Tag Archives: ieee
#435640 Video Friday: This Wearable Robotic Tail ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
CLAWAR 2019 – August 26-28, 2019 – Kuala Lumpur, Malaysia
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.
Lakshmi Nair from Georgia Tech describes some fascinating research towards robots that can create their own tools, as presented at ICRA this year:
Using a novel capability to reason about shape, function, and attachment of unrelated parts, researchers have for the first time successfully trained an intelligent agent to create basic tools by combining objects.
The breakthrough comes from Georgia Tech’s Robot Autonomy and Interactive Learning (RAIL) research lab and is a significant step toward enabling intelligent agents to devise more advanced tools that could prove useful in hazardous – and potentially life-threatening – environments.
[ Lakshmi Nair ]
Victor Barasuol, from the Dynamic Legged Systems Lab at IIT, wrote in to share some new research on their HyQ quadruped that enables sensorless shin collision detection. This helps the robot navigate unstructured environments, and also mitigates all those painful shin strikes, because ouch.
This will be presented later this month at the International Conference on Climbing and Walking Robots (CLAWAR) in Kuala Lumpur, Malaysia.
[ IIT ]
Thanks Victor!
You used to have a tail, you know—as an embryo, about a month in to your development. All mammals used to have tails, and now we just have useless tailbones, which don’t help us with balancing even a little bit. BRING BACK THE TAIL!
The tail, created by Junichi Nabeshima, Kouta Minamizawa, and MHD Yamen Saraiji from Keio University’s Graduate School of Media Design, was presented at SIGGRAPH 2019 Emerging Technologies.
[ Paper ] via [ Gizmodo ]
The noises in this video are fantastic.
[ ESA ]
Apparently the industrial revolution wasn’t a thorough enough beatdown of human knitting, because the robots are at it again.
[ MIT CSAIL ]
Skydio’s drones just keep getting more and more impressive. Now if only they’d make one that I can afford…
[ Skydio ]
The only thing more fun than watching robots is watching people react to robots.
[ SEER ]
There aren’t any robots in this video, but it’s robotics-related research, and very soothing to watch.
[ Stanford ]
#autonomousicecreamtricycle
In case it wasn’t clear, which it wasn’t, this is a Roboy project. And if you didn’t understand that first video, you definitely won’t understand this second one:
Whatever that t-shirt is at the end (Roboy in sunglasses puking rainbows…?) I need one.
[ Roboy ]
By adding electronics and computation technology to a simple cane that has been around since ancient times, a team of researchers at Columbia Engineering have transformed it into a 21st century robotic device that can provide light-touch assistance in walking to the aged and others with impaired mobility.
The light-touch robotic cane, called CANINE, acts as a cane-like mobile assistant. The device improves the individual’s proprioception, or self-awareness in space, during walking, which in turn improves stability and balance.
[ ROAR Lab ]
During the second field experiment for DARPA’s OFFensive Swarm-Enabled Tactics (OFFSET) program, which took place at Fort Benning, Georgia, teams of autonomous air and ground robots tested tactics on a mission to isolate an urban objective. Similar to the way a firefighting crew establishes a boundary around a burning building, they first identified locations of interest and then created a perimeter around the focal point.
[ DARPA ]
I think there’s a bit of new footage here of Ghost Robotics’ Vision 60 quadruped walking around without sensors on unstructured terrain.
[ Ghost Robotics ]
If you’re as tired of passenger drone hype as I am, there’s absolutely no need to watch this video of NEC’s latest hover test.
[ AP ]
As researchers teach robots to perform more and more complex tasks, the need for realistic simulation environments is growing. Existing techniques for closing the reality gap by approximating real-world physics often require extensive real world data and/or thousands of simulation samples. This paper presents TuneNet, a new machine learning-based method to directly tune the parameters of one model to match another using an iterative residual tuning technique. TuneNet estimates the parameter difference between two models using a single observation from the target and minimal simulation, allowing rapid, accurate and sample-efficient parameter estimation.
The system can be trained via supervised learning over an auto-generated simulated dataset. We show that TuneNet can perform system identification, even when the true parameter values lie well outside the distribution seen during training, and demonstrate that simulators tuned with TuneNet outperform existing techniques for predicting rigid body motion. Finally, we show that our method can estimate real-world parameter values, allowing a robot to perform sim-to-real task transfer on a dynamic manipulation task unseen during training. We are also making a baseline implementation of our code available online.
[ Paper ]
Here’s an update on what GITAI has been up to with their telepresence astronaut-replacement robot.
[ GITAI ]
Curiosity captured this 360-degree panorama of a location on Mars called “Teal Ridge” on June 18, 2019. This location is part of a larger region the rover has been exploring called the “clay-bearing unit” on the side of Mount Sharp, which is inside Gale Crater. The scene is presented with a color adjustment that approximates white balancing to resemble how the rocks and sand would appear under daytime lighting conditions on Earth.
[ MSL ]
Some updates (in English) on ROS from ROSCon France. The first is a keynote from Brian Gerkey:
And this second video is from Omri Ben-Bassat, about how to keep your Anki Vector alive using ROS:
All of the ROSCon FR talks are available on Vimeo.
[ ROSCon FR ] Continue reading
#435634 Robot Made of Clay Can Sculpt Its Own ...
We’re very familiar with a wide variety of transforming robots—whether for submarines or drones, transformation is a way of making a single robot adaptable to different environments or tasks. Usually, these robots are restricted to a discrete number of configurations—perhaps two or three different forms—because of the constraints imposed by the rigid structures that robots are typically made of.
Soft robotics has the potential to change all this, with robots that don’t have fixed forms but instead can transform themselves into whatever shape will enable them to do what they need to do. At ICRA in Montreal earlier this year, researchers from Yale University demonstrated a creative approach toward a transforming robot powered by string and air, with a body made primarily out of clay.
Photo: Evan Ackerman
The robot is actuated by two different kinds of “skin,” one layered on top of another. There’s a locomotion skin, made of a pattern of pneumatic bladders that can roll the robot forward or backward when the bladders are inflated sequentially. On top of that is the morphing skin, which is cable-driven, and can sculpt the underlying material into a variety of shapes, including spheres, cylinders, and dumbbells. The robot itself consists of both of those skins wrapped around a chunk of clay, with the actuators driven by offboard power and control. Here it is in action:
The Yale researchers have been experimenting with morphing robots that use foams and tensegrity structures for their bodies, but that stuff provides a “restoring force,” springing back into its original shape once the actuation stops. Clay is different because it holds whatever shape it’s formed into, making the robot more energy efficient. And if the dumbbell shape stops being useful, the morphing layer can just squeeze it back into a cylinder or a sphere.
While this robot, and the sample transformation shown in the video, are relatively simplistic, the researchers suggest some ways in which a more complex version could be used in the future:
Photo: IEEE Xplore
This robot’s morphing skin sculpts its clay body into different shapes.
Applications where morphing and locomotion might serve as complementary functions are abundant. For the example skins presented in this work, a search-and-rescue operation could use the clay as a medium to hold a payload such as sensors or transmitters. More broadly, applications include resource-limited conditions where supply chains for materiel are sparse. For example, the morphing sequence shown in Fig. 4 [above] could be used to transform from a rolling sphere to a pseudo-jointed robotic arm. With such a morphing system, it would be possible to robotically morph matter into different forms to perform different functions.
Read this article for free on IEEE Xplore until 5 September 2019
Morphing Robots Using Robotic Skins That Sculpt Clay, by Dylan S. Shah, Michelle C. Yuen, Liana G. Tilton, Ellen J. Yang, and Rebecca Kramer-Bottiglio from Yale University, was presented at ICRA 2019 in Montreal.
[ Yale Faboratory ]
< Back to IEEE Journal Watch Continue reading
#435632 DARPA Subterranean Challenge: Tunnel ...
The Tunnel Circuit of the DARPA Subterranean Challenge starts later this week at the NIOSH research mine just outside of Pittsburgh, Pennsylvania. From 15-22 August, 11 teams will send robots into a mine that they've never seen before, with the goal of making maps and locating items. All DARPA SubT events involve tunnels of one sort or another, but in this case, the “Tunnel Circuit” refers to mines as opposed to urban underground areas or natural caves. This month’s challenge is the first of three discrete events leading up to a huge final event in August of 2021.
While the Tunnel Circuit competition will be closed to the public, and media are only allowed access for a single day (which we'll be at, of course), DARPA has provided a substantial amount of information about what teams will be able to expect. We also have details from the SubT Integration Exercise, called STIX, which was a completely closed event that took place back in April. STIX was aimed at giving some teams (and DARPA) a chance to practice in a real tunnel environment.
For more general background on SubT, here are some articles to get you all caught up:
SubT: The Next DARPA Challenge for Robotics
Q&A with DARPA Program Manager Tim Chung
Meet The First Nine Teams
It makes sense to take a closer look at what happened at April's STIX exercise, because it is (probably) very similar to what teams will experience in the upcoming Tunnel Circuit. STIX took place at Edgar Experimental Mine in Colorado, and while no two mines are the same (and many are very, very different), there are enough similarities for STIX to have been a valuable experience for teams. Here's an overview video of the exercise from DARPA:
DARPA has also put together a much more detailed walkthrough of the STIX mine exercise, which gives you a sense of just how vast, complicated, and (frankly) challenging for robots the mine environment is:
So, that's the kind of thing that teams had to deal with back in April. Since the event was an exercise, rather than a competition, DARPA didn't really keep score, and wouldn't comment on the performance of individual teams. We've been trolling YouTube for STIX footage, though, to get a sense of how things went, and we found a few interesting videos.
Here's a nice overview from Team CERBERUS, which used drones plus an ANYmal quadruped:
Team CTU-CRAS also used drones, along with a tracked robot:
Team Robotika was brave enough to post video of a “fatal failure” experienced by its wheeled robot; the poor little bot gets rescued at about 7:00 in case you get worried:
So that was STIX. But what about the Tunnel Circuit competition this week? Here's a course preview video from DARPA:
It sort of looks like the NIOSH mine might be a bit less dusty than the Edgar mine was, but it could also be wetter and muddier. It’s hard to tell, because we’re just getting a few snapshots of what’s probably an enormous area with kilometers of tunnels that the robots will have to explore. But DARPA has promised “constrained passages, sharp turns, large drops/climbs, inclines, steps, ladders, and mud, sand, and/or water.” Combine that with the serious challenge to communications imposed by the mine itself, and robots will have to be both physically capable, and almost entirely autonomous. Which is, of course, exactly what DARPA is looking to test with this challenge.
Lastly, we had a chance to catch up with Tim Chung, Program Manager for the Subterranean Challenge at DARPA, and ask him a few brief questions about STIX and what we have to look forward to this week.
IEEE Spectrum: How did STIX go?
Tim Chung: It was a lot of fun! I think it gave a lot of the teams a great opportunity to really get a taste of what these types of real world environments look like, and also what DARPA has in store for them in the SubT Challenge. STIX I saw as an experiment—a learning experience for all the teams involved (as well as the DARPA team) so that we can continue our calibration.
What do you think teams took away from STIX, and what do you think DARPA took away from STIX?
I think the thing that teams took away was that, when DARPA hosts a challenge, we have very audacious visions for what the art of the possible is. And that's what we want—in my mind, the purpose of a DARPA Grand Challenge is to provide that inspiration of, ‘Holy cow, someone thinks we can do this!’ So I do think the teams walked away with a better understanding of what DARPA's vision is for the capabilities we're seeking in the SubT Challenge, and hopefully walked away with a better understanding of the technical, physical, even maybe mental challenges of doing this in the wild— which will all roll back into how they think about the problem, and how they develop their systems.
This was a collaborative exercise, so the DARPA field team was out there interacting with the other engineers, figuring out what their strengths and weaknesses and needs might be, and even understanding how to handle the robots themselves. That will help [strengthen] connections between these university teams and DARPA going forward. Across the board, I think that collaborative spirit is something we really wish to encourage, and something that the DARPA folks were able to take away.
What do we have to look forward to during the Tunnel Circuit?
The vision here is that the Tunnel Circuit is representative of one of the three subterranean subdomains, along with urban and cave. Characteristics of all of these three subdomains will be mashed together in an epic final course, so that teams will have to face hints of tunnel once again in that final event.
Without giving too much away, the NIOSH mine will be similar to the Edgar mine in that it's a human-made environment that supports mining operations and research. But of course, every site is different, and these differences, I think, will provide good opportunities for the teams to shine.
Again, we'll be visiting the NIOSH mine in Pennsylvania during the Tunnel Circuit and will post as much as we can from there. But if you’re an actual participant in the Subterranean Challenge, please tweet me @BotJunkie so that I can follow and help share live updates.
[ DARPA Subterranean Challenge ] Continue reading
#435621 ANYbotics Introduces Sleek New ANYmal C ...
Quadrupedal robots are making significant advances lately, and just in the past few months we’ve seen Boston Dynamics’ Spot hauling a truck, IIT’s HyQReal pulling a plane, MIT’s MiniCheetah doing backflips, Unitree Robotics’ Laikago towing a van, and Ghost Robotics’ Vision 60 exploring a mine. Robot makers are betting that their four-legged machines will prove useful in a variety of applications in construction, security, delivery, and even at home.
ANYbotics has been working on such applications for years, testing out their ANYmal robot in places where humans typically don’t want to go (like offshore platforms) as well as places where humans really don’t want to go (like sewers), and they have a better idea than most companies what can make quadruped robots successful.
This week, ANYbotics is announcing a completely new quadruped platform, ANYmal C, a major upgrade from the really quite research-y ANYmal B. The new quadruped has been optimized for ruggedness and reliability in industrial environments, with a streamlined body painted a color that lets you know it means business.
ANYmal C’s physical specs are pretty impressive for a production quadruped. It can move at 1 meter per second, manage 20-degree slopes and 45-degree stairs, cross 25-centimeter gaps, and squeeze through passages just 60 centimeters wide. It’s packed with cameras and 3D sensors, including a lidar for 3D mapping and simultaneous localization and mapping (SLAM). All these sensors (along with the vast volume of gait research that’s been done with ANYmal) make this one of the most reliably autonomous quadrupeds out there, with real-time motion planning and obstacle avoidance.
Image: ANYbotics
ANYmal can autonomously attach itself to a cone-shaped docking station to recharge.
ANYmal C is also one of the ruggedest legged robots in existence. The 50-kilogram robot is IP67 rated, meaning that it’s completely impervious to dust and can withstand being submerged in a meter of water for an hour. If it’s submerged for longer than that, you’re absolutely doing something wrong. The robot will run for over 2 hours on battery power, and if that’s not enough endurance, don’t worry, because ANYmal can autonomously impale itself on a weird cone-shaped docking station to recharge.
Photo: ANYbotics
ANYmal C’s sensor payload includes cameras and a lidar for 3D mapping and SLAM.
As far as what ANYmal C is designed to actually do, it’s mostly remote inspection tasks where you need to move around through a relatively complex environment, but where for whatever reason you’d be better off not sending a human. ANYmal C has a sensor payload that gives it lots of visual options, like thermal imaging, and with the ability to handle a 10-kilogram payload, the robot can be adapted to many different environments.
Over the next few months, we’re hoping to see more examples of ANYmal C being deployed to do useful stuff in real-world environments, but for now, we do have a bit more detail from ANYbotics CTO Christian Gehring.
IEEE Spectrum: Can you tell us about the development process for ANYmal C?
Christian Gehring: We tested the previous generation of ANYmal (B) in a broad range of environments over the last few years and gained a lot of insights. Based on our learnings, it became clear that we would have to re-design the robot to meet the requirements of industrial customers in terms of safety, quality, reliability, and lifetime. There were different prototype stages both for the new drives and for single robot assemblies. Apart from electrical tests, we thoroughly tested the thermal control and ingress protection of various subsystems like the depth cameras and actuators.
What can ANYmal C do that the previous version of ANYmal can’t?
ANYmal C was redesigned with a focus on performance increase regarding actuation (new drives), computational power (new hexacore Intel i7 PCs), locomotion and navigation skills, and autonomy (new depth cameras). The new robot additionally features a docking system for autonomous recharging and an inspection payload as an option. The design of ANYmal C is far more integrated than its predecessor, which increases both performance and reliability.
How much of ANYmal C’s development and design was driven by your experience with commercial or industry customers?
Tests (such as the offshore installation with TenneT) and discussions with industry customers were important to get the necessary design input in terms of performance, safety, quality, reliability, and lifetime. Most customers ask for very similar inspection tasks that can be performed with our standard inspection payload and the required software packages. Some are looking for a robot that can also solve some simple manipulation tasks like pushing a button. Overall, most use cases customers have in mind are realistic and achievable, but some are really tough for the robot, like climbing 50° stairs in hot environments of 50°C.
Can you describe how much autonomy you expect ANYmal C to have in industrial or commercial operations?
ANYmal C is primarily developed to perform autonomous routine inspections in industrial environments. This autonomy especially adds value for operations that are difficult to access, as human operation is extremely costly. The robot can naturally also be operated via a remote control and we are working on long-distance remote operation as well.
Do you expect that researchers will be interested in ANYmal C? What research applications could it be useful for?
ANYmal C has been designed to also address the needs of the research community. The robot comes with two powerful hexacore Intel i7 computers and can additionally be equipped with an NVIDIA Jetson Xavier graphics card for learning-based applications. Payload interfaces enable users to easily install and test new sensors. By joining our established ANYmal Research community, researchers get access to simulation tools and software APIs, which boosts their research in various areas like control, machine learning, and navigation.
[ ANYmal C ] Continue reading