Tag Archives: huge

#437905 New Deep Learning Method Helps Robots ...

One of the biggest things standing in the way of the robot revolution is their inability to adapt. That may be about to change though, thanks to a new approach that blends pre-learned skills on the fly to tackle new challenges.

Put a robot in a tightly-controlled environment and it can quickly surpass human performance at complex tasks, from building cars to playing table tennis. But throw these machines a curve ball and they’re in trouble—just check out this compilation of some of the world’s most advanced robots coming unstuck in the face of notoriously challenging obstacles like sand, steps, and doorways.

The reason robots tend to be so fragile is that the algorithms that control them are often manually designed. If they encounter a situation the designer didn’t think of, which is almost inevitable in the chaotic real world, then they simply don’t have the tools to react.

Rapid advances in AI have provided a potential workaround by letting robots learn how to carry out tasks instead of relying on hand-coded instructions. A particularly promising approach is deep reinforcement learning, where the robot interacts with its environment through a process of trial-and-error and is rewarded for carrying out the correct actions. Over many repetitions it can use this feedback to learn how to accomplish the task at hand.

But the approach requires huge amounts of data to solve even simple tasks. And most of the things we would want a robot to do are actually comprised of many smaller tasks—for instance, delivering a parcel involves learning how to pick an object up, how to walk, how to navigate, and how to pass an object to someone else, among other things.

Training all these sub-tasks simultaneously is hugely complex and far beyond the capabilities of most current AI systems, so many experiments so far have focused on narrow skills. Some have tried to train AI on multiple skills separately and then use an overarching system to flip between these expert sub-systems, but these approaches still can’t adapt to completely new challenges.

Building off this research, though, scientists have now created a new AI system that can blend together expert sub-systems specialized for a specific task. In a paper in Science Robotics, they explain how this allows a four-legged robot to improvise new skills and adapt to unfamiliar challenges in real time.

The technique, dubbed multi-expert learning architecture (MELA), relies on a two-stage training approach. First the researchers used a computer simulation to train two neural networks to carry out two separate tasks: trotting and recovering from a fall.

They then used the models these two networks learned as seeds for eight other neural networks specialized for more specific motor skills, like rolling over or turning left or right. The eight “expert networks” were trained simultaneously along with a “gating network,” which learns how to combine these experts to solve challenges.

Because the gating network synthesizes the expert networks rather than switching them on sequentially, MELA is able to come up with blends of different experts that allow it to tackle problems none could solve alone.

The authors liken the approach to training people in how to play soccer. You start out by getting them to do drills on individual skills like dribbling, passing, or shooting. Once they’ve mastered those, they can then intelligently combine them to deal with more dynamic situations in a real game.

After training the algorithm in simulation, the researchers uploaded it to a four-legged robot and subjected it to a battery of tests, both indoors and outdoors. The robot was able to adapt quickly to tricky surfaces like gravel or pebbles, and could quickly recover from being repeatedly pushed over before continuing on its way.

There’s still some way to go before the approach could be adapted for real-world commercially useful robots. For a start, MELA currently isn’t able to integrate visual perception or a sense of touch; it simply relies on feedback from the robot’s joints to tell it what’s going on around it. The more tasks you ask the robot to master, the more complex and time-consuming the training will get.

Nonetheless, the new approach points towards a promising way to make multi-skilled robots become more than the sum of their parts. As much fun as it is, it seems like laughing at compilations of clumsy robots may soon be a thing of the past.

Image Credit: Yang et al., Science Robotics Continue reading

Posted in Human Robots

#437869 Video Friday: Japan’s Gundam Robot ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ACRA 2020 – December 8-10, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today’s videos.

Another BIG step for Japan’s Gundam project.

[ Gundam Factory ]

We present an interactive design system that allows users to create sculpting styles and fabricate clay models using a standard 6-axis robot arm. Given a general mesh as input, the user iteratively selects sub-areas of the mesh through decomposition and embeds the design expression into an initial set of toolpaths by modifying key parameters that affect the visual appearance of the sculpted surface finish. We demonstrate the versatility of our approach by designing and fabricating different sculpting styles over a wide range of clay models.

[ Disney Research ]

China’s Chang’e-5 completed the drilling, sampling and sealing of lunar soil at 04:53 BJT on Wednesday, marking the first automatic sampling on the Moon, the China National Space Administration (CNSA) announced Wednesday.

[ CCTV ]

Red Hat’s been putting together an excellent documentary on Willow Garage and ROS, and all five parts have just been released. We posted Part 1 a little while ago, so here’s Part 2 and Part 3.

Parts 4 and 5 are at the link below!

[ Red Hat ]

Congratulations to ANYbotics on a well-deserved raise!

ANYbotics has origins in the Robotic Systems Lab at ETH Zurich, and ANYmal’s heritage can be traced back at least as far as StarlETH, which we first met at ICRA 2013.

[ ANYbotics ]

Most conventional robots are working with 0.05-0.1mm accuracy. Such accuracy requires high-end components like low-backlash gears, high-resolution encoders, complicated CNC parts, powerful motor drives, etc. Those in combination end up an expensive solution, which is either unaffordable or unnecessary for many applications. As a result, we found the Apicoo Robotics to provide our customers solutions with a much lower cost and higher stability.

[ Apicoo Robotics ]

The Skydio 2 is an incredible drone that can take incredible footage fully autonomously, but it definitely helps if you do incredible things in incredible places.

[ Skydio ]

Jueying is the first domestic sensitive quadruped robot for industry applications and scenarios. It can coordinate (replace) humans to reach any place that can be reached. It has superior environmental adaptability, excellent dynamic balance capabilities and precise Environmental perception capabilities. By carrying functional modules for different application scenarios in the safe load area, the mobile superiority of the quadruped robot can be organically integrated with the commercialization of functional modules, providing smart factories, smart parks, scene display and public safety application solutions.

[ DeepRobotics ]

We have developed semi-autonomous quadruped robot, called LASER-D (Legged-Agile-Smart-Efficient Robot for Disinfection) for performing disinfection in cluttered environments. The robot is equipped with a spray-based disinfection system and leverages the body motion to controlling the spray action without the need for an extra stabilization mechanism. The system includes an image processing capability to verify disinfected regions with high accuracy. This system allows the robot to successfully carry out effective disinfection tasks while safely traversing through cluttered environments, climb stairs/slopes, and navigate on slippery surfaces.

[ USC Viterbi ]

We propose the “multi-vision hand”, in which a number of small high-speed cameras are mounted on the robot hand of a common 7 degrees-of-freedom robot. Also, we propose visual-servoing control by using a multi-vision system that combines the multi-vision hand and external fixed high-speed cameras. The target task was ball catching motion, which requires high-speed operation. In the proposed catching control, the catch position of the ball, which is estimated by the external fixed high-speed cameras, is corrected by the multi-vision hand in real-time.

More details available through IROS on-demand.

[ Namiki Laboratory ]

Shunichi Kurumaya wrote in to share his work on PneuFinger, a pneumatically actuated compliant robotic gripping system.

[ Nakamura Lab ]

Thanks Shunichi!

Motivated by insights into the human teaching process, we introduce a method for incorporating unstructured natural language into imitation learning. At training time, the expert can provide demonstrations along with verbal descriptions in order to describe the underlying intent, e.g., “Go to the large green bowl’’. The training process, then, interrelates the different modalities to encode the correlations between language, perception, and motion. The resulting language-conditioned visuomotor policies can be conditioned at run time on new human commands and instructions, which allows for more fine-grained control over the trained policies while also reducing situational ambiguity.

[ ASU ]

Thanks Heni!

Gita is on sale for the holidays for only $2,000.

[ Gita ]

This video introduces a computational approach for routing thin artificial muscle actuators through hyperelastic soft robots, in order to achieve a desired deformation behavior. Provided with a robot design, and a set of example deformations, we continuously co-optimize the routing of actuators, and their actuation, to approximate example deformations as closely as possible.

[ Disney Research ]

Researchers and mountain rescuers in Switzerland are making huge progress in the field of autonomous drones as the technology becomes more in-demand for global search-and-rescue operations.

[ SWI ]

This short clip of the Ghost Robotics V60 features an interesting, if awkward looking, righting behavior at the end.

[ Ghost Robotics ]

Europe’s Rosalind Franklin ExoMars rover has a younger ’sibling’, ExoMy. The blueprints and software for this mini-version of the full-size Mars explorer are available for free so that anyone can 3D print, assemble and program their own ExoMy.

[ ESA ]

The holiday season is here, and with the added impact of Covid-19 consumer demand is at an all-time high. Berkshire Grey is the partner that today’s leading organizations turn to when it comes to fulfillment automation.

[ Berkshire Grey ]

Until very recently, the vast majority of studies and reports on the use of cargo drones for public health were almost exclusively focused on the technology. The driving interest from was on the range that these drones could travel, how much they could carry and how they worked. Little to no attention was placed on the human side of these projects. Community perception, community engagement, consent and stakeholder feedback were rarely if ever addressed. This webinar presents the findings from a very recent study that finally sheds some light on the human side of drone delivery projects.

[ WeRobotics ] Continue reading

Posted in Human Robots

#437851 Boston Dynamics’ Spot Robot Dog ...

Boston Dynamics has been fielding questions about when its robots are going to go on sale and how much they’ll cost for at least a dozen years now. I can say this with confidence, because that’s how long I’ve been a robotics journalist, and I’ve been pestering them about it the entire time. But it’s only relatively recently that the company started to make a concerted push away from developing robots exclusively for the likes of DARPA into platforms with more commercial potential, starting with a compact legged robot called Spot, first introduced in 2016.

Since then, we’ve been following closely as Spot has gone from a research platform to a product, and today, Boston Dynamics is announcing the final step in that process: commercial availability. You can now order a Spot Explorer Kit from the Boston Dynamics online store for US $74,500 (plus tax), shipping included, with delivery in 6 to 8 weeks. FINALLY!

Over the past 10 months or so, Boston Dynamics has leased Spot robots to carefully selected companies, research groups, and even a few individuals as part of their early adopter program—that’s where all of the clips in the video below came from. While there are over 100 Spots out in the world right now, getting one of them has required convincing Boston Dynamics up front that you knew more or less exactly what you wanted to do and how you wanted to do it. If you’re a big construction company or the Jet Propulsion Laboratory or Adam Savage, that’s all well and good, but for other folks who think that a Spot could be useful for them somehow and want to give it a shot, this new availability provides a fewer-strings attached opportunity to do some experimentation with the robot.

There’s a lot of cool stuff going on in that video, but we were told that the one thing that really stood out to the folks at Boston Dynamics was a 2-second clip that you can see on the left-hand side of the screen from 0:19 to 0:21. In it, Spot is somehow managing to walk across a spider web of rebar without getting tripped up, at faster than human speed. This isn’t something that Spot was specifically programmed to do, and in fact the Spot User Guide specifically identifies “rebar mesh” as an unsafe operating environment. But the robot just handles it, and that’s a big part of what makes Spot so useful—its ability to deal with (almost) whatever you can throw at it.

Before you get too excited, Boston Dynamics is fairly explicit that the current license for the robot is intended for commercial use, and the company specifically doesn’t want people to be just using it at home for fun. We know this because we asked (of course we asked), and they told us “we specifically don’t want people to just be using it at home for fun.” Drat. You can still buy one as an individual, but you have to promise that you’ll follow the terms of use and user guidelines, and it sounds like using a robot in your house might be the second-fastest way to invalidate your warranty:

SPOT IS AN AMAZING ROBOT, BUT IS NOT CERTIFIED SAFE FOR IN-HOME USE OR INTENDED FOR USE NEAR CHILDREN OR OTHERS WHO MAY NOT APPRECIATE THE HAZARDS ASSOCIATED WITH ITS OPERATION.

Not being able to get Spot to play with your kids may be disappointing, but for those of you with the sort of kids who are also students, the good news is that Boston Dynamics has carved out a niche for academic institutions, which can buy Spot at a discounted price. And if you want to buy a whole pack of Spots, there’s a bulk discount for Enterprise users as well.

What do you get for $74,500? All this!

Spot robot
Spot battery (2x)
Spot charger
Tablet controller and charger
Robot case for storage and transportation
FREE SHIPPING!

Photo: Boston Dynamics

The basic package includes the robot, two batteries, charger, a tablet controller, and a storage case.

You can view detailed specs here.

So is $75k a lot of money for a robot like Spot, or not all that much? We don’t have many useful points of comparison, partially because it’s not clear to what extent other pre-commercial quadrupedal robots (like ANYmal or Aliengo) share capabilities and features with Spot. For more perspective on Spot’s price tag, we spoke to Michael Perry, vice president of business development at Boston Dynamics.

IEEE Spectrum: Why is Spot so affordable?

Michael Perry: The main goal of selling the robot at this stage is to try to get it into the hands of as many application developers as possible, so that we can learn from the community what the biggest driver of value is for Spot. As a platform, unlocking the value of an ecosystem is our core focus right now.

Spectrum: Why is Spot so expensive?

Perry: Expensive is relative, but compared to the initial prototypes of Spot, we’ve been able to drop down the cost pretty significantly. One key thing has been designing it for robustness—we’ve put hundreds and hundreds of hours on the robot to make sure that it’s able to be successful when it falls, or when it has an electrostatic discharge. We’ve made sure that it’s able to perceive a wide variety of environments that are difficult for traditional vision-based sensors to handle. A lot of that engineering is baked into the core product so that you don’t have to worry about the mobility or robotic side of the equation, you can just focus on application development.

Photos: Boston Dynamics

Accessories for Spot include [clockwise from top left]: Spot GXP with additional ports for payload integration; Spot CAM with panorama camera and advanced comms; Spot CAM+ with pan-tilt-zoom camera for inspections; Spot EAP with lidar to enhance autonomy on large sites; Spot EAP+ with Spot CAM camera plus lidar; and Spot CORE for additional processing power.

The $75k that you’ll pay for the Spot Explorer Kit, it’s important to note, is just the base price for the robot. As with other things that fall into this price range (like a luxury car), there are all kinds of fun ways to drive that cost up with accessories, although for Spot, some of those accessories will be necessary for many (if not most) applications. For example, a couple of expansion ports to make it easier to install your own payloads on Spot will run you $1,275. An additional battery is $4,620. And if you want to really get some work done, the Enhanced Autonomy Package (with 360 cameras, lights, better comms, and a Velodyne VLP-16) will set you back an additional $34,570. If you were hoping for an arm, you’ll have to wait until the end of the year.

Each Spot also includes a year’s worth of software updates and a warranty, although the standard warranty just covers “defects related to materials and workmanship” not “I drove my robot off a cliff” or “I tried to take my robot swimming.” For that sort of thing (user error) to be covered, you’ll need to upgrade to the $12,000 Spot CARE premium service plan to cover your robot for a year as long as you don’t subject it to willful abuse, which both of those examples I just gave probably qualify as.

While we’re on the subject of robot abuse, Boston Dynamics has very sensibly devoted a substantial amount of the Spot User Guide to help new users understand how they should not be using their robot, in order to “lessen the risk of serious injury, death, or robot and other property damage.” According to the guide, some things that could cause Spot to fall include holes, cliffs, slippery surfaces (like ice and wet grass), and cords. Spot’s sensors also get confused by “transparent, mirrored, or very bright obstacles,” and the guide specifically says Spot “may crash into glass doors and windows.” Also this: “Spot cannot predict trajectories of moving objects. Do not operate Spot around moving objects such as vehicles, children, or pets.”

We should emphasize that this is all totally reasonable, and while there are certainly a lot of things to be aware of, it’s frankly astonishing that these are the only things that Boston Dynamics explicitly warns users against. Obviously, not every potentially unsafe situation or thing is described above, but the point is that Boston Dynamics is willing to say to new users, “here’s your robot, go do stuff with it” without feeling the need to hold their hand the entire time.

There’s one more thing to be aware of before you decide to buy a Spot, which is the following:

“All orders will be subject to Boston Dynamics’ Terms and Conditions of Sale which require the beneficial use of its robots.”

Specifically, this appears to mean that you aren’t allowed to (or supposed to) use the robot in a way that could hurt living things, or “as a weapon, or to enable any weapon.” The conditions of sale also prohibit using the robot for “any illegal or ultra-hazardous purpose,” and there’s some stuff in there about it not being cool to use Spot for “nuclear, chemical, or biological weapons proliferation, or development of missile technology,” which seems weirdly specific.

“Once you make a technology more broadly available, the story of it starts slipping out of your hands. Our hope is that ahead of time we’re able to clearly articulate the beneficial uses of the robot in environments where we think the robot has a high potential to reduce the risk to people, rather than potentially causing harm.”
—Michael Perry, Boston Dynamics

I’m very glad that Boston Dynamics is being so upfront about requiring that Spot is used beneficially. However, it does put the company in a somewhat challenging position now that these robots are being sold. Boston Dynamics can (and will) perform some amount of due-diligence before shipping a Spot, but ultimately, once the robots are in someone else’s hands, there’s only so much that BD can do.

Spectrum: Why is beneficial use important to Boston Dynamics?

Perry: One of the key things that we’ve highlighted many times in our license and terms of use is that we don’t want to see the robot being used in any way that inflicts physical harm on people or animals. There are philosophical reasons for that—I think all of us don’t want to see our technology used in a way that would hurt people. But also from a business perspective, robots are really terrible at conveying intention. In order for the robot to be helpful long-term, it has to be trusted as a piece of technology. So rather than looking at a robot and wondering, “is this something that could potentially hurt me,” we want people to think “this is a robot that’s here to help me.” To the extent that people associate Boston Dynamics with cutting edge robots, we think that this is an important stance for the rollout of our first commercial product. If we find out that somebody’s violated our terms of use, their warranty is invalidated, we won’t repair their product, and we have a licensing timeout that would prevent them from accessing their robot after that timeout has expired. It’s a remediation path, but we do think that it’s important to at least provide that as something that helps enforce our position on use of our technology.

It’s very important to keep all of this in context: Spot is a tool. It’s got some autonomy and the appearance of agency, but it’s still just doing what people tell it to do, even if those things might be unsafe. If you read through the user guide, it’s clear how much of an effort Boston Dynamics is making to try to convey the importance of safety to Spot users—and ultimately, barring some unforeseen and catastrophic software or hardware issues, safety is about the users, rather than Boston Dynamics or Spot itself. I bring this up because as we start seeing more and more Spots doing things without Boston Dynamics watching over them quite so closely, accidents are likely inevitable. Spot might step on someone’s foot. It might knock someone over. If Spot was perfectly safe, it wouldn’t be useful, and we have to acknowledge that its impressive capabilities come with some risks, too.

Photo: Boston Dynamics

Each Spot includes a year’s worth of software updates and a warranty, although the standard warranty just covers “defects related to materials and workmanship” not “I drove my robot off a cliff.”

Now that Spot is on the market for real, we’re excited to see who steps up and orders one. Depending on who the potential customer is, Spot could either seem like an impossibly sophisticated piece of technology that they’d never be able to use, or a magical way of solving all of their problems overnight. In reality, it’s of course neither of those things. For the former (folks with an idea but without a lot of robotics knowledge or experience), Spot does a lot out of the box, but BD is happy to talk with people and facilitate connections with partners who might be able to integrate specific software and hardware to get Spot to do a unique task. And for the latter (who may also be folks with an idea but without a lot of robotics knowledge or experience), BD’s Perry offers a reminder Spot is not Rosie the Robot, and would be equally happy to talk about what the technology is actually capable of doing.

Looking forward a bit, we asked Perry whether Spot’s capabilities mean that customers are starting to think beyond using robots to simply replace humans, and are instead looking at them as a way of enabling a completely different way of getting things done.

Spectrum: Do customers interested in Spot tend to think of it as a way of replacing humans at a specific task, or as a system that can do things that humans aren’t able to do?

Perry: There are what I imagine as three levels of people understanding the robot applications. Right now, we’re at level one, where you take a person out of this dangerous, dull job, and put a robot in. That’s the entry point. The second level is, using the robot, can we increase the production of that task? For example, take site documentation on a construction site—right now, people do 360 image capture of a site maybe once a week, and they might do a laser scan of the site once per project. At the second level, the question is, what if you were able to get that data collection every day, or multiple times a day? What kinds of benefits would that add to your process? To continue the construction example, the third level would be, how could we completely redesign this space now that we know that this type of automation is available? To take one example, there are some things that we cannot physically build because it’s too unsafe for people to be a part of that process, but if you were to apply robotics to that process, then you could potentially open up a huge envelope of design that has been inaccessible to people.

To order a Spot of your very own, visit shop.bostondynamics.com.

A version of this post appears in the August 2020 print issue as “$74,500 Will Fetch You a Spot.” Continue reading

Posted in Human Robots

#437796 AI Seeks ET: Machine Learning Powers ...

Can artificial intelligence help the search for life elsewhere in the solar system? NASA thinks the answer may be “yes”—and not just on Mars either.

A pilot AI system is now being tested for use on the ExoMars mission that is currently slated to launch in the summer or fall of 2022. The machine-learning algorithms being developed will help science teams decide how to test Martian soil samples to return only the most meaningful data.

For ExoMars, the AI system will only be used back on earth to analyze data gather by the ExoMars rover. But if the system proves to be as useful to the rovers as now suspected, a NASA mission to Saturn’s moon Titan (now scheduled for 2026 launch) could automate the scientific sleuthing process in the field. This mission will rely on the Dragonfly octocopter drone to fly from surface location to surface location through Titan’s dense atmosphere and drill for signs of life there.

The hunt for microbial life in another world’s soil, either as fossilized remnants or as present-day samples, is very challenging, says Eric Lyness, software lead of the NASA Goddard Planetary Environments Lab in Greenbelt, Md. There is of course no precedent to draw upon, because no one has yet succeeded in astrobiology’s holy grail quest.

But that doesn’t mean AI can’t provide substantial assistance. Lyness explained that for the past few years he’d been puzzling over how to automate portions of an exploratory mission’s geochemical investigation, wherever in the solar system the scientific craft may be.

Last year he decided to try machine learning. “So we got some interns,” he said. “People right out of college or in college, who have been studying machine learning. … And they did some amazing stuff. It turned into much more than we expected.” Lyness and his collaborators presented their scientific analysis algorithm at a geochemistry conference last month.

Illustration: ESA

The ExoMars rover, named Rosalind Franklin, will be the first that can drill down to 2-meter depths, where living soil bacteria could possibly be found.

ExoMars’s rover—named Rosalind Franklin, after one of the co-discoverers of DNA—will be the first that can drill down to 2-meter depths, beyond where solar UV light might penetrate and kill any life forms. In other words, ExoMars will be the first Martian craft with the ability to reach soil depths where living soil bacteria could possibly be found.

“We could potentially find forms of life, microbes or other things like that,” Lyness said. However, he quickly added, very little conclusive evidence today exists to suggest that there’s present-day (microbial) life on Mars. (NASA’s Curiosity rover has sent back some inexplicable observations of both methane and molecular oxygen in the Martian atmosphere that could conceivably be a sign of microbial life forms, though non-biological processes could explain these anomalies too.)

Less controversially, the Rosalind Franklin rover’s drill could also turn up fossilized evidence of life in the Martian soil from earlier epochs when Mars was more hospitable.

NASA’s contribution to the joint Russian/European Space Agency ExoMars project is an instrument called a mass spectrometer that will be used to analyze soil samples from the drill cores. Here, Lyness said, is where AI could really provide a helping hand.

Because the Dragonfly drone and possibly a future mission to Jupiter’s moon Europa would be operating in hostile environments with less opportunity for data transmission to Earth, automating a craft’s astrobiological exploration would be practically a requirement

The spectrometer, which studies the mass distribution of ions in a sample of material, works by blasting the drilled soil sample with a laser and then mapping out the atomic masses of the various molecules and portions of molecules that the laser has liberated. The problem is any given mass spectrum could originate from any number of source compounds, minerals and components. Which always makes analyzing a mass spectrum a gigantic puzzle.

Lyness said his group is studying the mineral montmorillonite, a commonplace component of the Martian soil, to see the many ways it might reveal itself in a mass spectrum. Then his team sneaks in an organic compound with the montmorillonite sample to see how that changes the mass spectrometer output.

“It could take a long time to really break down a spectrum and understand why you’re seeing peaks at certain [masses] in the spectrum,” he said. “So anything you can do to point scientists into a direction that says, ‘Don’t worry, I know it’s not this kind of thing or that kind of thing,’ they can more quickly identify what’s in there.”

Lyness said the ExoMars mission will provide a fertile training ground for his team’s as-yet-unnamed AI algorithm. (He said he’s open to suggestions—though, please, no spoof Boaty McBoatface submissions need apply.)

Because the Dragonfly drone and possibly a future astrobiology mission to Jupiter’s moon Europa would be operating in much more hostile environments with much less opportunity for data transmission back and forth to Earth, automating a craft’s astrobiological exploration would be practically a requirement.

All of which points to a future in mid-2030s in which a nuclear-powered octocopter on a moon of Saturn flies from location to location to drill for evidence of life on this tantalizingly bio-possible world. And machine learning will help power the science.

“We should be researching how to make the science instruments smarter,” Lyness said. “If you can make it smarter at the source, especially for planetary exploration, it has huge payoffs.” Continue reading

Posted in Human Robots

#437791 Is the Pandemic Spurring a Robot ...

“Are robots really destined to take over restaurant kitchens?” This was the headline of an article published by Eater four years ago. One of the experts interviewed was Siddhartha Srinivasa, at the time professor of the Robotics Institute at Carnegie Mellon University and currently director of Robotics and AI for Amazon. He said, “I’d love to make robots unsexy. It’s weird to say this, but when something becomes unsexy, it means that it works so well that you don’t have to think about it. You don’t stare at your dishwasher as it washes your dishes in fascination, because you know it’s gonna work every time… I want to get robots to that stage of reliability.”

Have we managed to get there over the last four years? Are robots unsexy yet? And how has the pandemic changed the trajectory of automation across industries?

The Covid Effect
The pandemic has had a massive economic impact all over the world, and one of the problems faced by many companies has been keeping their businesses running without putting employees at risk of infection. Many organizations are seeking to remain operational in the short term by automating tasks that would otherwise be carried out by humans. According to Digital Trends, since the start of the pandemic we have seen a significant increase in automation efforts in manufacturing, meat packing, grocery stores and more. In a June survey, 44 percent of corporate financial officers said they were considering more automation in response to coronavirus.

MIT economist David Autor described the economic crisis and the Covid-19 pandemic as “an event that forces automation.” But he added that Covid-19 created a kind of disruption that has forced automation in sectors and activities with a shortage of workers, while at the same time there has been no reduction in demand. This hasn’t taken place in hospitality, where demand has practically disappeared, but it is still present in agriculture and distribution. The latter is being altered by the rapid growth of e-commerce, with more efficient and automated warehouses that can provide better service.

China Leads the Way
China is currently in a unique position to lead the world’s automation economy. Although the country boasts a huge workforce, labor costs have multiplied by 10 over the past 20 years. As the world’s factory, China has a strong incentive to automate its manufacturing sector, which enjoys a solid leadership in high quality products. China is currently the largest and fastest-growing market in the world for industrial robotics, with a 21 percent increase up to $5.4 billion in 2019. This represents one third of global sales. As a result, Chinese companies are developing a significant advantage in terms of learning to work with metallic colleagues.

The reasons behind this Asian dominance are evident: the population has a greater capacity and need for tech adoption. A large percentage of the population will soon be of retirement age, without an equivalent younger demographic to replace it, leading to a pressing need to adopt automation in the short term.

China is well ahead of other countries in restaurant automation. As reported in Bloomberg, in early 2020 UBS Group AG conducted a survey of over 13,000 consumers in different countries and found that 64 percent of Chinese participants had ordered meals through their phones at least once a week, compared to a mere 17 percent in the US. As digital ordering gains ground, robot waiters and chefs are likely not far behind. The West harbors a mistrust towards non-humans that the East does not.

The Robot Evolution
The pandemic was a perfect excuse for robots to replace us. But despite the hype around this idea, robots have mostly disappointed during the pandemic.

Just over 66 different kinds of “social” robots have been piloted in hospitals, health centers, airports, office buildings, and other public and private spaces in response to the pandemic, according to a study from researchers at Pompeu Fabra University (Barcelona, Spain). Their survey looked at 195 robot deployments across 35 countries including China, the US, Thailand, and Hong Kong.

But if the “robot revolution” is a movement in which automation, robotics, and artificial intelligence proliferate through the value chain of various industries, bringing a paradigm shift in how we produce, consume, and distribute products—it hasn’t happened yet.

But there’s a more nuanced answer: rather than a revolution, we’re seeing an incremental robot evolution. It’s a trend that will likely accelerate over the next five years, particularly when 5G takes center stage and robotics as a field leaves behind imitation and evolves independently.

Automation Anxiety
Why don’t we finally welcome the long-promised robotic takeover? Despite progress in AI and increased adoption of industrial robots, consumer-facing robotic products are not nearly as ubiquitous as popular culture predicted decades ago. As Amara’s Law says: “We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run.” It seems we are living through the Gartner hype cycle.

People have a complicated relationship with robots, torn between admiring them, fearing them, rejecting them, and even boycotting them, as has happened in the automobile industry.

Retail robot in a Walmart store. Credit: Bossa Nova Robotics
Walmart terminated its contract with Bossa Nova and withdrew its 1,000 inventory robots from its stores because the company was concerned about how shoppers were reacting to seeing the six-foot robots in the aisles.

With road blocks like this, will the World Economic Forum’s prediction of almost half of tasks being carried out by machines by 2025 come to pass?

At the rate we’re going, it seems unlikely, even with the boost in automation caused by the pandemic. Robotics will continue to advance its capabilities, and will take over more human jobs as it does so, but it’s unlikely we’ll hit a dramatic inflection point that could be described as a “revolution.” Instead, the robot evolution will happen the way most societal change does: incrementally, with time for people to adapt both practically and psychologically.

For now though, robots are still pretty sexy.

Image Credit: charles taylor / Shutterstock.com Continue reading

Posted in Human Robots