Tag Archives: humanoid robot
#435750 Video Friday: Amazon CEO Jeff Bezos ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events):
RSS 2019 – June 22-26, 2019 – Freiburg, Germany
Hamlyn Symposium on Medical Robotics – June 23-26, 2019 – London, U.K.
ETH Robotics Summer School – June 27-1, 2019 – Zurich, Switzerland
MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, U.K.
Let us know if you have suggestions for next week, and enjoy today’s videos.
Last week at the re:MARS conference, Amazon CEO and aspiring supervillain Jeff Bezos tried out this pair of dexterous robotic hands, which he described as “weirdly natural” to operate. The system combines Shadow Robot’s anthropomorphic robot hands with SynTouch’s biomimetic tactile sensors and HaptX’s haptic feedback gloves.
After playing with the robot, Bezos let out his trademark evil laugh.
[ Shadow Robot ]
The RoboMaster S1 is DJI’s advanced new educational robot that opens the door to limitless learning and entertainment. Develop programming skills, get familiar with AI technology, and enjoy thrilling FPV driving with games and competition. From young learners to tech enthusiasts, get ready to discover endless possibilities with the RoboMaster S1.
[ DJI ]
It’s very impressive to see DLR’s humanoid robot Toro dynamically balancing, even while being handed heavy objects, pushing things, and using multi-contact techniques to kick a fire extinguisher for some reason.
The paper is in RA-L, and you can find it at the link below.
[ RA-L ] via [ DLR ]
Thanks Maximo!
Is it just me, or does the Suzumori Endo Robotics Laboratory’s Super Dragon arm somehow just keep getting longer?
Suzumori Endo Lab, Tokyo Tech developed a 10 m-long articulated manipulator for investigation inside the primary containment vessel of the Fukushima Daiichi Nuclear Power Plants. We employed a coupled tendon-driven mechanism and a gravity compensation mechanism using synthetic fiber ropes to design a lightweight and slender articulated manipulator. This work was published in IEEE Robotics and Automation Letters and Transactions of the JSME.
[ Suzumori Endo Lab ]
From what I can make out thanks to Google Translate, this cute little robot duck (developed by Nissan) helps minimize weeds in rice fields by stirring up the water.
[ Nippon.com ]
Confidence in your robot is when you can just casually throw it off of a balcony 15 meters up.
[ SUTD ]
You had me at “we’re going to completely submerge this apple in chocolate syrup.”
[ Soft Robotics Inc ]
In the mid 2020s, the European Space Agency is planning on sending a robotic sample return mission to the Moon. It’s called Heracles, after the noted snake-strangler of Greek mythology.
[ ESA ]
Rethink Robotics is still around, they’re just much more German than before. And Sawyer is still hard at work stealing jobs from humans.
[ Rethink Robotics ]
The reason to watch this new video of the Ghost Robotics Vision 60 quadruped is for the 3 seconds worth of barrel roll about 40 seconds in.
[ Ghost Robotics ]
This is a relatively low-altitude drop for Squishy Robotics’ tensegrity scout, but it still cool to watch a robot that’s resilient enough to be able to fall and just not worry about it.
[ Squishy Robotics ]
We control here the Apptronik DRACO bipedal robot for unsupported dynamic locomotion. DRACO consists of a 10 DoF lower body with liquid cooled viscoelastic actuators to reduce weight, increase payload, and achieve fast dynamic walking. Control and walking algorithms are designed by UT HCRL Laboratory.
I think all robot videos should be required to start with two “oops” clips followed by a “for real now” clip.
[ Apptronik ]
SAKE’s EZGripper manages to pick up a wrench, and also pick up a raspberry without turning it into instajam.
[ SAKE Robotics ]
And now: the robotic long-tongued piggy, courtesy Sony Toio.
[ Toio ]
In this video the ornithopter developed inside the ERC Advanced Grant GRIFFIN project performs its first flight. This projects aims to develop a flapping wing system with manipulation and human interaction capabilities.
A flapping-wing system with manipulation and human interaction capabilities, you say? I would like to subscribe to your newsletter.
[ GRVC ]
KITECH’s robotic hands and arms can manipulate, among other things, five boxes of Elmos. I’m not sure about the conversion of Elmos to Snuffleupaguses, although it turns out that one Snuffleupagus is exactly 1,000 pounds.
[ Ji-Hun Bae ]
The Australian Centre for Field Robotics (ACFR) has been working on agricultural robots for almost a decade, and this video sums up a bunch of the stuff that they’ve been doing, even if it’s more amusing than practical at times.
[ ACFR ]
ROS 2 is great for multi-robot coordination, like when you need your bubble level to stay really, really level.
[ Acutronic Robotics ]
We don’t hear iRobot CEO Colin Angle give a lot of talks, so this recent one (from Amazon’s re:MARS conference) is definitely worth a listen, especially considering how much innovation we’ve seen from iRobot recently.
Colin Angle, founder and CEO of iRobot, has unveil a series of breakthrough innovations in home robots from iRobot. For the first time on stage, he will discuss and demonstrate what it takes to build a truly intelligent system of robots that work together to accomplish more within the home – and enable that home, and the devices within it, to work together as one.
[ iRobot ]
In the latest episode of Robots in Depth, Per speaks with Federico Pecora from the Center for Applied Autonomous Sensor Systems at Örebro University in Sweden.
Federico talks about working on AI and service robotics. In this area he has worked on planning, especially focusing on why a particular goal is the one that the robot should work on. To make robots as useful and user friendly as possible, he works on inferring the goal from the robot’s environment so that the user does not have to tell the robot everything.
Federico has also worked with AI robotics planning in industry to optimize results. Managing the relative importance of tasks is another challenging area there. In this context, he works on automating not only a single robot for its goal, but an entire fleet of robots for their collective goal. We get to hear about how these techniques are being used in warehouse operations, in mines and in agriculture.
[ Robots in Depth ] Continue reading
#435722 Stochastic Robots Use Randomness to ...
The idea behind swarm robots is to replace discrete, expensive, breakable uni-tasking components with a whole bunch of much simpler, cheaper, and replaceable robots that can work together to do the same sorts of tasks. Unfortunately, all of those swarm robots end up needing their own computing and communications and stuff if you want to get them to do what you want them to do.
A different approach to swarm robotics is to use a swarm of much cheaper robots that are far less intelligent. In fact, they may not have to be intelligent at all, if you can rely on their physical characteristics to drive them instead. These swarms are “stochastic,” meaning that their motions are randomly determined, but if you’re clever and careful, you can still get them to do specific things.
Georgia Tech has developed some little swarm robots called “smarticles” that can’t really do much at all on their own, but once you put them together into a jumble, their randomness can actually accomplish something.
Honestly, calling these particle robots “smart” might be giving them a bit too much credit, because they’re actually kind of dumb and strictly speaking not capable of all that much on their own. A single smarticle weighs 35 grams, and consists of some little 3D-printed flappy bits attached to servos, plus an Arduino Pro Mini, a battery, and a light or sound sensor. When its little flappy bits are activated, each smarticle can move slightly, but a single one mostly just moves around in a square and then will gradually drift in a mostly random direction over time.
It gets more interesting when you throw a whole bunch of smarticles into a constrained area. A small collection of five or 10 smarticles constrained together form a “supersmarticle,” but besides being in close proximity to one another, the smarticles within the supersmarticle aren’t communicating or anything like that. As far as each smarticle is concerned, they’re independent, but weirdly, a bumble of them can work together without working together.
“These are very rudimentary robots whose behavior is dominated by mechanics and the laws of physics,” said Dan Goldman, a Dunn Family Professor in the School of Physics at the Georgia Institute of Technology.
The researchers noticed that if one small robot stopped moving, perhaps because its battery died, the group of smarticles would begin moving in the direction of that stalled robot. Graduate student Ross Warkentin learned he could control the movement by adding photo sensors to the robots that halt the arm flapping when a strong beam of light hits one of them.
“If you angle the flashlight just right, you can highlight the robot you want to be inactive, and that causes the ring to lurch toward or away from it, even though no robots are programmed to move toward the light,” Goldman said. “That allowed steering of the ensemble in a very rudimentary, stochastic way.”
It turns out that it’s possible to model this behavior, and control a supersmarticle with enough fidelity to steer it through a maze. And while these particular smarticles aren’t all that small, strictly speaking, the idea is to develop techniques that will work when robots are scaled way way down to the point where you can't physically fit useful computing in there at all.
The researchers are also working on some other concepts, like these:
Image: Science Robotics
The Georgia Tech researchers envision stochastic robot swarms that don’t have a perfectly defined shape or delineation but are capable of self-propulsion, relying on the ensemble-level behaviors that lead to collective locomotion. In such a robot, the researchers say, groups of largely generic agents may be able to achieve complex goals, as observed in biological collectives.
Er, yeah. I’m…not sure I really want there to be a bipedal humanoid robot built out of a bunch of tiny robots. Like, that seems creepy somehow, you know? I’m totally okay with slugs, but let’s not get crazy.
“A robot made of robots: Emergent transport and control of a smarticle ensemble, by William Savoie, Thomas A. Berrueta, Zachary Jackson, Ana Pervan, Ross Warkentin, Shengkai Li, Todd D. Murphey, Kurt Wiesenfeld, and Daniel I. Goldman” from the Georgia Institute of Technology, appears in the current issue of Science Robotics. Continue reading