Tag Archives: how to
#435707 AI Agents Startle Researchers With ...
After 25 million games, the AI agents playing hide-and-seek with each other had mastered four basic game strategies. The researchers expected that part.
After a total of 380 million games, the AI players developed strategies that the researchers didn’t know were possible in the game environment—which the researchers had themselves created. That was the part that surprised the team at OpenAI, a research company based in San Francisco.
The AI players learned everything via a machine learning technique known as reinforcement learning. In this learning method, AI agents start out by taking random actions. Sometimes those random actions produce desired results, which earn them rewards. Via trial-and-error on a massive scale, they can learn sophisticated strategies.
In the context of games, this process can be abetted by having the AI play against another version of itself, ensuring that the opponents will be evenly matched. It also locks the AI into a process of one-upmanship, where any new strategy that emerges forces the opponent to search for a countermeasure. Over time, this “self-play” amounted to what the researchers call an “auto-curriculum.”
According to OpenAI researcher Igor Mordatch, this experiment shows that self-play “is enough for the agents to learn surprising behaviors on their own—it’s like children playing with each other.”
Reinforcement is a hot field of AI research right now. OpenAI’s researchers used the technique when they trained a team of bots to play the video game Dota 2, which squashed a world-champion human team last April. The Alphabet subsidiary DeepMind has used it to triumph in the ancient board game Go and the video game StarCraft.
Aniruddha Kembhavi, a researcher at the Allen Institute for Artificial Intelligence (AI2) in Seattle, says games such as hide-and-seek offer a good way for AI agents to learn “foundational skills.” He worked on a team that taught their AllenAI to play Pictionary with humans, viewing the gameplay as a way for the AI to work on common sense reasoning and communication. “We are, however, quite far away from being able to translate these preliminary findings in highly simplified environments into the real world,” says Kembhavi.
Illustration: OpenAI
AI agents construct a fort during a hide-and-seek game developed by OpenAI.
In OpenAI’s game of hide-and-seek, both the hiders and the seekers received a reward only if they won the game, leaving the AI players to develop their own strategies. Within a simple 3D environment containing walls, blocks, and ramps, the players first learned to run around and chase each other (strategy 1). The hiders next learned to move the blocks around to build forts (2), and then the seekers learned to move the ramps (3), enabling them to jump inside the forts. Then the hiders learned to move all the ramps into their forts before the seekers could use them (4).
The two strategies that surprised the researchers came next. First the seekers learned that they could jump onto a box and “surf” it over to a fort (5), allowing them to jump in—a maneuver that the researchers hadn’t realized was physically possible in the game environment. So as a final countermeasure, the hiders learned to lock all the boxes into place (6) so they weren’t available for use as surfboards.
Illustration: OpenAI
An AI agent uses a nearby box to surf its way into a competitor’s fort.
In this circumstance, having AI agents behave in an unexpected way wasn’t a problem: They found different paths to their rewards, but didn’t cause any trouble. However, you can imagine situations in which the outcome would be rather serious. Robots acting in the real world could do real damage. And then there’s Nick Bostrom’s famous example of a paper clip factory run by an AI, whose goal is to make as many paper clips as possible. As Bostrom told IEEE Spectrum back in 2014, the AI might realize that “human bodies consist of atoms, and those atoms could be used to make some very nice paper clips.”
Bowen Baker, another member of the OpenAI research team, notes that it’s hard to predict all the ways an AI agent will act inside an environment—even a simple one. “Building these environments is hard,” he says. “The agents will come up with these unexpected behaviors, which will be a safety problem down the road when you put them in more complex environments.”
AI researcher Katja Hofmann at Microsoft Research Cambridge, in England, has seen a lot of gameplay by AI agents: She started a competition that uses Minecraft as the playing field. She says the emergent behavior seen in this game, and in prior experiments by other researchers, shows that games can be a useful for studies of safe and responsible AI.
“I find demonstrations like this, in games and game-like settings, a great way to explore the capabilities and limitations of existing approaches in a safe environment,” says Hofmann. “Results like these will help us develop a better understanding on how to validate and debug reinforcement learning systems–a crucial step on the path towards real-world applications.”
Baker says there’s also a hopeful takeaway from the surprises in the hide-and-seek experiment. “If you put these agents into a rich enough environment they will find strategies that we never knew were possible,” he says. “Maybe they can solve problems that we can’t imagine solutions to.” Continue reading
#435703 FarmWise Raises $14.5 Million to Teach ...
We humans spend most of our time getting hungry or eating, which must be really inconvenient for the people who have to produce food for everyone. For a sustainable and tasty future, we’ll need to make the most of what we’ve got by growing more food with less effort, and that’s where the robots can help us out a little bit.
FarmWise, a California-based startup, is looking to enhance farming efficiency by automating everything from seeding to harvesting, starting with the worst task of all: weeding. And they’ve just raised US $14.5 million to do it.
FarmWise’s autonomous, AI-enabled robots are designed to solve farmers’ most pressing challenges by performing a variety of farming functions – starting with weeding, and providing personalized care to every plant they touch. Using machine learning models, computer vision and high-precision mechanical tools, FarmWise’s sophisticated robots cleanly pick weeds from fields, leaving crops with the best opportunity to thrive while eliminating harmful chemical inputs. To date, FarmWise’s robots have efficiently removed weeds from more than 10 million plants.
FarmWise is not the first company to work on large mobile farming robots. A few years ago, we wrote about DeepField Robotics and their giant weed-punching robot. But considering how many humans there are, and how often we tend to get hungry, it certainly seems like there’s plenty of opportunity to go around.
Photo: FarmWise
FarmWise is collecting massive amounts of data about every single plant in an entire field, which is something that hasn’t been possible before. Above, one of the robots at a farm in Salinas Valley, Calif.
Weeding is just one thing that farm robots are able to do. FarmWise is collecting massive amounts of data about every single plant in an entire field, practically on the per-leaf level, which is something that hasn’t been possible before. Data like this could be used for all sorts of things, but generally, the long-term hope is that robots could tend to every single plant individually—weeding them, fertilizing them, telling them what good plants they are, and then mercilessly yanking them out of the ground at absolute peak ripeness. It’s not realistic to do this with human labor, but it’s the sort of data-intensive and monotonous task that robots could be ideal for.
The question with robots like this is not necessarily whether they can do the job that they were created for, because generally, they can—farms are structured enough environments that they lend themselves to autonomous robots, and the tasks are relatively well defined. The issue right now, I think, is whether robots are really time- and cost-effective for farmers. Capable robots are an expensive investment, and even if there is a shortage of human labor, will robots perform well enough to convince farmers to adopt the technology? That’s a solid maybe, and here’s hoping that FarmWise can figure out how to make it work.
[ FarmWise ] Continue reading
#435687 Humanoid Robots Teach Coping Skills to ...
Photo: Rob Felt
IEEE Senior Member Ayanna Howard with one of the interactive androids that help children with autism improve their social and emotional engagement.
THE INSTITUTEChildren with autism spectrum disorder can have a difficult time expressing their emotions and can be highly sensitive to sound, sight, and touch. That sometimes restricts their participation in everyday activities, leaving them socially isolated. Occupational therapists can help them cope better, but the time they’re able to spend is limited and the sessions tend to be expensive.
Roboticist Ayanna Howard, an IEEE senior member, has been using interactive androids to guide children with autism on ways to socially and emotionally engage with others—as a supplement to therapy. Howard is chair of the School of Interactive Computing and director of the Human-Automation Systems Lab at Georgia Tech. She helped found Zyrobotics, a Georgia Tech VentureLab startup that is working on AI and robotics technologies to engage children with special needs. Last year Forbes named Howard, Zyrobotics’ chief technology officer, one of the Top 50 U.S. Women in Tech.
In a recent study, Howard and other researchers explored how robots might help children navigate sensory experiences. The experiment involved 18 participants between the ages of 4 and 12; five had autism, and the rest were meeting typical developmental milestones. Two humanoid robots were programmed to express boredom, excitement, nervousness, and 17 other emotional states. As children explored stations set up for hearing, seeing, smelling, tasting, and touching, the robots modeled what the socially acceptable responses should be.
“If a child’s expression is one of happiness or joy, the robot will have a corresponding response of encouragement,” Howard says. “If there are aspects of frustration or sadness, the robot will provide input to try again.” The study suggested that many children with autism exhibit stronger levels of engagement when the robots interact with them at such sensory stations.
It is one of many robotics projects Howard has tackled. She has designed robots for researching glaciers, and she is working on assistive robots for the home, as well as an exoskeleton that can help children who have motor disabilities.
Howard spoke about her work during the Ethics in AI: Impacts of (Anti?) Social Robotics panel session held in May at the IEEE Vision, Innovation, and Challenges Summit in San Diego. You can watch the session on IEEE.tv.
The next IEEE Vision, Innovation, and Challenges Summit and Honors Ceremony will be held on 15 May 2020 at the JW Marriott Parq Vancouver hotel, in Vancouver.
In this interview with The Institute, Howard talks about how she got involved with assistive technologies, the need for a more diverse workforce, and ways IEEE has benefited her career.
FOCUS ON ACCESSIBILITY
Howard was inspired to work on technology that can improve accessibility in 2008 while teaching high school students at a summer camp devoted to science, technology, engineering, and math.
“A young lady with a visual impairment attended camp. The robot programming tools being used at the camp weren’t accessible to her,” Howard says. “As an engineer, I want to fix problems when I see them, so we ended up designing tools to enable access to programming tools that could be used in STEM education.
“That was my starting motivation, and this theme of accessibility has expanded to become a main focus of my research. One of the things about this world of accessibility is that when you start interacting with kids and parents, you discover another world out there of assistive technologies and how robotics can be used for good in education as well as therapy.”
DIVERSITY OF THOUGHT
The Institute asked Howard why it’s important to have a more diverse STEM workforce and what could be done to increase the number of women and others from underrepresented groups.
“The makeup of the current engineering workforce isn’t necessarily representative of the world, which is composed of different races, cultures, ages, disabilities, and socio-economic backgrounds,” Howard says. “We’re creating products used by people around the globe, so we have to ensure they’re being designed for a diverse population. As IEEE members, we also need to engage with people who aren’t engineers, and we don’t do that enough.”
Educational institutions are doing a better job of increasing diversity in areas such as gender, she says, adding that more work is needed because the enrollment numbers still aren’t representative of the population and the gains don’t necessarily carry through after graduation.
“There has been an increase in the number of underrepresented minorities and females going into engineering and computer science,” she says, “but data has shown that their numbers are not sustained in the workforce.”
ROLE MODEL
Because there are more underrepresented groups on today’s college campuses that can form a community, the lack of engineering role models—although a concern on campuses—is more extreme for preuniversity students, Howard says.
“Depending on where you go to school, you may not know what an engineer does or even consider engineering as an option,” she says, “so there’s still a big disconnect there.”
Howard has been involved for many years in math- and science-mentoring programs for at-risk high school girls. She tells them to find what they’re passionate about and combine it with math and science to create something. She also advises them not to let anyone tell them that they can’t.
Howard’s father is an engineer. She says he never encouraged or discouraged her to become one, but when she broke something, he would show her how to fix it and talk her through the process. Along the way, he taught her a logical way of thinking she says all engineers have.
“When I would try to explain something, he would quiz me and tell me to ‘think more logically,’” she says.
Howard earned a bachelor’s degree in engineering from Brown University, in Providence, R.I., then she received both a master’s and doctorate degree in electrical engineering from the University of Southern California. Before joining the faculty of Georgia Tech in 2005, she worked at NASA’s Jet Propulsion Laboratory at the California Institute of Technology for more than a decade as a senior robotics researcher and deputy manager in the Office of the Chief Scientist.
ACTIVE VOLUNTEER
Howard’s father was also an IEEE member, but that’s not why she joined the organization. She says she signed up when she was a student because, “that was something that you just did. Plus, my student membership fee was subsidized.”
She kept the membership as a grad student because of the discounted rates members receive on conferences.
Those conferences have had an impact on her career. “They allow you to understand what the state of the art is,” she says. “Back then you received a printed conference proceeding and reading through it was brutal, but by attending it in person, you got a 15-minute snippet about the research.”
Howard is an active volunteer with the IEEE Robotics and Automation and the IEEE Systems, Man, and Cybernetics societies, holding many positions and serving on several committees. She is also featured in the IEEE Impact Creators campaign. These members were selected because they inspire others to innovate for a better tomorrow.
“I value IEEE for its community,” she says. “One of the nice things about IEEE is that it’s international.” Continue reading