyze what a passage of text is about. Another group demonstrated that garbled sounds played over speakers could make a smartphone running the Google Now voice command system visit a particular web address, which could be used to download malware.
This last example points toward one of the more worrying and probable near-term applications for this approach: bypassing cybersecurity defenses. The industry is increasingly using machine learning and data analytics to identify malware and detect intrusions, but these systems are also highly susceptible to trickery.
At this summer’s DEF CON hacking convention, a security firm demonstrated they could bypass anti-malware AI using a similar approach to the earlier black box attack on the image classifier, but super-powered with an AI of their own.
Their system fed malicious code to the antivirus software and then noted the score it was given. It then used genetic algorithms to iteratively tweak the code until it was able to bypass the defenses while maintaining its function.
All the approaches noted so far are focused on tricking pre-trained machine learning systems, but another approach of major concern to the cybersecurity industry is that of “data poisoning.” This is the idea that introducing false data into a machine learning system’s training set will cause it to start misclassifying things.
This could be particularly challenging for things like anti-malware systems that are constantly being updated to take into account new viruses. A related approach bombards systems with data designed to generate false positives so the defenders recalibrate their systems in a way that then allows the attackers to sneak in.
How likely it is that these approaches will be used in the wild will depend on the potential reward and the sophistication of the attackers. Most of the techniques described above require high levels of domain expertise, but it’s becoming ever easier to access training materials and tools for machine learning.
Simpler versions of machine learning have been at the heart of email spam filters for years, and spammers have developed a host of innovative workarounds to circumvent them. As machine learning and AI increasingly embed themselves in our lives, the rewards for learning how to trick them will likely outweigh the costs.
Image Credit: Nejron Photo / Shutterstock.com Continue reading

Posted in Human Robots