Tag Archives: humans
#436042 Video Friday: Caltech’s Drone With ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.
Caltech has been making progress on LEONARDO (LEg ON Aerial Robotic DrOne), their leggy thruster powered humanoid-thing. It can now balance and walk, which is quite impressive to see.
We’ll circle back again when they’ve got it jumping and floating around.
[ Caltech ]
Turn the subtitles on to learn how robots became experts at slicing bubbly, melty, delicious cheese.
These robots learned how to do the traditional Swiss raclette from demonstration. The Robot Learning & Interaction group at the Idiap Research Institute has developed an imitation learning technique allowing the robot to acquire new skills by considering position and force information, with an automatic adaptation to new situations. The range of applications is wide, including industrial robots, service robots, and assistive robots.
[ Idiap ]
Thanks Sylvain!
Some amazing news this week from Skydio, with the announcement of their better in every single way Skydio 2 autonomous drone. Read our full article for details, but here’s a getting started video that gives you an overview of what the drone can do.
The first batch sold out in 36 hours, but you can put down a $100 deposit to reserve the $999 drone for 2020 delivery.
[ Skydio ]
UBTECH is introducing a couple new robot kits for the holidays: ChampBot and FireBot.
$130 each, available on October 20.
[ Ubtech ]
NASA’s InSight lander on Mars is trying to use its robotic arm to get the mission’s heat flow probe, or mole, digging again. InSight team engineer Ashitey Trebbi-Ollennu, based at NASA’s Jet Propulsion Laboratory in Pasadena, California, explains what has been attempted and the game plan for the coming weeks. The next tactic they’ll try will be “pinning” the mole against the hole it’s in.
[ NASA ]
We introduce shape-changing swarm robots. A swarm of self-transformable robots can both individually and collectively change their configuration to display information, actuate objects, act as tangible controllers, visualize data, and provide physical affordances. ShapeBots is a concept prototype of shape-changing swarm robots. Each robot can change its shape by leveraging small linear actuators that are thin (2.5 cm) and highly extendable (up to 20cm) in both horizontal and vertical directions.
[ Ryo Suzuki ]
Robot abuse!
Vision 60 legged robot managing unstructured terrain without vision or force sensors in its legs. Using only high-transparency actuators and 2kHz algorithmic stability control… 4-limbs and 12-motors with only a velocity command.
[ Ghost Robotics ]
We asked real people to bring in real products they needed picked for their application. In MINUTES, we assembled the right tool.
This is a cool idea, but for a real challenge they should try it outside a supermarket. Or a pet store.
[ Soft Robotics ]
Good water quality is important to humans and to nature. In a country with as much water as the Netherlands has, ensuring water quality is a very labour-intensive undertaking. To address this issue, researchers from TU Delft have developed a ‘pelican drone’: a drone capable of taking water samples quickly, in combination with a measuring instrument that immediately analyses the water quality. The drone was tested this week at the new Marker Wadden nature area ‘Living Lab’.
[ MAVLab ]
In an international collaboration led by scientists in Switzerland, three amputees merge with their bionic prosthetic legs as they climb over various obstacles without having to look. The amputees report using and feeling their bionic leg as part of their own body, thanks to sensory feedback from the prosthetic leg that is delivered to nerves in the leg’s stump.
[ EPFL ]
It’s a little hard to see, but this is one way of testing out asteroid imaging spacecraft without actually going into space: a fake asteroid and a 2D microgravity simulator.
[ Caltech ]
Drones can help filmmakers do the kinds of shots that would be otherwise impossible.
[ DJI ]
Two long interviews this week from Lex Fridman’s AI Podcast, and both of them are worth watching: Gary Marcus, and Peter Norvig.
[ AI Podcast ]
This week’s CMU RI Seminar comes from Tucker Hermans at the University of Utah, on “Improving Multi-fingered Robot Manipulation by Unifying Learning and Planning.”
Multi-fingered hands offer autonomous robots increased dexterity, versatility, and stability over simple two-fingered grippers. Naturally, this increased ability comes with increased complexity in planning and executing manipulation actions. As such, I propose combining model-based planning with learned components to improve over purely data-driven or purely-model based approaches to manipulation. This talk examines multi-fingered autonomous manipulation when the robot has only partial knowledge of the object of interest. I will first present results on planning multi-fingered grasps for novel objects using a learned neural network. I will then present our approach to planning in-hand manipulation tasks when dynamic properties of objects are not known. I will conclude with a discussion of our ongoing and future research to further unify these two approaches.
[ CMU RI ] Continue reading
#436005 NASA Hiring Engineers to Develop “Next ...
It’s been nearly six years since NASA unveiled Valkyrie, a state-of-the-art full-size humanoid robot. After the DARPA Robotics Challenge, NASA has continued to work with Valkyrie at Johnson Space Center, and has also provided Valkyrie robots to several different universities. Although it’s not a new platform anymore (six years is a long time in robotics), Valkyrie is still very capable, with plenty of potential for robotics research.
With that in mind, we were caught by surprise when over the last several months, Jacobs, a Dallas-based engineering company that appears to provide a wide variety of technical services to anyone who wants them, has posted several open jobs in need of roboticists in the Houston, Texas, area who are interested in working with NASA on “the next generation of humanoid robot.”
Here are the relevant bullet points from the one of the job descriptions (which you can view at this link):
Work directly with NASA Johnson Space Center in designing the next generation of humanoid robot.
Join the Valkyrie humanoid robot team in NASA’s Robotic Systems Technology Branch.
Build on the success of the existing Valkyrie and Robonaut 2 humanoid robots and advance NASA’s ability to project a remote human presence and dexterous manipulation capability into challenging, dangerous, and distant environments both in space and here on earth.
The question is, why is NASA developing its own humanoid robot (again) when it could instead save a whole bunch of time and money by using a platform that already exists, whether it’s Atlas, Digit, Valkyrie itself, or one of the small handful of other humanoids that are more or less available? The only answer that I can come up with is that no existing platforms meet NASA’s requirements, whatever those may be. And if that’s the case, what kind of requirements are we talking about? The obvious one would be the ability to work in the kinds of environments that NASA specializes in—space, the Moon, and Mars.
Image: NASA
Artist’s concept of NASA’s Valkyrie humanoid robot working on the surface of Mars.
NASA’s existing humanoid robots, including Robonaut 2 and Valkyrie, were designed to operate on Earth. Robonaut 2 ended up going to space anyway (it’s recently returned to Earth for repairs), but its hardware was certainly never intended to function outside of the International Space Station. Working in a vacuum involves designing for a much more rigorous set of environmental challenges, and things get even worse on the Moon or on Mars, where highly abrasive dust gets everywhere.
We know that it’s possible to design robots for long term operation in these kinds of environments because we’ve done it before. But if you’re not actually going to send your robot off-world, there’s very little reason to bother making sure that it can operate through (say) 300° Celsius temperature swings like you’d find on the Moon. In the past, NASA has quite sensibly focused on designing robots that can be used as platforms for the development of software and techniques that could one day be applied to off-world operations, without over-engineering those specific robots to operate in places that they would almost certainly never go. As NASA increasingly focuses on a return to the Moon, though, maybe it’s time to start thinking about a humanoid robot that could actually do useful stuff on the lunar surface.
Image: NASA
Artist’s concept of the Gateway moon-orbiting space station (seen on the right) with an Orion crew vehicle approaching.
The other possibility that I can think of, and perhaps the more likely one, is that this next humanoid robot will be a direct successor to Robonaut 2, intended for NASA’s Gateway space station orbiting the Moon. Some of the robotics folks at NASA that we’ve talked to recently have emphasized how important robotics will be for Gateway:
Trey Smith, NASA Ames: Everybody at NASA is really excited about work on the Gateway space station that would be in near lunar space. We don’t have definite plans for what would happen on the Gateway yet, but there’s a general recognition that intra-vehicular robots are important for space stations. And so, it would not be surprising to see a mobile manipulator like Robonaut, and a free flyer like Astrobee, on the Gateway.
If you have an un-crewed cargo vehicle that shows up stuffed to the rafters with cargo bags and it docks with the Gateway when there’s no crew there, it would be very useful to have intra-vehicular robots that can pull all those cargo bags out, unpack them, stow all the items, and then even allow the cargo vehicle to detach before the crew show up so that the crew don’t have to waste their time with that.
Julia Badger, NASA JSC: One of the systems on board Gateway is going to be intravehicular robots. They’re not going to necessarily look like Robonaut, but they’ll have some of the same functionality as Robonaut—being mobile, being able to carry payloads from one part of the module to another, doing some dexterous manipulation tasks, inspecting behind panels, those sorts of things.
Image: NASA
Artist’s concept of NASA’s Valkyrie humanoid robot working inside a spacecraft.
Since Gateway won’t be crewed by humans all of the time, it’ll be important to have a permanent robotic presence to keep things running while nobody is home while saving on resources by virtue of the fact that robots aren’t always eating food, drinking water, consuming oxygen, demanding that the temperature stays just so, and producing a variety of disgusting kinds of waste. Obviously, the robot won’t be as capable as humans, but if they can manage to do even basic continuing maintenance tasks (most likely through at least partial teleoperation), that would be very useful.
Photo: Evan Ackerman/IEEE Spectrum
NASA’s Robonaut team plans to perform a variety of mobility and motion-planning experiments using the robot’s new legs, which can grab handrails on the International Space Station.
As for whether robots designed for Gateway would really fall into the “humanoid” category, it’s worth considering that Gateway is designed for humans, implying that an effective robotic system on Gateway would need to be able to interact with the station in similar ways to how a human astronaut would. So, you’d expect to see arms with end-effectors that can grip things as well as push buttons, and some kind of mobility system—the legged version of Robonaut 2 seems like a likely template, but redesigned from the ground up to work in space, incorporating all the advances in robotics hardware and computing that have taken place over the last decade.
We’ve been pestering NASA about this for a little bit now, and they’re not ready to comment on this project, or even to confirm it. And again, everything in this article (besides the job post, which you should totally check out and consider applying for) is just speculation on our part, and we could be wrong about absolutely all of it. As soon as we hear more, we’ll definitely let you know. Continue reading
#435822 The Internet Is Coming to the Rest of ...
People surf it. Spiders crawl it. Gophers navigate it.
Now, a leading group of cognitive biologists and computer scientists want to make the tools of the Internet accessible to the rest of the animal kingdom.
Dubbed the Interspecies Internet, the project aims to provide intelligent animals such as elephants, dolphins, magpies, and great apes with a means to communicate among each other and with people online.
And through artificial intelligence, virtual reality, and other digital technologies, researchers hope to crack the code of all the chirps, yips, growls, and whistles that underpin animal communication.
Oh, and musician Peter Gabriel is involved.
“We can use data analysis and technology tools to give non-humans a lot more choice and control,” the former Genesis frontman, dressed in his signature Nehru-style collar shirt and loose, open waistcoat, told IEEE Spectrum at the inaugural Interspecies Internet Workshop, held Monday in Cambridge, Mass. “This will be integral to changing our relationship with the natural world.”
The workshop was a long time in the making.
Eighteen years ago, Gabriel visited a primate research center in Atlanta, Georgia, where he jammed with two bonobos, a male named Kanzi and his half-sister Panbanisha. It was the first time either bonobo had sat at a piano before, and both displayed an exquisite sense of musical timing and melody.
Gabriel seemed to be speaking to the great apes through his synthesizer. It was a shock to the man who once sang “Shock the Monkey.”
“It blew me away,” he says.
Add in the bonobos’ ability to communicate by pointing to abstract symbols, Gabriel notes, and “you’d have to be deaf, dumb, and very blind not to notice language being used.”
Gabriel eventually teamed up with Internet protocol co-inventor Vint Cerf, cognitive psychologist Diana Reiss, and IoT pioneer Neil Gershenfeld to propose building an Interspecies Internet. Presented in a 2013 TED Talk as an “idea in progress,” the concept proved to be ahead of the technology.
“It wasn’t ready,” says Gershenfeld, director of MIT’s Center for Bits and Atoms. “It needed to incubate.”
So, for the past six years, the architects of the Dolittlesque initiative embarked on two small pilot projects, one for dolphins and one for chimpanzees.
At her Hunter College lab in New York City, Reiss developed what she calls the D-Pad—a touchpad for dolphins.
Reiss had been trying for years to create an underwater touchscreen with which to probe the cognition and communication skills of bottlenose dolphins. But “it was a nightmare coming up with something that was dolphin-safe and would work,” she says.
Her first attempt emitted too much heat. A Wii-like system of gesture recognition proved too difficult to install in the dolphin tanks.
Eventually, she joined forces with Rockefeller University biophysicist Marcelo Magnasco and invented an optical detection system in which images and infrared sensors are projected through an underwater viewing window onto a glass panel, allowing the dolphins to play specially designed apps, including one dubbed Whack-a-Fish.
Meanwhile, in the United Kingdom, Gabriel worked with Alison Cronin, director of the ape rescue center Monkey World, to test the feasibility of using FaceTime with chimpanzees.
The chimps engaged with the technology, Cronin reported at this week’s workshop. However, our hominid cousins proved as adept at videotelephonic discourse as my three-year-old son is at video chatting with his grandparents—which is to say, there was a lot of pass-the-banana-through-the-screen and other silly games, and not much meaningful conversation.
“We can use data analysis and technology tools to give non-humans a lot more choice and control.”
—Peter Gabriel
The buggy, rudimentary attempt at interspecies online communication—what Cronin calls her “Max Headroom experiment”—shows that building the Interspecies Internet will not be as simple as giving out Skype-enabled tablets to smart animals.
“There are all sorts of problems with creating a human-centered experience for another animal,” says Gabriel Miller, director of research and development at the San Diego Zoo.
Miller has been working on animal-focused sensory tools such as an “Elephone” (for elephants) and a “Joybranch” (for birds), but it’s not easy to design efficient interactive systems for other creatures—and for the Interspecies Internet to be successful, Miller points out, “that will be super-foundational.”
Researchers are making progress on natural language processing of animal tongues. Through a non-profit organization called the Earth Species Project, former Firefox designer Aza Raskin and early Twitter engineer Britt Selvitelle are applying deep learning algorithms developed for unsupervised machine translation of human languages to fashion a Rosetta Stone–like tool capable of interpreting the vocalizations of whales, primates, and other animals.
Inspired by the scientists who first documented the complex sonic arrangements of humpback whales in the 1960s—a discovery that ushered in the modern marine conservation movement—Selvitelle hopes that an AI-powered animal translator can have a similar effect on environmentalism today.
“A lot of shifts happen when someone who doesn’t have a voice gains a voice,” he says.
A challenge with this sort of AI software remains verification and validation. Normally, machine-learning algorithms are benchmarked against a human expert, but who is to say if a cybernetic translation of a sperm whale’s clicks is accurate or not?
One could back-translate an English expression into sperm whale-ese and then into English again. But with the great apes, there might be a better option.
According to primatologist Sue Savage-Rumbaugh, expertly trained bonobos could serve as bilingual interpreters, translating the argot of apes into the parlance of people, and vice versa.
Not just any trained ape will do, though. They have to grow up in a mixed Pan/Homo environment, as Kanzi and Panbanisha were.
“If I can have a chat with a cow, maybe I can have more compassion for it.”
—Jeremy Coller
Those bonobos were raised effectively from birth both by Savage-Rumbaugh, who taught the animals to understand spoken English and to communicate via hundreds of different pictographic “lexigrams,” and a bonobo mother named Matata that had lived for six years in the Congolese rainforests before her capture.
Unlike all other research primates—which are brought into captivity as infants, reared by human caretakers, and have limited exposure to their natural cultures or languages—those apes thus grew up fluent in both bonobo and human.
Panbanisha died in 2012, but Kanzi, aged 38, is still going strong, living at an ape sanctuary in Des Moines, Iowa. Researchers continue to study his cognitive abilities—Francine Dolins, a primatologist at the University of Michigan-Dearborn, is running one study in which Kanzi and other apes hunt rabbits and forage for fruit through avatars on a touchscreen. Kanzi could, in theory, be recruited to check the accuracy of any Google Translate–like app for bonobo hoots, barks, grunts, and cries.
Alternatively, Kanzi could simply provide Internet-based interpreting services for our two species. He’s already proficient at video chatting with humans, notes Emily Walco, a PhD student at Harvard University who has personally Skyped with Kanzi. “He was super into it,” Walco says.
And if wild bonobos in Central Africa can be coaxed to gather around a computer screen, Savage-Rumbaugh is confident Kanzi could communicate with them that way. “It can all be put together,” she says. “We can have an Interspecies Internet.”
“Both the technology and the knowledge had to advance,” Savage-Rumbaugh notes. However, now, “the techniques that we learned could really be extended to a cow or a pig.”
That’s music to the ears of Jeremy Coller, a private equity specialist whose foundation partially funded the Interspecies Internet Workshop. Coller is passionate about animal welfare and has devoted much of his philanthropic efforts toward the goal of ending factory farming.
At the workshop, his foundation announced the creation of the Coller Doolittle Prize, a US $100,000 award to help fund further research related to the Interspecies Internet. (A working group also formed to synthesize plans for the emerging field, to facilitate future event planning, and to guide testing of shared technology platforms.)
Why would a multi-millionaire with no background in digital communication systems or cognitive psychology research want to back the initiative? For Coller, the motivation boils to interspecies empathy.
“If I can have a chat with a cow,” he says, “maybe I can have more compassion for it.”
An abridged version of this post appears in the September 2019 print issue as “Elephants, Dolphins, and Chimps Need the Internet, Too.” Continue reading
#435784 Amazon Uses 800 Robots to Run This ...
At Amazon’s re:MARS conference in Las Vegas today, who else but Amazon is introducing two new robots designed to make its fulfillment centers even more fulfilling. Xanthus (named after a mythological horse that could very briefly talk but let’s not read too much into that) is a completely redesigned drive unit, one of the robotic mobile bases that carries piles of stuff around for humans to pick from. It has a thinner profile, a third of the parts, costs half as much, and can wear different modules on top to perform a much wider variety of tasks than its predecessor.
Pegasus (named after a mythological horse that could fly but let’s not read too much into that either) is also a mobile robot, but much smaller than Xanthus, designed to help the company quickly and accurately sort individual packages. For Amazon, it’s a completely new large-scale robotic system involving tightly coordinated fleets of robots tossing boxes down chutes, and it’s just as fun to watch as it sounds.
Amazon has 800 Pegasus units already deployed at a sorting facility in the United States, adding to their newly updated total of 200,000 robotic drive units worldwide.
If the Pegasus system looks familiar, it’s because other warehouse automation companies have had something that’s at least superficially very similar up and running for years.
Photo: Amazon
Pegasus is one of Amazon’s new warehouse robots, equipped with a conveyor belt on top and used in the company’s sorting facilities.
But the most interesting announcement that Amazon made, kind of low key and right at the end of their re:MARS talk, is that they’re working on ways of making some of their mobile robots actually collaborative, leveraging some of the technology that they acquired from Boulder, Colo.-based warehouse robotics startup Canvas Technology earlier this year:
“With our recent acquisition of Canvas, we expect to be able to combine this drive platform with AI and autonomous mobility capabilities, and for the first time, allow our robots to move outside of our robotic drive fields, and interact collaboratively with our associates to do a number of mobility tasks,” said Brad Porter, VP of robotics at Amazon.
At the moment, Amazon’s robots are physically separated from humans except for one highly structured station where the human only interacts with the robot in one or two very specific ways. We were told a few months ago that Amazon would like to have mobile robots that are able to move things through the areas of fulfillment centers that have people in them, but that they’re (quite rightly) worried about the safety aspects of having robots and humans work around each other. Other companies are already doing this on a smaller scale, and it means developing a reliable safety system that can handle randomly moving humans, environmental changes, and all kinds of other stuff. It’s much more difficult than having a nice, clean, roped-off area to work in where a wayward human would be an exception rather than just another part of the job.
Photo: Canvas Technology
A robot created by Canvas Technology, a Boulder, Colo.-based warehouse robotics startup acquired by Amazon earlier this year.
It now seems like Canvas has provided the secret sauce that Amazon needed to start implementing this level of autonomy. As for what it’s going to look like, our best guess is that Amazon is going to have to do a little bit more than slap some extra sensors onto Xanthus or Pegasus, if for no other reason than the robots will almost certainly need more ground clearance to let them operate away from the reliably flat floors that they’re accustomed to. We’re expecting to see them performing many of the tasks that companies like Fetch Robotics and OTTO Motors are doing already—moving everything from small boxes to large pallets to keep humans from having to waste time walking.
Of course, this all feeds back into what drives Amazon more than anything else: efficiency. And for better or worse, humans are not uniquely good at moving things from place to place, so it’s no surprise that Amazon wants to automate that, too. The good news is that, at least for now, Amazon still needs humans to babysit all those robots.
[ Amazon ] Continue reading