Tag Archives: iii

#439066 Video Friday: Festo’s BionicSwift

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Festo's Bionic Learning Network for 2021 presents a flock of BionicSwifts.

To execute the flight maneuvers as true to life as possible, the wings are modeled on the plumage of birds. The individual lamellae are made of an ultralight, flexible but very robust foam and lie on top of each other like shingles. Connected to a carbon quill, they are attached to the actual hand and arm wings as in the natural model.

During the wing upstroke, the individual lamellae fan out so that air can flow through the wing. This means that the birds need less force to pull the wing up. During the downstroke, the lamellae close up so that the birds can generate more power to fly. Due to this close-to-nature replica of the wings, the BionicSwifts have a better flight profile than previous wing-beating drives.

[ Festo ]

While we've seen a wide variety of COVID-motivated disinfecting robots, they're usually using either ultraviolet light or a chemical fog. This isn't the way that humans clean—we wipe stuff down, which gets rid of surface dirt and disinfects at the same time. Fraunhofer has been working on a mobile manipulator that can clean in the same ways that we do.

It's quite the technical challenge, but it has the potential to be both more efficient and more effective.

[ Fraunhofer ]

In recent years, robots have gained artificial vision, touch, and even smell. “Researchers have been giving robots human-like perception,” says MIT Associate Professor Fadel Adib. In a new paper, Adib’s team is pushing the technology a step further. “We’re trying to give robots superhuman perception,” he says. The researchers have developed a robot that uses radio waves, which can pass through walls, to sense occluded objects. The robot, called RF-Grasp, combines this powerful sensing with more traditional computer vision to locate and grasp items that might otherwise be blocked from view.

[ MIT ]

Ingenuity is now scheduled to fly on April 11.

[ JPL ]

The legendary Zenta is back after a two year YouTube hiatus with “a kind of freaky furry hexapod bunny creature.”

[ Zenta ]

It is with great pride and excitement that the South Australia Police announce a new expansion to their kennel by introducing three new Police Dog (PD) recruits. These dogs have been purposely targeted to bring a whole new range of dog operational capabilities known as the ‘small area urban search and guided evacuation’ dogs. Police have been working closely with specialist vets and dog trainers to ascertain if the lightweight dogs could be transported safely by drones and released into hard-to-access areas where at the moment the larger PDs just simply cannot get in due to their size.

[ SA Police ]

SoftBank may not have Spot cheerleading robots for their baseball team anymore, but they've more than made up for it with a full century of Peppers. And one dude doing the robot.

[ SoftBank ]

MAB Robotics is a Polish company developing walking robots for inspection, and here's a prototype they've been working on.

[ MAB Robotics ]

Thanks Jakub!

DoraNose: Smell your way to a better tomorrow.

[ Dorabot ]

Our robots need to learn how to cope with their new neighbors, and we have just the solution for this, the egg detector! Using cutting-edge AI, it provides incredible precision in detecting a vast variety of eggs. We have deployed this new feature on Boston Dynamics Spot, one of our fleet's robots. It can now detect eggs with its cameras and avoid them on his autonomous missions.

[ Energy Robotics ]

When dropping a squishy robot from an airplane 1,000 feet up, make sure that you land as close to people's cars as you can.

Now do it from orbit!

[ Squishy Robotics ]

An autonomous robot that is able to physically guide humans through narrow and cluttered spaces could be a big boon to the visually-impaired. Most prior robotic guiding systems are based on wheeled platforms with large bases with actuated rigid guiding canes. The large bases and the actuated arms limit these prior approaches from operating in narrow and cluttered environments. We propose a method that introduces a quadrupedal robot with a leash to enable the robot-guiding-human system to change its intrinsic dimension (by letting the leash go slack) in order to fit into narrow spaces.

[ Hybrid Robotics ]

How to prove that your drone is waterproof.

[ UNL ]

Well this ought to be pretty good once it gets out of simulation.

[ Hybrid Robotics ]

MIDAS is Aurora’s AI-enabled, multi-rotor sUAV outfitted with optical sensors and a customized payload that can defeat multiple small UAVs per flight with low-collateral effects.

[ Aurora ]

The robots​ of the DFKI have the advantage of being able to reach extreme environments: they can be used for decontamination purposes in high-risk areas or inspect and maintain underwater​ structures, for which they are tested in the North Sea near Heligoland​.

[ DFKI ]

After years of trying, 60 Minutes cameras finally get a peek inside the workshop at Boston Dynamics, where robots move in ways once only thought possible in movies. Anderson Cooper reports.

[ 60 Minutes ]

In 2007, Noel Sharky stated that “we are sleepwalking into a brave new world where robots decide who, where and when to kill.” Since then thousands of AI and robotics researchers have joined his calls to regulate “killer robots.” But sometime this year, Turkey will deploy fully autonomous home-built kamikaze drones on its border with Syria. What are the ethical choices we need to consider? Will we end up in an episode of Black Mirror? Or is the UN listening to calls and starting the process of regulating this space? Prof. Toby Walsh will discuss this important issue, consider where we are at and where we need to go.

[ ICRA 2020 ]

In the second session of HAI's spring conference, artists and technologists discussed how technology can enhance creativity, reimagine meaning, and support racial and social justice. The conference, called “Intelligence Augmentation: AI Empowering People to Solve Global Challenges,” took place on 25 March 2021.

[ Stanford HAI ]

This spring 2021 GRASP SFI comes from Monroe Kennedy III at Stanford University, on “Considerations for Human-Robot Collaboration.”

The field of robotics has evolved over the past few decades. We’ve seen robots progress from the automation of repetitive tasks in manufacturing to the autonomy of mobilizing in unstructured environments to the cooperation of swarm robots that are centralized or decentralized. These abilities have required advances in robotic hardware, modeling, and artificial intelligence. The next frontier is robots collaborating in complex tasks with human teammates, in environments traditionally configured for humans. While solutions to this challenge must utilize all the advances of robotics, the human element adds a unique aspect that must be addressed. Collaborating with a human teammate means that the robot must have a contextual understanding of the task as well as all participant’s roles. We will discuss what constitutes an effective teammate and how we can capture this behavior in a robotic collaborator.

[ UPenn ] Continue reading

Posted in Human Robots

#437826 Video Friday: Skydio 2 Drone Is Back on ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Skydio, which makes what we’re pretty sure is the most intelligent consumer drone (or maybe just drone period) in existence, has been dealing with COVID-19 just like the rest of us. Even so, they’ve managed to push out a major software update, and pre-orders for the Skydio 2 are now open again.

If you think you might want one, read our review, after which you’ll be sure you want one.

[ Skydio ]

Worried about people with COVID entering your workplace? Misty II has your front desk covered, in a way that’s quite a bit friendlier than many other options.

Misty II provides a dynamic and interactive screening experience that delivers a joyful experience in an otherwise depressing moment while also delivering state of the art thermal scanning and health screening. We have already found that employees, customers, and visitors appreciate the novelty of interacting with a clever and personable robot. Misty II engages dynamically, both visually and verbally. Companies appreciate using a solution with a blackbody-referenced thermal camera that provides high accuracy and a short screening process for efficiency. Putting a robot to work in this role shifts not only how people look at the screening process but also how robots can take on useful assignments in business, schools and homes.

[ Misty Robotics ]

Thanks Tim!

I’m definitely the one in the middle.

[ Agility Robotics ]

NASA’s Ingenuity helicopter is traveling to Mars attached to the belly of the Perseverance rover and must safely detach to begin the first attempt at powered flight on another planet. Tests done at NASA’s Jet Propulsion Laboratory and Lockheed Martin Space show the sequence of events that will bring the helicopter down to the Martian surface.

[ JPL ]

Here’s a sequence of videos of Cassie Blue making it (or mostly making it) up a 22-degree slope.

My mood these days is Cassie at 1:09.

[ University of Michigan ]

Thanks Jesse!

This is somewhere on the line between home automation and robotics, but it’s a cool idea: A baby crib that “uses computer vision and machine learning to recognize subtle changes” in an infant’s movement, and proactively bounces them to keep them sleeping peacefully.

It costs $1000, but how much value do you put on 24 months of your own sleep?

[ Cradlewise ]

Thanks Ben!

As captive marine mammal shows have fallen from favor; and the catching, transporting and breeding of marine animals has become more restricted, the marine park industry as a viable business has become more challenging – yet the audience appetite for this type of entertainment and education has remained constant.

Real-time Animatronics provide a way to reinvent the marine entertainment industry with a sustainable, safe, and profitable future. Show venues include aquariums, marine parks, theme parks, fountain shows, cruise lines, resort hotels, shopping malls, museums, and more.

[ EdgeFX ] via [ Gizmodo ]

Robotic cabling is surprisingly complex and kinda cool to watch.

The video shows the sophisticated robot application “Automatic control cabinet cabling”, which Fraunhofer IPA implemented together with the company Rittal. The software pitasc, developed at Fraunhofer IPA, is used for force-controlled assembly processes. Two UR robot arms carry out the task together. The modular pitasc system enables the robot arms to move and rotate in parallel. They work hand in hand, with one robot holding the cable and the second bringing it to the starting position for the cabling. The robots can find, tighten, hold ready, lay, plug in, fix, move freely or immerse cables. They can also perform push-ins and pull tests.

[ Fraunhofer ]

This is from 2018, but the concept is still pretty neat.

We propose to perform a novel investigation into the ability of a propulsively hopping robot to reach targets of high science value on the icy, rugged terrains of Ocean Worlds. The employment of a multi-hop architecture allows for the rapid traverse of great distances, enabling a single mission to reach multiple geologic units within a timespan conducive to system survival in a harsh radiation environment. We further propose that the use of a propulsive hopping technique obviates the need for terrain topographic and strength assumptions and allows for complete terrain agnosticism; a key strength of this concept.

[ NASA ]

Aerial-aquatic robots possess the unique ability of operating in both air and water. However, this capability comes with tremendous challenges, such as communication incompati- bility, increased airborne mass, potentially inefficient operation in each of the environments and manufacturing difficulties. Such robots, therefore, typically have small payloads and a limited operational envelope, often making their field usage impractical. We propose a novel robotic water sampling approach that combines the robust technologies of multirotors and underwater micro-vehicles into a single integrated tool usable for field operations.

[ Imperial ]

Event cameras are bio-inspired vision sensors with microsecond latency resolution, much larger dynamic range and hundred times lower power consumption than standard cameras. This 20-minute talk gives a short tutorial on event cameras and show their applications on computer vision, drones, and cars.

[ UZH ]

We interviewed Paul Newman, Perla Maiolino and Lars Kunze, ORI academics, to hear what gets them excited about robots in the future and any advice they have for those interested in the field.

[ Oxford Robotics Institute ]

Two projects from the Rehabilitation Engineering Lab at ETH Zurich, including a self-stabilizing wheelchair and a soft exoskeleton for grasping assistance.

[ ETH Zurich ]

Silicon Valley Robotics hosted an online conversation about robotics and racism. Moderated by Andra Keay, the panel featured Maynard Holliday, Tom Williams, Monroe Kennedy III, Jasmine Lawrence, Chad Jenkins, and Ken Goldberg.

[ SVR ]

The ICRA Legged Locomotion workshop has been taking place online, and while we’re not getting a robot mosh pit, there are still some great talks. We’ll post two here, but for more, follow the legged robots YouTube channel at the link below.

[ YouTube ] Continue reading

Posted in Human Robots

#437695 Video Friday: Even Robots Know That You ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
Other Than Human – September 3-10, 2020 – Stockholm, Sweden
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

From the Robotics and Perception Group at UZH comes Flightmare, a simulation environment for drones that combines a slick rendering engine with a robust physics engine that can run as fast as your system can handle.

Flightmare is composed of two main components: a configurable rendering engine built on Unity and a flexible physics engine for dynamics simulation. Those two components are totally decoupled and can run independently from each other. Flightmare comes with several desirable features: (i) a large multi-modal sensor suite, including an interface to extract the 3D point-cloud of the scene; (ii) an API for reinforcement learning which can simulate hundreds of quadrotors in parallel; and (iii) an integration with a virtual-reality headset for interaction with the simulated environment. Flightmare can be used for various applications, including path-planning, reinforcement learning, visual-inertial odometry, deep learning, human-robot interaction, etc.

[ Flightmare ]

Quadruped robots yelling at people to maintain social distancing is really starting to become a thing, for better or worse.

We introduce a fully autonomous surveillance robot based on a quadruped platform that can promote social distancing in complex urban environments. Specifically, to achieve autonomy, we mount multiple cameras and a 3D LiDAR on the legged robot. The robot then uses an onboard real-time social distancing detection system to track nearby pedestrian groups. Next, the robot uses a crowd-aware navigation algorithm to move freely in highly dynamic scenarios. The robot finally uses a crowd aware routing algorithm to effectively promote social distancing by using human-friendly verbal cues to send suggestions to overcrowded pedestrians.

[ Project ]

Thanks Fan!

The Personal Robotics Group at Oregon State University is looking at UV germicidal irradiation for surface disinfection with a Fetch Manipulator Robot.

Fetch Robot disinfecting dance party woo!

[ Oregon State ]

How could you not take a mask from this robot?

[ Reachy ]

This work presents the design, development and autonomous navigation of the alpha-version of our Resilient Micro Flyer, a new type of collision-tolerant small aerial robot tailored to traversing and searching within highly confined environments including manhole-sized tubes. The robot is particularly lightweight and agile, while it implements a rigid collision-tolerant design which renders it resilient during forcible interaction with the environment. Furthermore, the design of the system is enhanced through passive flaps ensuring smoother and more compliant collision which was identified to be especially useful in very confined settings.

[ ARL ]

Pepper can make maps and autonomously navigate, which is interesting, but not as interesting as its posture when it's wandering around.

Dat backing into the charging dock tho.

[ Pepper ]

RatChair a strategy for displacing big objects by attaching relatively small vibration sources. After learning how several random bursts of vibration affect its pose, an optimization algorithm discovers the optimal sequence of vibration patterns required to (slowly but surely) move the object to a specified position.

This is from 2015, why isn't all of my furniture autonomous yet?!

[ KAIST ]

The new SeaDrone Pro is designed to be the underwater equivalent of a quadrotor. This video is a rendering, but we've been assured that it does actually exist.

[ SeaDrone ]

Thanks Eduardo!

Porous Loops is a lightweight composite facade panel that shows the potential of 3D printing of mineral foams for building scale applications.

[ ETH ]

Thanks Fan!

Here's an interesting idea for a robotic gripper- it's what appears to be a snap bracelet coupled to a pneumatic actuator that allows the snap bracelet to be reset.

[ Georgia Tech ]

Graze is developing a commercial robotic lawnmower. They're also doing a sort of crowdfunded investment thing, which probably explains the painfully overproduced nature of the following video:

A couple things about this: the hard part, which the video skips over almost entirely, is the mapping, localization, and understanding where to mow and where not to mow. The pitch deck seems to suggest that this is mostly done through computer vision, a thing that's perhaps easy to do under controlled ideal conditions, but difficult to apply to a world full lawns that are all different. The commercial aspect is interesting because golf courses are likely as standardized as you can get, but the emphasis here on how much money they can make without really addressing any of the technical stuff makes me raise an eyebrow or two.

[ Graze ]

The record & playback X-series arm demo allows the user to record the arm's movements while motors are torqued off. Then, the user may torque the motor's on and watch the movements they just made playback!

[ Interbotix ]

Shadow Robot has a new teleop system for its hand. I'm guessing that it's even trickier to use than it looks.

[ Shadow Robot ]

Quanser Interactive Labs is a collection of virtual hardware-based laboratory activities that supplement traditional or online courses. Same as working with physical systems in the lab, students work with virtual twins of Quanser's most popular plants, develop their mathematical models, implement and simulate the dynamic behavior of these systems, design controllers, and validate them on a high-fidelity 3D real-time virtual models. The virtual systems not only look like the real ones, they also behave, can be manipulated, measured, and controlled like real devices. And finally, when students go to the lab, they can deploy their virtually-validated designs on actual physical equipment.

[ Quanser ]

This video shows robot-assisted heart surgery. It's amazing to watch if you haven't seen this sort of thing before, but be aware that there is a lot of blood.

This video demonstrates a fascinating case of robotic left atrial myxoma excision, narrated by Joel Dunning, Middlesbrough, UK. The Robotic platform provides superior visualisation and enhanced dexterity, through keyhole incisions. Robotic surgery is an integral part of our Minimally Invasive Cardiothoracic Surgery Program.

[ Tristan D. Yan ]

Thanks Fan!

In this talk, we present our work on learning control policies directly in simulation that are deployed onto real drones without any fine tuning. The presentation covers autonomous drone racing, drone acrobatics, and uncertainty estimation in deep networks.

[ RPG ] Continue reading

Posted in Human Robots

#436126 Quantum Computing Gets a Boost From AI ...

Illustration: Greg Mably

Anyone of a certain age who has even a passing interest in computers will remember the remarkable breakthrough that IBM made in 1997 when its Deep Blue chess-playing computer defeated Garry Kasparov, then the world chess champion. Computer scientists passed another such milestone in March 2016, when DeepMind (a subsidiary of Alphabet, Google’s parent company) announced that its AlphaGo program had defeated world-champion player Lee Sedol in the game of Go, a board game that had vexed AI researchers for decades. Recently, DeepMind’s algorithms have also bested human players in the computer games StarCraft IIand Quake Arena III.

Some believe that the cognitive capacities of machines will overtake those of human beings in many spheres within a few decades. Others are more cautious and point out that our inability to understand the source of our own cognitive powers presents a daunting hurdle. How can we make thinking machines if we don’t fully understand our own thought processes?

Citizen science, which enlists masses of people to tackle research problems, holds promise here, in no small part because it can be used effectively to explore the boundary between human and artificial intelligence.

Some citizen-science projects ask the public to collect data from their surroundings (as eButterfly does for butterflies) or to monitor delicate ecosystems (as Eye on the Reef does for Australia’s Great Barrier Reef). Other projects rely on online platforms on which people help to categorize obscure phenomena in the night sky (Zooniverse) or add to the understanding of the structure of proteins (Foldit). Typically, people can contribute to such projects without any prior knowledge of the subject. Their fundamental cognitive skills, like the ability to quickly recognize patterns, are sufficient.

In order to design and develop video games that can allow citizen scientists to tackle scientific problems in a variety of fields, professor and group leader Jacob Sherson founded ScienceAtHome (SAH), at Aarhus University, in Denmark. The group began by considering topics in quantum physics, but today SAH hosts games covering other areas of physics, math, psychology, cognitive science, and behavioral economics. We at SAH search for innovative solutions to real research challenges while providing insight into how people think, both alone and when working in groups.

It is computationally intractable to completely map out a higher-dimensional landscape: It is called the curse of high dimensionality, and it plagues many optimization problems.

We believe that the design of new AI algorithms would benefit greatly from a better understanding of how people solve problems. This surmise has led us to establish the Center for Hybrid Intelligence within SAH, which tries to combine human and artificial intelligence, taking advantage of the particular strengths of each. The center’s focus is on the gamification of scientific research problems and the development of interfaces that allow people to understand and work together with AI.

Our first game, Quantum Moves, was inspired by our group’s research into quantum computers. Such computers can in principle solve certain problems that would take a classical computer billions of years. Quantum computers could challenge current cryptographic protocols, aid in the design of new materials, and give insight into natural processes that require an exact solution of the equations of quantum mechanics—something normal computers are inherently bad at doing.

One candidate system for building such a computer would capture individual atoms by “freezing” them, as it were, in the interference pattern produced when a laser beam is reflected back on itself. The captured atoms can thus be organized like eggs in a carton, forming a periodic crystal of atoms and light. Using these atoms to perform quantum calculations requires that we use tightly focused laser beams, called optical tweezers, to transport the atoms from site to site in the light crystal. This is a tricky business because individual atoms do not behave like particles; instead, they resemble a wavelike liquid governed by the laws of quantum mechanics.

In Quantum Moves, a player manipulates a touch screen or mouse to move a simulated laser tweezer and pick up a trapped atom, represented by a liquidlike substance in a bowl. Then the player must bring the atom back to the tweezer’s initial position while trying to minimize the sloshing of the liquid. Such sloshing would increase the energy of the atom and ultimately introduce errors into the operations of the quantum computer. Therefore, at the end of a move, the liquid should be at a complete standstill.

To understand how people and computers might approach such a task differently, you need to know something about how computerized optimization algorithms work. The countless ways of moving a glass of water without spilling may be regarded as constituting a “solution landscape.” One solution is represented by a single point in that landscape, and the height of that point represents the quality of the solution—how smoothly and quickly the glass of water was moved. This landscape might resemble a mountain range, where the top of each mountain represents a local optimum and where the challenge is to find the highest peak in the range—the global optimum.

Illustration: Greg Mably

Researchers must compromise between searching the landscape for taller mountains (“exploration”) and climbing to the top of the nearest mountain (“exploitation”). Making such a trade-off may seem easy when exploring an actual physical landscape: Merely hike around a bit to get at least the general lay of the land before surveying in greater detail what seems to be the tallest peak. But because each possible way of changing the solution defines a new dimension, a realistic problem can have thousands of dimensions. It is computationally intractable to completely map out such a higher-dimensional landscape. We call this the curse of high dimensionality, and it plagues many optimization problems.

Although algorithms are wonderfully efficient at crawling to the top of a given mountain, finding good ways of searching through the broader landscape poses quite a challenge, one that is at the forefront of AI research into such control problems. The conventional approach is to come up with clever ways of reducing the search space, either through insights generated by researchers or with machine-learning algorithms trained on large data sets.

At SAH, we attacked certain quantum-optimization problems by turning them into a game. Our goal was not to show that people can beat computers in this arena but rather to understand the process of generating insights into such problems. We addressed two core questions: whether allowing players to explore the infinite space of possibilities will help them find good solutions and whether we can learn something by studying their behavior.

Today, more than 250,000 people have played Quantum Moves, and to our surprise, they did in fact search the space of possible moves differently from the algorithm we had put to the task. Specifically, we found that although players could not solve the optimization problem on their own, they were good at searching the broad landscape. The computer algorithms could then take those rough ideas and refine them.

Herbert A. Simon said that “solving a problem simply means representing it so as to make the solution transparent.” Apparently, that’s what our games can do with their novel user interfaces.

Perhaps even more interesting was our discovery that players had two distinct ways of solving the problem, each with a clear physical interpretation. One set of players started by placing the tweezer close to the atom while keeping a barrier between the atom trap and the tweezer. In classical physics, a barrier is an impenetrable obstacle, but because the atom liquid is a quantum-mechanical object, it can tunnel through the barrier into the tweezer, after which the player simply moved the tweezer to the target area. Another set of players moved the tweezer directly into the atom trap, picked up the atom liquid, and brought it back. We called these two strategies the “tunneling” and “shoveling” strategies, respectively.

Such clear strategies are extremely valuable because they are very difficult to obtain directly from an optimization algorithm. Involving humans in the optimization loop can thus help us gain insight into the underlying physical phenomena that are at play, knowledge that may then be transferred to other types of problems.

Quantum Moves raised several obvious issues. First, because generating an exceptional solution required further computer-based optimization, players were unable to get immediate feedback to help them improve their scores, and this often left them feeling frustrated. Second, we had tested this approach on only one scientific challenge with a clear classical analogue, that of the sloshing liquid. We wanted to know whether such gamification could be applied more generally, to a variety of scientific challenges that do not offer such immediately applicable visual analogies.

We address these two concerns in Quantum Moves 2. Here, the player first generates a number of candidate solutions by playing the original game. Then the player chooses which solutions to optimize using a built-in algorithm. As the algorithm improves a player’s solution, it modifies the solution path—the movement of the tweezer—to represent the optimized solution. Guided by this feedback, players can then improve their strategy, come up with a new solution, and iteratively feed it back into this process. This gameplay provides high-level heuristics and adds human intuition to the algorithm. The person and the machine work in tandem—a step toward true hybrid intelligence.

In parallel with the development of Quantum Moves 2, we also studied how people collaboratively solve complex problems. To that end, we opened our atomic physics laboratory to the general public—virtually. We let people from around the world dictate the experiments we would run to see if they would find ways to improve the results we were getting. What results? That’s a little tricky to explain, so we need to pause for a moment and provide a little background on the relevant physics.

One of the essential steps in building the quantum computer along the lines described above is to create the coldest state of matter in the universe, known as a Bose-Einstein condensate. Here millions of atoms oscillate in synchrony to form a wavelike substance, one of the largest purely quantum phenomena known. To create this ultracool state of matter, researchers typically use a combination of laser light and magnetic fields. There is no familiar physical analogy between such a strange state of matter and the phenomena of everyday life.

The result we were seeking in our lab was to create as much of this enigmatic substance as was possible given the equipment available. The sequence of steps to accomplish that was unknown. We hoped that gamification could help to solve this problem, even though it had no classical analogy to present to game players.

Images: ScienceAtHome

Fun and Games: The
Quantum Moves game evolved over time, from a relatively crude early version [top] to its current form [second from top] and then a major revision,
Quantum Moves 2 [third from top].
Skill Lab: Science Detective games [bottom] test players’ cognitive skills.

In October 2016, we released a game that, for two weeks, guided how we created Bose-Einstein condensates in our laboratory. By manipulating simple curves in the game interface, players generated experimental sequences for us to use in producing these condensates—and they did so without needing to know anything about the underlying physics. A player would generate such a solution, and a few minutes later we would run the sequence in our laboratory. The number of ultracold atoms in the resulting Bose-Einstein condensate was measured and fed back to the player as a score. Players could then decide either to try to improve their previous solution or to copy and modify other players’ solutions. About 600 people from all over the world participated, submitting 7,577 solutions in total. Many of them yielded bigger condensates than we had previously produced in the lab.

So this exercise succeeded in achieving our primary goal, but it also allowed us to learn something about human behavior. We learned, for example, that players behave differently based on where they sit on the leaderboard. High-performing players make small changes to their successful solutions (exploitation), while poorly performing players are willing to make more dramatic changes (exploration). As a collective, the players nicely balance exploration and exploitation. How they do so provides valuable inspiration to researchers trying to understand human problem solving in social science as well as to those designing new AI algorithms.

How could mere amateurs outperform experienced experimental physicists? The players certainly weren’t better at physics than the experts—but they could do better because of the way in which the problem was posed. By turning the research challenge into a game, we gave players the chance to explore solutions that had previously required complex programming to study. Indeed, even expert experimentalists improved their solutions dramatically by using this interface.

Insight into why that’s possible can probably be found in the words of the late economics Nobel laureate Herbert A. Simon: “Solving a problem simply means representing it so as to make the solution transparent [PDF].” Apparently, that’s what our games can do with their novel user interfaces. We believe that such interfaces might be a key to using human creativity to solve other complex research problems.

Eventually, we’d like to get a better understanding of why this kind of gamification works as well as it does. A first step would be to collect more data on what the players do while they are playing. But even with massive amounts of data, detecting the subtle patterns underlying human intuition is an overwhelming challenge. To advance, we need a deeper insight into the cognition of the individual players.

As a step forward toward this goal, ScienceAtHome created Skill Lab: Science Detective, a suite of minigames exploring visuospatial reasoning, response inhibition, reaction times, and other basic cognitive skills. Then we compare players’ performance in the games with how well these same people did on established psychological tests of those abilities. The point is to allow players to assess their own cognitive strengths and weaknesses while donating their data for further public research.

In the fall of 2018 we launched a prototype of this large-scale profiling in collaboration with the Danish Broadcasting Corp. Since then more than 20,000 people have participated, and in part because of the publicity granted by the public-service channel, participation has been very evenly distributed across ages and by gender. Such broad appeal is rare in social science, where the test population is typically drawn from a very narrow demographic, such as college students.

Never before has such a large academic experiment in human cognition been conducted. We expect to gain new insights into many things, among them how combinations of cognitive abilities sharpen or decline with age, what characteristics may be used to prescreen for mental illnesses, and how to optimize the building of teams in our work lives.

And so what started as a fun exercise in the weird world of quantum mechanics has now become an exercise in understanding the nuances of what makes us human. While we still seek to understand atoms, we can now aspire to understand people’s minds as well.

This article appears in the November 2019 print issue as “A Man-Machine Mind Meld for Quantum Computing.”

About the Authors
Ottó Elíasson, Carrie Weidner, Janet Rafner, and Shaeema Zaman Ahmed work with the ScienceAtHome project at Aarhus University in Denmark. Continue reading

Posted in Human Robots

#435159 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
DeepMind Can Now Beat Us at Multiplayer Games Too
Cade Metz | The New York Times
“DeepMind’s project is part of a broad effort to build artificial intelligence that can play enormously complex, three-dimensional video games, including Quake III, Dota 2 and StarCraft II. Many researchers believe that success in the virtual arena will eventually lead to automated systems with improved abilities in the real world.”

ROBOTICS
Tiny Robots Carry Stem Cells Through a Mouse
Emily Waltz | IEEE Spectrum
“Engineers have built microrobots to perform all sorts of tasks in the body, and can now add to that list another key skill: delivering stem cells. In a paper, published [May 29] in Science Robotics, researchers describe propelling a magnetically-controlled, stem-cell-carrying bot through a live mouse.” [Video shows microbots navigating a microfluidic chip. MRI could not be used to image the mouse as the bots navigate magnetically.]

COMPUTING
How a Quantum Computer Could Break 2048-Bit RSA Encryption in 8 Hours
Emerging Technology From the arXiv | MIT Technology Review
“[Two researchers] have found a more efficient way for quantum computers to perform the code-breaking calculations, reducing the resources they require by orders of magnitude. Consequently, these machines are significantly closer to reality than anyone suspected.” [The arXiv is a pre-print server for research that has not yet been peer reviewed.]

AUTOMATION
Lyft Has Completed 55,000 Self Driving Rides in Las Vegas
Christine Fisher | Engadget
“One year ago, Lyft launched its self-driving ride service in Las Vegas. Today, the company announced its 30-vehicle fleet has made 55,000 trips. That makes it the largest commercial program of its kind in the US.”

TRANSPORTATION
Flying Car Startup Alaka’i Bets Hydrogen Can Outdo Batteries
Eric Adams | Wired
“Alaka’i says the final product will be able to fly for up to four hours and cover 400 miles on a single load of fuel, which can be replenished in 10 minutes at a hydrogen fueling station. It has built a functional, full-scale prototype that will make its first flight ‘imminently,’ a spokesperson says.”

ETHICS
The World Economic Forum Wants to Develop Global Rules for AI
Will Knight | MIT Technology Review
“This week, AI experts, politicians, and CEOs will gather to ask an important question: Can the United States, China, or anyone else agree on how artificial intelligence should be used and controlled?”

SPACE
Building a Rocket in a Garage to Take on SpaceX and Blue Origin
Jackson Ryan | CNET
“While billionaire entrepreneurs like SpaceX’s Elon Musk and Blue Origin’s Jeff Bezos push the boundaries of human spaceflight and exploration, a legion of smaller private startups around the world have been developing their own rocket technology to launch lighter payloads into orbit.”

Image Credit: Kevin Crosby / Unsplash Continue reading

Posted in Human Robots