Tag Archives: how to make

#434854 New Lifelike Biomaterial Self-Reproduces ...

Life demands flux.

Every living organism is constantly changing: cells divide and die, proteins build and disintegrate, DNA breaks and heals. Life demands metabolism—the simultaneous builder and destroyer of living materials—to continuously upgrade our bodies. That’s how we heal and grow, how we propagate and survive.

What if we could endow cold, static, lifeless robots with the gift of metabolism?

In a study published this month in Science Robotics, an international team developed a DNA-based method that gives raw biomaterials an artificial metabolism. Dubbed DASH—DNA-based assembly and synthesis of hierarchical materials—the method automatically generates “slime”-like nanobots that dynamically move and navigate their environments.

Like humans, the artificial lifelike material used external energy to constantly change the nanobots’ bodies in pre-programmed ways, recycling their DNA-based parts as both waste and raw material for further use. Some “grew” into the shape of molecular double-helixes; others “wrote” the DNA letters inside micro-chips.

The artificial life forms were also rather “competitive”—in quotes, because these molecular machines are not conscious. Yet when pitted against each other, two DASH bots automatically raced forward, crawling in typical slime-mold fashion at a scale easily seen under the microscope—and with some iterations, with the naked human eye.

“Fundamentally, we may be able to change how we create and use the materials with lifelike characteristics. Typically materials and objects we create in general are basically static… one day, we may be able to ‘grow’ objects like houses and maintain their forms and functions autonomously,” said study author Dr. Shogo Hamada to Singularity Hub.

“This is a great study that combines the versatility of DNA nanotechnology with the dynamics of living materials,” said Dr. Job Boekhoven at the Technical University of Munich, who was not involved in the work.

Dissipative Assembly
The study builds on previous ideas on how to make molecular Lego blocks that essentially assemble—and destroy—themselves.

Although the inspiration came from biological metabolism, scientists have long hoped to cut their reliance on nature. At its core, metabolism is just a bunch of well-coordinated chemical reactions, programmed by eons of evolution. So why build artificial lifelike materials still tethered by evolution when we can use chemistry to engineer completely new forms of artificial life?

Back in 2015, for example, a team led by Boekhoven described a way to mimic how our cells build their internal “structural beams,” aptly called the cytoskeleton. The key here, unlike many processes in nature, isn’t balance or equilibrium; rather, the team engineered an extremely unstable system that automatically builds—and sustains—assemblies from molecular building blocks when given an external source of chemical energy.

Sound familiar? The team basically built molecular devices that “die” without “food.” Thanks to the laws of thermodynamics (hey ya, Newton!), that energy eventually dissipates, and the shapes automatically begin to break down, completing an artificial “circle of life.”

The new study took the system one step further: rather than just mimicking synthesis, they completed the circle by coupling the building process with dissipative assembly.

Here, the “assembling units themselves are also autonomously created from scratch,” said Hamada.

DNA Nanobots
The process of building DNA nanobots starts on a microfluidic chip.

Decades of research have allowed researchers to optimize DNA assembly outside the body. With the help of catalysts, which help “bind” individual molecules together, the team found that they could easily alter the shape of the self-assembling DNA bots—which formed fiber-like shapes—by changing the structure of the microfluidic chambers.

Computer simulations played a role here too: through both digital simulations and observations under the microscope, the team was able to identify a few critical rules that helped them predict how their molecules self-assemble while navigating a maze of blocking “pillars” and channels carved onto the microchips.

This “enabled a general design strategy for the DASH patterns,” they said.

In particular, the whirling motion of the fluids as they coursed through—and bumped into—ridges in the chips seems to help the DNA molecules “entangle into networks,” the team explained.

These insights helped the team further develop the “destroying” part of metabolism. Similar to linking molecules into DNA chains, their destruction also relies on enzymes.

Once the team pumped both “generation” and “degeneration” enzymes into the microchips, along with raw building blocks, the process was completely autonomous. The simultaneous processes were so lifelike that the team used a metric commonly used in robotics, finite-state automation, to measure the behavior of their DNA nanobots from growth to eventual decay.

“The result is a synthetic structure with features associated with life. These behaviors include locomotion, self-regeneration, and spatiotemporal regulation,” said Boekhoven.

Molecular Slime Molds
Just witnessing lifelike molecules grow in place like the dance move running man wasn’t enough.

In their next experiments, the team took inspiration from slugs to program undulating movements into their DNA bots. Here, “movement” is actually a sort of illusion: the machines “moved” because their front ends kept regenerating, whereas their back ends degenerated. In essence, the molecular slime was built from linking multiple individual “DNA robot-like” units together: each unit receives a delayed “decay” signal from the head of the slime in a way that allowed the whole artificial “organism” to crawl forward, against the steam of fluid flow.

Here’s the fun part: the team eventually engineered two molecular slime bots and pitted them against each other, Mario Kart-style. In these experiments, the faster moving bot alters the state of its competitor to promote “decay.” This slows down the competitor, allowing the dominant DNA nanoslug to win in a race.

Of course, the end goal isn’t molecular podracing. Rather, the DNA-based bots could easily amplify a given DNA or RNA sequence, making them efficient nano-diagnosticians for viral and other infections.

The lifelike material can basically generate patterns that doctors can directly ‘see’ with their eyes, which makes DNA or RNA molecules from bacteria and viruses extremely easy to detect, the team said.

In the short run, “the detection device with this self-generating material could be applied to many places and help people on site, from farmers to clinics, by providing an easy and accurate way to detect pathogens,” explained Hamaga.

A Futuristic Iron Man Nanosuit?
I’m letting my nerd flag fly here. In Avengers: Infinity Wars, the scientist-engineer-philanthropist-playboy Tony Stark unveiled a nanosuit that grew to his contours when needed and automatically healed when damaged.

DASH may one day realize that vision. For now, the team isn’t focused on using the technology for regenerating armor—rather, the dynamic materials could create new protein assemblies or chemical pathways inside living organisms, for example. The team also envisions adding simple sensing and computing mechanisms into the material, which can then easily be thought of as a robot.

Unlike synthetic biology, the goal isn’t to create artificial life. Rather, the team hopes to give lifelike properties to otherwise static materials.

“We are introducing a brand-new, lifelike material concept powered by its very own artificial metabolism. We are not making something that’s alive, but we are creating materials that are much more lifelike than have ever been seen before,” said lead author Dr. Dan Luo.

“Ultimately, our material may allow the construction of self-reproducing machines… artificial metabolism is an important step toward the creation of ‘artificial’ biological systems with dynamic, lifelike capabilities,” added Hamada. “It could open a new frontier in robotics.”

Image Credit: A timelapse image of DASH, by Jeff Tyson at Cornell University. Continue reading

Posted in Human Robots

#434767 7 Non-Obvious Trends Shaping the Future

When you think of trends that might be shaping the future, the first things that come to mind probably have something to do with technology: Robots taking over jobs. Artificial intelligence advancing and proliferating. 5G making everything faster, connected cities making everything easier, data making everything more targeted.

Technology is undoubtedly changing the way we live, and will continue to do so—probably at an accelerating rate—in the near and far future. But there are other trends impacting the course of our lives and societies, too. They’re less obvious, and some have nothing to do with technology.

For the past nine years, entrepreneur and author Rohit Bhargava has read hundreds of articles across all types of publications, tagged and categorized them by topic, funneled frequent topics into broader trends, analyzed those trends, narrowed them down to the most significant ones, and published a book about them as part of his ‘Non-Obvious’ series. He defines a trend as “a unique curated observation of the accelerating present.”

In an encore session at South by Southwest last week (his initial talk couldn’t fit hundreds of people who wanted to attend, so a re-do was scheduled), Bhargava shared details of his creative process, why it’s hard to think non-obviously, the most important trends of this year, and how to make sure they don’t get the best of you.

Thinking Differently
“Non-obvious thinking is seeing the world in a way other people don’t see it,” Bhargava said. “The secret is curating your ideas.” Curation collects ideas and presents them in a meaningful way; museum curators, for example, decide which works of art to include in an exhibit and how to present them.

For his own curation process, Bhargava uses what he calls the haystack method. Rather than searching for a needle in a haystack, he gathers ‘hay’ (ideas and stories) then uses them to locate and define a ‘needle’ (a trend). “If you spend enough time gathering information, you can put the needle into the middle of the haystack,” he said.

A big part of gathering information is looking for it in places you wouldn’t normally think to look. In his case, that means that on top of reading what everyone else reads—the New York Times, the Washington Post, the Economist—he also buys publications like Modern Farmer, Teen Vogue, and Ink magazine. “It’s like stepping into someone else’s world who’s not like me,” he said. “That’s impossible to do online because everything is personalized.”

Three common barriers make non-obvious thinking hard.

The first is unquestioned assumptions, which are facts or habits we think will never change. When James Dyson first invented the bagless vacuum, he wanted to sell the license to it, but no one believed people would want to spend more money up front on a vacuum then not have to buy bags. The success of Dyson’s business today shows how mistaken that assumption—that people wouldn’t adapt to a product that, at the end of the day, was far more sensible—turned out to be. “Making the wrong basic assumptions can doom you,” Bhargava said.

The second barrier to thinking differently is constant disruption. “Everything is changing as industries blend together,” Bhargava said. “The speed of change makes everyone want everything, all the time, and people expect the impossible.” We’ve come to expect every alternative to be presented to us in every moment, but in many cases this doesn’t serve us well; we’re surrounded by noise and have trouble discerning what’s valuable and authentic.

This ties into the third barrier, which Bhargava calls the believability crisis. “Constant sensationalism makes people skeptical about everything,” he said. With the advent of fake news and technology like deepfakes, we’re in a post-truth, post-fact era, and are in a constant battle to discern what’s real from what’s not.

2019 Trends
Bhargava’s efforts to see past these barriers and curate information yielded 15 trends he believes are currently shaping the future. He shared seven of them, along with thoughts on how to stay ahead of the curve.

Retro Trust
We tend to trust things we have a history with. “People like nostalgic experiences,” Bhargava said. With tech moving as fast as it is, old things are quickly getting replaced by shinier, newer, often more complex things. But not everyone’s jumping on board—and some who’ve been on board are choosing to jump off in favor of what worked for them in the past.

“We’re turning back to vinyl records and film cameras, deliberately downgrading to phones that only text and call,” Bhargava said. In a period of too much change too fast, people are craving familiarity and dependability. To capitalize on that sentiment, entrepreneurs should seek out opportunities for collaboration—how can you build a product that’s new, but feels reliable and familiar?

Muddled Masculinity
Women have increasingly taken on more leadership roles, advanced in the workplace, now own more homes than men, and have higher college graduation rates. That’s all great for us ladies—but not so great for men or, perhaps more generally, for the concept of masculinity.

“Female empowerment is causing confusion about what it means to be a man today,” Bhargava said. “Men don’t know what to do—should they say something? Would that make them an asshole? Should they keep quiet? Would that make them an asshole?”

By encouraging the non-conforming, we can help take some weight off the traditional gender roles, and their corresponding divisions and pressures.

Innovation Envy
Innovation has become an over-used word, to the point that it’s thrown onto ideas and actions that aren’t really innovative at all. “We innovate by looking at someone else and doing the same,” Bhargava said. If an employee brings a radical idea to someone in a leadership role, in many companies the leadership will say they need a case study before implementing the radical idea—but if it’s already been done, it’s not innovative. “With most innovation what ends up happening is not spectacular failure, but irrelevance,” Bhargava said.

He suggests that rather than being on the defensive, companies should play offense with innovation, and when it doesn’t work “fail as if no one’s watching” (often, no one will be).

Artificial Influence
Thanks to social media and other technologies, there are a growing number of fabricated things that, despite not being real, influence how we think. “15 percent of all Twitter accounts may be fake, and there are 60 million fake Facebook accounts,” Bhargava said. There are virtual influencers and even virtual performers.

“Don’t hide the artificial ingredients,” Bhargava advised. “Some people are going to pretend it’s all real. We have to be ethical.” The creators of fabrications meant to influence the way people think, or the products they buy, or the decisions they make, should make it crystal-clear that there aren’t living, breathing people behind the avatars.

Enterprise Empathy
Another reaction to the fast pace of change these days—and the fast pace of life, for that matter—is that empathy is regaining value and even becoming a driver of innovation. Companies are searching for ways to give people a sense of reassurance. The Tesco grocery brand in the UK has a “relaxed lane” for those who don’t want to feel rushed as they check out. Starbucks opened a “signing store” in Washington DC, and most of its regular customers have learned some sign language.

“Use empathy as a principle to help yourself stand out,” Bhargava said. Besides being a good business strategy, “made with empathy” will ideally promote, well, more empathy, a quality there’s often a shortage of.

Robot Renaissance
From automating factory jobs to flipping burgers to cleaning our floors, robots have firmly taken their place in our day-to-day lives—and they’re not going away anytime soon. “There are more situations with robots than ever before,” Bhargava said. “They’re exploring underwater. They’re concierges at hotels.”

The robot revolution feels intimidating. But Bhargava suggests embracing robots with more curiosity than concern. While they may replace some tasks we don’t want replaced, they’ll also be hugely helpful in multiple contexts, from elderly care to dangerous manual tasks.

Back-storytelling
Similar to retro trust and enterprise empathy, organizations have started to tell their brand’s story to gain customer loyalty. “Stories give us meaning, and meaning is what we need in order to be able to put the pieces together,” Bhargava said. “Stories give us a way of understanding the world.”

Finding the story behind your business, brand, or even yourself, and sharing it openly, can help you connect with people, be they customers, coworkers, or friends.

Tech’s Ripple Effects
While it may not overtly sound like it, most of the trends Bhargava identified for 2019 are tied to technology, and are in fact a sort of backlash against it. Tech has made us question who to trust, how to innovate, what’s real and what’s fake, how to make the best decisions, and even what it is that makes us human.

By being aware of these trends, sharing them, and having conversations about them, we’ll help shape the way tech continues to be built, and thus the way it impacts us down the road.

Image Credit: Rohit Bhargava by Brian Smale Continue reading

Posted in Human Robots

#433400 A Model for the Future of Education, and ...

As kids worldwide head back to school, I’d like to share my thoughts on the future of education.

Bottom line, how we educate our kids needs to radically change given the massive potential of exponential tech (e.g. artificial intelligence and virtual reality).

Without question, the number one driver for education is inspiration. As such, if you have a kid age 8–18, you’ll want to get your hands on an incredibly inspirational novel written by my dear friend Ray Kurzweil called Danielle: Chronicles of a Superheroine.

Danielle offers boys and girls a role model of a young woman who uses smart technologies and super-intelligence to partner with her friends to solve some of the world’s greatest challenges. It’s perfect to inspire anyone to pursue their moonshot.

Without further ado, let’s dive into the future of educating kids, and a summary of my white paper thoughts….

Just last year, edtech (education technology) investments surpassed a record high of 9.5 billion USD—up 30 percent from the year before.

Already valued at over half a billion USD, the AI in education market is set to surpass 6 billion USD by 2024.

And we’re now seeing countless new players enter the classroom, from a Soul Machines AI teacher specializing in energy use and sustainability to smart “lab schools” with personalized curricula.

As my two boys enter 1st grade, I continue asking myself, given the fact that most elementary schools haven’t changed in many decades (perhaps a century), what do I want my kids to learn? How do I think about elementary school during an exponential era?

This post covers five subjects related to elementary school education:

Five Issues with Today’s Elementary Schools
Five Guiding Principles for Future Education
An Elementary School Curriculum for the Future
Exponential Technologies in our Classroom
Mindsets for the 21st Century

Excuse the length of this post, but if you have kids, the details might be meaningful. If you don’t, then next week’s post will return to normal length and another fun subject.

Also, if you’d like to see my detailed education “white paper,” you can view or download it here.

Let’s dive in…

Five Issues With Today’s Elementary Schools
There are probably lots of issues with today’s traditional elementary schools, but I’ll just choose a few that bother me most.

Grading: In the traditional education system, you start at an “A,” and every time you get something wrong, your score gets lower and lower. At best it’s demotivating, and at worst it has nothing to do with the world you occupy as an adult. In the gaming world (e.g. Angry Birds), it’s just the opposite. You start with zero and every time you come up with something right, your score gets higher and higher.
Sage on the Stage: Most classrooms have a teacher up in front of class lecturing to a classroom of students, half of whom are bored and half of whom are lost. The one-teacher-fits-all model comes from an era of scarcity where great teachers and schools were rare.
Relevance: When I think back to elementary and secondary school, I realize how much of what I learned was never actually useful later in life, and how many of my critical lessons for success I had to pick up on my own (I don’t know about you, but I haven’t ever actually had to factor a polynomial in my adult life).
Imagination, Coloring inside the Lines: Probably of greatest concern to me is the factory-worker, industrial-era origin of today’s schools. Programs are so structured with rote memorization that it squashes the originality from most children. I’m reminded that “the day before something is truly a breakthrough, it’s a crazy idea.” Where do we pursue crazy ideas in our schools? Where do we foster imagination?
Boring: If learning in school is a chore, boring, or emotionless, then the most important driver of human learning, passion, is disengaged. Having our children memorize facts and figures, sit passively in class, and take mundane standardized tests completely defeats the purpose.

An average of 7,200 students drop out of high school each day, totaling 1.3 million each year. This means only 69 percent of students who start high school finish four years later. And over 50 percent of these high school dropouts name boredom as the number one reason they left.

Five Guiding Principles for Future Education
I imagine a relatively near-term future in which robotics and artificial intelligence will allow any of us, from ages 8 to 108, to easily and quickly find answers, create products, or accomplish tasks, all simply by expressing our desires.

From ‘mind to manufactured in moments.’ In short, we’ll be able to do and create almost whatever we want.

In this future, what attributes will be most critical for our children to learn to become successful in their adult lives? What’s most important for educating our children today?

For me it’s about passion, curiosity, imagination, critical thinking, and grit.

Passion: You’d be amazed at how many people don’t have a mission in life… A calling… something to jolt them out of bed every morning. The most valuable resource for humanity is the persistent and passionate human mind, so creating a future of passionate kids is so very important. For my 7-year-old boys, I want to support them in finding their passion or purpose… something that is uniquely theirs. In the same way that the Apollo program and Star Trek drove my early love for all things space, and that passion drove me to learn and do.
Curiosity: Curiosity is something innate in kids, yet something lost by most adults during the course of their life. Why? In a world of Google, robots, and AI, raising a kid that is constantly asking questions and running “what if” experiments can be extremely valuable. In an age of machine learning, massive data, and a trillion sensors, it will be the quality of your questions that will be most important.
Imagination: Entrepreneurs and visionaries imagine the world (and the future) they want to live in, and then they create it. Kids happen to be some of the most imaginative humans around… it’s critical that they know how important and liberating imagination can be.
Critical Thinking: In a world flooded with often-conflicting ideas, baseless claims, misleading headlines, negative news, and misinformation, learning the skill of critical thinking helps find the signal in the noise. This principle is perhaps the most difficult to teach kids.
Grit/Persistence: Grit is defined as “passion and perseverance in pursuit of long-term goals,” and it has recently been widely acknowledged as one of the most important predictors of and contributors to success.

Teaching your kids not to give up, to keep trying, and to keep trying new ideas for something that they are truly passionate about achieving is extremely critical. Much of my personal success has come from such stubbornness. I joke that both XPRIZE and the Zero Gravity Corporation were “overnight successes after 10 years of hard work.”

So given those five basic principles, what would an elementary school curriculum look like? Let’s take a look…

An Elementary School Curriculum for the Future
Over the last 30 years, I’ve had the pleasure of starting two universities, International Space University (1987) and Singularity University (2007). My favorite part of co-founding both institutions was designing and implementing the curriculum. Along those lines, the following is my first shot at the type of curriculum I’d love my own boys to be learning.

I’d love your thoughts, I’ll be looking for them here: https://www.surveymonkey.com/r/DDRWZ8R

For the purpose of illustration, I’ll speak about ‘courses’ or ‘modules,’ but in reality these are just elements that would ultimately be woven together throughout the course of K-6 education.

Module 1: Storytelling/Communications

When I think about the skill that has served me best in life, it’s been my ability to present my ideas in the most compelling fashion possible, to get others onboard, and support birth and growth in an innovative direction. In my adult life, as an entrepreneur and a CEO, it’s been my ability to communicate clearly and tell compelling stories that has allowed me to create the future. I don’t think this lesson can start too early in life. So imagine a module, year after year, where our kids learn the art and practice of formulating and pitching their ideas. The best of oration and storytelling. Perhaps children in this class would watch TED presentations, or maybe they’d put together their own TEDx for kids. Ultimately, it’s about practice and getting comfortable with putting yourself and your ideas out there and overcoming any fears of public speaking.

Module 2: Passions

A modern school should help our children find and explore their passion(s). Passion is the greatest gift of self-discovery. It is a source of interest and excitement, and is unique to each child.

The key to finding passion is exposure. Allowing kids to experience as many adventures, careers, and passionate adults as possible. Historically, this was limited by the reality of geography and cost, implemented by having local moms and dads presenting in class about their careers. “Hi, I’m Alan, Billy’s dad, and I’m an accountant. Accountants are people who…”

But in a world of YouTube and virtual reality, the ability for our children to explore 500 different possible careers or passions during their K-6 education becomes not only possible but compelling. I imagine a module where children share their newest passion each month, sharing videos (or VR experiences) and explaining what they love and what they’ve learned.

Module 3: Curiosity & Experimentation

Einstein famously said, “I have no special talent. I am only passionately curious.” Curiosity is innate in children, and many times lost later in life. Arguably, it can be said that curiosity is responsible for all major scientific and technological advances; it’s the desire of an individual to know the truth.

Coupled with curiosity is the process of experimentation and discovery. The process of asking questions, creating and testing a hypothesis, and repeated experimentation until the truth is found. As I’ve studied the most successful entrepreneurs and entrepreneurial companies, from Google and Amazon to Uber, their success is significantly due to their relentless use of experimentation to define their products and services.

Here I imagine a module which instills in children the importance of curiosity and gives them permission to say, “I don’t know, let’s find out.”

Further, a monthly module that teaches children how to design and execute valid and meaningful experiments. Imagine children who learn the skill of asking a question, proposing a hypothesis, designing an experiment, gathering the data, and then reaching a conclusion.

Module 4: Persistence/Grit

Doing anything big, bold, and significant in life is hard work. You can’t just give up when the going gets rough. The mindset of persistence, of grit, is a learned behavior I believe can be taught at an early age, especially when it’s tied to pursuing a child’s passion.

I imagine a curriculum that, each week, studies the career of a great entrepreneur and highlights their story of persistence. It would highlight the individuals and companies that stuck with it, iterated, and ultimately succeeded.

Further, I imagine a module that combines persistence and experimentation in gameplay, such as that found in Dean Kamen’s FIRST LEGO league, where 4th graders (and up) research a real-world problem such as food safety, recycling, energy, and so on, and are challenged to develop a solution. They also must design, build, and program a robot using LEGO MINDSTORMS®, then compete on a tabletop playing field.

Module 5: Technology Exposure

In a world of rapidly accelerating technology, understanding how technologies work, what they do, and their potential for benefiting society is, in my humble opinion, critical to a child’s future. Technology and coding (more on this below) are the new “lingua franca” of tomorrow.

In this module, I imagine teaching (age appropriate) kids through play and demonstration. Giving them an overview of exponential technologies such as computation, sensors, networks, artificial intelligence, digital manufacturing, genetic engineering, augmented/virtual reality, and robotics, to name a few. This module is not about making a child an expert in any technology, it’s more about giving them the language of these new tools, and conceptually an overview of how they might use such a technology in the future. The goal here is to get them excited, give them demonstrations that make the concepts stick, and then to let their imaginations run.

Module 6: Empathy

Empathy, defined as “the ability to understand and share the feelings of another,” has been recognized as one of the most critical skills for our children today. And while there has been much written, and great practices for instilling this at home and in school, today’s new tools accelerate this.

Virtual reality isn’t just about video games anymore. Artists, activists, and journalists now see the technology’s potential to be an empathy engine, one that can shine spotlights on everything from the Ebola epidemic to what it’s like to live in Gaza. And Jeremy Bailenson has been at the vanguard of investigating VR’s power for good.

For more than a decade, Bailenson’s lab at Stanford has been studying how VR can make us better people. Through the power of VR, volunteers at the lab have felt what it is like to be Superman (to see if it makes them more helpful), a cow (to reduce meat consumption), and even a coral (to learn about ocean acidification).

Silly as they might seem, these sorts of VR scenarios could be more effective than the traditional public service ad at making people behave. Afterwards, they waste less paper. They save more money for retirement. They’re nicer to the people around them. And this could have consequences in terms of how we teach and train everyone from cliquey teenagers to high court judges.

Module 7: Ethics/Moral Dilemmas

Related to empathy, and equally important, is the goal of infusing kids with a moral compass. Over a year ago, I toured a special school created by Elon Musk (the Ad Astra school) for his five boys (age 9 to 14). One element that is persistent in that small school of under 40 kids is the conversation about ethics and morals, a conversation manifested by debating real-world scenarios that our kids may one day face.

Here’s an example of the sort of gameplay/roleplay that I heard about at Ad Astra, that might be implemented in a module on morals and ethics. Imagine a small town on a lake, in which the majority of the town is employed by a single factory. But that factory has been polluting the lake and killing all the life. What do you do? It’s posed that shutting down the factory would mean that everyone loses their jobs. On the other hand, keeping the factory open means the lake is destroyed and the lake dies. This kind of regular and routine conversation/gameplay allows the children to see the world in a critically important fashion.

Module 8: The 3R Basics (Reading, wRiting & aRithmetic)

There’s no question that young children entering kindergarten need the basics of reading, writing, and math. The only question is what’s the best way for them to get it? We all grew up in the classic mode of a teacher at the chalkboard, books, and homework at night. But I would argue that such teaching approaches are long outdated, now replaced with apps, gameplay, and the concept of the flip classroom.

Pioneered by high school teachers Jonathan Bergman and Aaron Sams in 2007, the flipped classroom reverses the sequence of events from that of the traditional classroom.

Students view lecture materials, usually in the form of video lectures, as homework prior to coming to class. In-class time is reserved for activities such as interactive discussions or collaborative work, all performed under the guidance of the teacher.

The benefits are clear:

Students can consume lectures at their own pace, viewing the video again and again until they get the concept, or fast-forwarding if the information is obvious.
The teacher is present while students apply new knowledge. Doing the homework into class time gives teachers insight into which concepts, if any, that their students are struggling with and helps them adjust the class accordingly.
The flipped classroom produces tangible results: 71 percent of teachers who flipped their classes noticed improved grades, and 80 percent reported improved student attitudes as a result.

Module 9: Creative Expression & Improvisation

Every single one of us is creative. It’s human nature to be creative… the thing is that we each might have different ways of expressing our creativity.

We must encourage kids to discover and to develop their creative outlets early. In this module, imagine showing kids the many different ways creativity is expressed, from art to engineering to music to math, and then guiding them as they choose the area (or areas) they are most interested in. Critically, teachers (or parents) can then develop unique lessons for each child based on their interests, thanks to open education resources like YouTube and the Khan Academy. If my child is interested in painting and robots, a teacher or AI could scour the web and put together a custom lesson set from videos/articles where the best painters and roboticists in the world share their skills.

Adapting to change is critical for success, especially in our constantly changing world today. Improvisation is a skill that can be learned, and we need to be teaching it early.

In most collegiate “improv” classes, the core of great improvisation is the “Yes, and…” mindset. When acting out a scene, one actor might introduce a new character or idea, completely changing the context of the scene. It’s critical that the other actors in the scene say “Yes, and…” accept the new reality, then add something new of their own.

Imagine playing similar role-play games in elementary schools, where a teacher gives the students a scene/context and constantly changes variables, forcing them to adapt and play.

Module 10: Coding

Computer science opens more doors for students than any other discipline in today’s world. Learning even the basics will help students in virtually any career, from architecture to zoology.

Coding is an important tool for computer science, in the way that arithmetic is a tool for doing mathematics and words are a tool for English. Coding creates software, but computer science is a broad field encompassing deep concepts that go well beyond coding.

Every 21st century student should also have a chance to learn about algorithms, how to make an app, or how the internet works. Computational thinking allows preschoolers to grasp concepts like algorithms, recursion and heuristics. Even if they don’t understand the terms, they’ll learn the basic concepts.

There are more than 500,000 open jobs in computing right now, representing the number one source of new wages in the US, and these jobs are projected to grow at twice the rate of all other jobs.

Coding is fun! Beyond the practical reasons for learning how to code, there’s the fact that creating a game or animation can be really fun for kids.

Module 11: Entrepreneurship & Sales

At its core, entrepreneurship is about identifying a problem (an opportunity), developing a vision on how to solve it, and working with a team to turn that vision into reality. I mentioned Elon’s school, Ad Astra: here, again, entrepreneurship is a core discipline where students create and actually sell products and services to each other and the school community.

You could recreate this basic exercise with a group of kids in lots of fun ways to teach them the basic lessons of entrepreneurship.

Related to entrepreneurship is sales. In my opinion, we need to be teaching sales to every child at an early age. Being able to “sell” an idea (again related to storytelling) has been a critical skill in my career, and it is a competency that many people simply never learned.

The lemonade stand has been a classic, though somewhat meager, lesson in sales from past generations, where a child sits on a street corner and tries to sell homemade lemonade for $0.50 to people passing by. I’d suggest we step the game up and take a more active approach in gamifying sales, and maybe having the classroom create a Kickstarter, Indiegogo or GoFundMe campaign. The experience of creating a product or service and successfully selling it will create an indelible memory and give students the tools to change the world.

Module 12: Language

A little over a year ago, I spent a week in China meeting with parents whose focus on kids’ education is extraordinary. One of the areas I found fascinating is how some of the most advanced parents are teaching their kids new languages: through games. On the tablet, the kids are allowed to play games, but only in French. A child’s desire to win fully engages them and drives their learning rapidly.

Beyond games, there’s virtual reality. We know that full immersion is what it takes to become fluent (at least later in life). A semester abroad in France or Italy, and you’ve got a great handle on the language and the culture. But what about for an eight-year-old?

Imagine a module where for an hour each day, the children spend their time walking around Italy in a VR world, hanging out with AI-driven game characters who teach them, engage them, and share the culture and the language in the most personalized and compelling fashion possible.

Exponential Technologies for Our Classrooms
If you’ve attended Abundance 360 or Singularity University, or followed my blogs, you’ll probably agree with me that the way our children will learn is going to fundamentally transform over the next decade.

Here’s an overview of the top five technologies that will reshape the future of education:

Tech 1: Virtual Reality (VR) can make learning truly immersive. Research has shown that we remember 20 percent of what we hear, 30 percent of what we see, and up to 90 percent of what we do or simulate. Virtual reality yields the latter scenario impeccably. VR enables students to simulate flying through the bloodstream while learning about different cells they encounter, or travel to Mars to inspect the surface for life.

To make this a reality, Google Cardboard just launched its Pioneer Expeditions product. Under this program, thousands of schools around the world have gotten a kit containing everything a teacher needs to take his or her class on a virtual trip. While data on VR use in K-12 schools and colleges have yet to be gathered, the steady growth of the market is reflected in the surge of companies (including zSpace, Alchemy VR and Immersive VR Education) solely dedicated to providing schools with packaged education curriculum and content.

Add to VR a related technology called augmented reality (AR), and experiential education really comes alive. Imagine wearing an AR headset that is able to superimpose educational lessons on top of real-world experiences. Interested in botany? As you walk through a garden, the AR headset superimposes the name and details of every plant you see.

Tech 2: 3D Printing is allowing students to bring their ideas to life. Never mind the computer on every desktop (or a tablet for every student), that’s a given. In the near future, teachers and students will want or have a 3D printer on the desk to help them learn core science, technology, engineering and mathematics (STEM) principles. Bre Pettis, of MakerBot Industries, in a grand but practical vision, sees a 3D printer on every school desk in America. “Imagine if you had a 3D printer instead of a LEGO set when you were a kid; what would life be like now?” asks Mr. Pettis. You could print your own mini-figures, your own blocks, and you could iterate on new designs as quickly as your imagination would allow. MakerBots are now in over 5,000 K-12 schools across the US.

Taking this one step further, you could imagine having a 3D file for most entries in Wikipedia, allowing you to print out and study an object you can only read about or visualize in VR.

Tech 3: Sensors & Networks. An explosion of sensors and networks are going to connect everyone at gigabit speeds, making access to rich video available at all times. At the same time, sensors continue to miniaturize and reduce in power, becoming embedded in everything. One benefit will be the connection of sensor data with machine learning and AI (below), such that knowledge of a child’s attention drifting, or confusion, can be easily measured and communicated. The result would be a representation of the information through an alternate modality or at a different speed.

Tech 4: Machine Learning is making learning adaptive and personalized. No two students are identical—they have different modes of learning (by reading, seeing, hearing, doing), come from different educational backgrounds, and have different intellectual capabilities and attention spans. Advances in machine learning and the surging adaptive learning movement are seeking to solve this problem. Companies like Knewton and Dreambox have over 15 million students on their respective adaptive learning platforms. Soon, every education application will be adaptive, learning how to personalize the lesson for a specific student. There will be adaptive quizzing apps, flashcard apps, textbook apps, simulation apps and many more.

Tech 5: Artificial Intelligence or “An AI Teaching Companion.” Neil Stephenson’s book The Diamond Age presents a fascinating piece of educational technology called “A Young Lady’s Illustrated Primer.”

As described by Beat Schwendimann, “The primer is an interactive book that can answer a learner’s questions (spoken in natural language), teach through allegories that incorporate elements of the learner’s environment, and presents contextual just-in-time information.

“The primer includes sensors that monitor the learner’s actions and provide feedback. The learner is in a cognitive apprenticeship with the book: The primer models a certain skill (through allegorical fairy tale characters), which the learner then imitates in real life.

“The primer follows a learning progression with increasingly more complex tasks. The educational goals of the primer are humanist: To support the learner to become a strong and independently thinking person.”

The primer, an individualized AI teaching companion is the result of technological convergence and is beautifully described by YouTuber CGP Grey in his video: Digital Aristotle: Thoughts on the Future of Education.

Your AI companion will have unlimited access to information on the cloud and will deliver it at the optimal speed to each student in an engaging, fun way. This AI will demonetize and democratize education, be available to everyone for free (just like Google), and offering the best education to the wealthiest and poorest children on the planet equally.

This AI companion is not a tutor who spouts facts, figures and answers, but a player on the side of the student, there to help him or her learn, and in so doing, learn how to learn better. The AI is always alert, watching for signs of frustration and boredom that may precede quitting, for signs of curiosity or interest that tend to indicate active exploration, and for signs of enjoyment and mastery, which might indicate a successful learning experience.

Ultimately, we’re heading towards a vastly more educated world. We are truly living during the most exciting time to be alive.

Mindsets for the 21st Century
Finally, it’s important for me to discuss mindsets. How we think about the future colors how we learn and what we do. I’ve written extensively about the importance of an abundance and exponential mindset for entrepreneurs and CEOs. I also think that attention to mindset in our elementary schools, when a child is shaping the mental “operating system” for the rest of their life, is even more important.

As such, I would recommend that a school adopt a set of principles that teach and promote a number of mindsets in the fabric of their programs.

Many “mindsets” are important to promote. Here are a couple to consider:

Nurturing Optimism & An Abundance Mindset:
We live in a competitive world, and kids experience a significant amount of pressure to perform. When they fall short, they feel deflated. We all fail at times; that’s part of life. If we want to raise “can-do” kids who can work through failure and come out stronger for it, it’s wise to nurture optimism. Optimistic kids are more willing to take healthy risks, are better problem-solvers, and experience positive relationships. You can nurture optimism in your school by starting each day by focusing on gratitude (what each child is grateful for), or a “positive focus” in which each student takes 30 seconds to talk about what they are most excited about, or what recent event was positively impactful to them. (NOTE: I start every meeting inside my Strike Force team with a positive focus.)

Finally, helping students understand (through data and graphs) that the world is in fact getting better (see my first book: Abundance: The Future is Better Than You Think) will help them counter the continuous flow of negative news flowing through our news media.

When kids feel confident in their abilities and excited about the world, they are willing to work harder and be more creative.

Tolerance for Failure:
Tolerating failure is a difficult lesson to learn and a difficult lesson to teach. But it is critically important to succeeding in life.

Astro Teller, who runs Google’s innovation branch “X,” talks a lot about encouraging failure. At X, they regularly try to “kill” their ideas. If they are successful in killing an idea, and thus “failing,” they save lots of time, money and resources. The ideas they can’t kill survive and develop into billion-dollar businesses. The key is that each time an idea is killed, Astro rewards the team, literally, with cash bonuses. Their failure is celebrated and they become a hero.

This should be reproduced in the classroom: kids should try to be critical of their best ideas (learn critical thinking), then they should be celebrated for ‘successfully failing,’ perhaps with cake, balloons, confetti, and lots of Silly String.

Join Me & Get Involved!
Abundance Digital Online Community: I have created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance Digital. This is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: sakkarin sapu / Shutterstock.com Continue reading

Posted in Human Robots

#431203 Could We Build a Blade Runner-Style ...

The new Blade Runner sequel will return us to a world where sophisticated androids made with organic body parts can match the strength and emotions of their human creators. As someone who builds biologically inspired robots, I’m interested in whether our own technology will ever come close to matching the “replicants” of Blade Runner 2049.
The reality is that we’re a very long way from building robots with human-like abilities. But advances in so-called soft robotics show a promising way forward for technology that could be a new basis for the androids of the future.
From a scientific point of view, the real challenge is replicating the complexity of the human body. Each one of us is made up of millions and millions of cells, and we have no clue how we can build such a complex machine that is indistinguishable from us humans. The most complex machines today, for example the world’s largest airliner, the Airbus A380, are composed of millions of parts. But in order to match the complexity level of humans, we would need to scale this complexity up about a million times.
There are currently three different ways that engineering is making the border between humans and robots more ambiguous. Unfortunately, these approaches are only starting points and are not yet even close to the world of Blade Runner.
There are human-like robots built from scratch by assembling artificial sensors, motors, and computers to resemble the human body and motion. However, extending the current human-like robot would not bring Blade Runner-style androids closer to humans, because every artificial component, such as sensors and motors, are still hopelessly primitive compared to their biological counterparts.
There is also cyborg technology, where the human body is enhanced with machines such as robotic limbs and wearable and implantable devices. This technology is similarly very far away from matching our own body parts.
Finally, there is the technology of genetic manipulation, where an organism’s genetic code is altered to modify that organism’s body. Although we have been able to identify and manipulate individual genes, we still have a limited understanding of how an entire human emerges from genetic code. As such, we don’t know the degree to which we can actually program code to design everything we wish.
Soft robotics: a way forward?
But we might be able to move robotics closer to the world of Blade Runner by pursuing other technologies and, in particular, by turning to nature for inspiration. The field of soft robotics is a good example. In the last decade or so, robotics researchers have been making considerable efforts to make robots soft, deformable, squishable, and flexible.
This technology is inspired by the fact that 90% of the human body is made from soft substances such as skin, hair, and tissues. This is because most of the fundamental functions in our body rely on soft parts that can change shape, from the heart and lungs pumping fluid around our body to the eye lenses generating signals from their movement. Cells even change shape to trigger division, self-healing and, ultimately, the evolution of the body.
The softness of our bodies is the origin of all their functionality needed to stay alive. So being able to build soft machines would at least bring us a step closer to the robotic world of Blade Runner. Some of the recent technological advances include artificial hearts made out of soft functional materials that are pumping fluid through deformation. Similarly, soft, wearable gloves can help make hand grasping stronger. And “epidermal electronics” has enabled us to tattoo electronic circuits onto our biological skins.
Softness is the keyword that brings humans and technologies closer together. Sensors, motors, and computers are all of a sudden integrated into human bodies once they became soft, and the border between us and external devices becomes ambiguous, just like soft contact lenses became part of our eyes.
Nevertheless, the hardest challenge is how to make individual parts of a soft robot body physically adaptable by self-healing, growing, and differentiating. After all, every part of a living organism is also alive in biological systems in order to make our bodies totally adaptable and evolvable, the function of which could make machines totally indistinguishable from ourselves.
It is impossible to predict when the robotic world of Blade Runner might arrive, and if it does, it will probably be very far in the future. But as long as the desire to build machines indistinguishable from humans is there, the current trends of robotic revolution could make it possible to achieve that dream.
This article was originally published on The Conversation. Read the original article.
Image Credit: Dariush M / Shutterstock.com Continue reading

Posted in Human Robots

#431058 How to Make Your First Chatbot With the ...

You’re probably wondering what Game of Thrones has to do with chatbots and artificial intelligence. Before I explain this weird connection, I need to warn you that this article may contain some serious spoilers. Continue with your reading only if you are a passionate GoT follower, who watches new episodes immediately after they come out.
Why are chatbots so important anyway?
According to the study “When Will AI Exceed Human Performance?,” researchers believe there is a 50% chance artificial intelligence could take over all human jobs by around the year 2060. This technology has already replaced dozens of customer service and sales positions and helped businesses make substantial savings.
Apart from the obvious business advantages, chatbot creation can be fun. You can create an artificial personality with a strong attitude and a unique set of traits and flaws. It’s like creating a new character for your favorite TV show. That’s why I decided to explain the most important elements of the chatbot creation process by using the TV characters we all know and love (or hate).
Why Game of Thrones?
Game of Thrones is the most popular TV show in the world. More than 10 million viewers watched the seventh season premiere, and you have probably seen internet users fanatically discussing the series’ characters, storyline, and possible endings.
Apart from writing about chatbots, I’m also a GoT fanatic, and I will base this chatbot on one of the characters from my favorite series. But before you find out the name of my bot, you should read a few lines about incredible free tools that allow us to build chatbots without coding.
Are chatbots expensive?
Today, you can create a chatbot even if you don’t know how to code. Most chatbot building platforms offer at least one free plan that allows you to use basic functionalities, create your bot, deploy it to Facebook Messenger, and analyze its performance. Free plans usually allow your bot to talk to a limited number of users.
Why should you personalize your bot?
Every platform will ask you to write a bot’s name before you start designing conversations. You will also be able to add the bot’s photograph and bio. Personalizing your bot is the only way to ensure that you will stick to the same personality and storyline throughout the building process. Users often see chatbots as people, and by giving your bot an identity, you will make sure that it doesn’t sound like it has multiple personality disorder.
I think connecting my chatbot with a GoT character will help readers understand the process of chatbot creation.
And the name of our GoT chatbot is…
…Cersei. She is mean, pragmatic, and fearless and she would do anything to stay on the Iron Throne. Many people would rather hang out with Daenerys or Jon Snow. These characters are honest, noble and good-hearted, which means their actions are often predictable.
Cersei, on the other hand, is the queen of intrigues. As the meanest and the most vengeful character in the series, she has an evil plan for everybody who steps on her toes. While viewers can easily guess where Jon and Daenerys stand, there are dozens of questions they would like to ask Cersei. But before we start talking to our bot, we need to build her personality by using the most basic elements of chatbot interaction.
Choosing the bot’s name on Botsify.
Welcome / Greeting Message
The welcome message is the greeting Cersei says to every commoner who clicks on the ‘start conversation’ button. She is not a welcoming person (ask Sansa), except if you are a banker from Braavos. Her introductory message may sound something like this:
“Dear {{user_full_name}}, My name is Cersei of the House Lannister, the First of Her Name, Queen of the Andals and the First Men, Protector of the Seven Kingdoms. You can ask me questions, and I will answer them. If the question is not worth answering, I will redirect you to Ser Gregor Clegane, who will give you a step-by-step course on how to talk to the Queen of Westeros.”
Creating the welcome message on Chatfuel
Default Message / Answer
In the bot game, users, bots, and their creators often need to learn from failed attempts and mistakes. The default message is the text Cersei will send whenever you ask her a question she doesn’t understand. Knowing Cersei, it would sound something like this:
“Ser Gregor, please escort {{user_full_name}} to the dungeon.”
Creating default message on Botsify
Menu
To avoid calling out the Mountain every time someone asks her a question, Cersei might give you a few (safe) options to choose. The best way to do this is by using a menu function. We can classify the questions people want to ask Cersei in several different categories:

Iron Throne
Relationship with Jaime — OK, this isn’t a “safe option,” get ready to get close and personal with Sir Gregor Clegane.
War plans
Euron Greyjoy

After users choose a menu item, Cersei can give them a default response on the topic or set up a plot that will make their lives miserable. Knowing Cersei, she will probably go for the second option.
Adding chatbot menu on Botsify
Stories / Blocks
This feature allows us to build a longer Cersei-to-user interaction. The structure of stories and blocks is different on every chatbot platform, but most of them use keywords and phrases for finding out the user’s intention.

Keywords — where the bot recognizes a certain keyword within the user’s reply. Users who have chosen the ‘war plans’ option might ask Cersei how is she planning to defeat Daenerys’s dragons. We can add ‘dragon’ and ‘dragons’ as keywords, and connect them with an answer that will sound something like this:

“Dragons are not invulnerable as you may think. Maester Qyburn is developing a weapon that will bring them down for good!”
Adding keywords on Chatfuel
People may also ask her about White Walkers. Do you plan to join Daenerys and Jon Snow in a fight against White Walkers? After we add ‘White Walker’ and ‘White Walkers’ on the keyword list, Cersei will answer:
“White Walkers? Do you think the Queen of Westeros has enough free time to think about creatures from fairy tales and legends?”
Adding Keywords on Botsify

Phrases — are more complex syntaxes that the bot can be trained to recognize. Many people would like to ask Cersei if she’s going to marry Euron Greyjoy after the war ends. We can add ‘Euron’ as a keyword, but then we won’t be sure what answer the user is expecting. Instead, we can use the phrase ‘(Will you) marry Euron Greyjoy (after the war?)’. Just to be sure, we should also add a few alternative phrases like ‘(Do you plan on) marrying Euron Greyjoy (after the war),’ ‘(Will you) end up with Euron Greyjoy (after the war?)’, ‘(Will) Euron Greyjoy be the new King?’ etc. Cersei would probably answer this inquiry in her style:

“Of course not, Euron is a useful idiot. I will use his fleet and send him back to the Iron Islands, where he belongs.”
Adding phrases on Botsify
Forms
We have already asked Cersei several questions, and now she would like to ask us something. She can do so by using the form/user input feature. Most tools allow us to add a question and the criteria for checking the users’ answer. If the user provides us the answer that is compliant to the predefined form (like email address, phone number, or a ZIP code), the bot will identify and extract the answer. If the answer doesn’t fit into the predefined criteria, the bot will notify the user and ask him/her to try again.
If Cersei would ask you a question, she would probably want to know your address so she could send her guards to fill your basement with barrels of wildfire.
Creating forms on Botsify
Templates
If you have problems building your first chatbot, templates can help you create the basic conversation structure. Unfortunately, not all platforms offer this feature for free. Snatchbot currently has the most comprehensive list of free templates. There you can choose a pre-built layout. The template selection ranges from simple FAQ bots to ones created for a specific industry, like banking, airline, healthcare, or e-commerce.
Choosing templates on Snatchbot
Plugins
Most tools also provide plugins that can be used for making the conversations more meaningful. These plugins allow Cersei to send images, audio and video files. She can unleash her creativity and make you suffer by sending you her favorite GoT execution videos.

With the help of integrations, Cersei can talk to you on Facebook Messenger, Telegram, WeChat, Slack, and many other communication apps. She can also sell her fan gear and ask you for donations by integrating in-bot payments from PayPal accounts. Her sales pitch will probably sound something like this:
“Gold wins wars! Would you rather invest your funds in a member of a respected family, who always pays her debts, or in the chaotic war endeavor of a crazy revolutionary, whose strength lies in three flying lizards? If your pockets are full of gold, you are already on my side. Now you can complete your checkout on PayPal.”
Chatbot building is now easier than ever, and even small businesses are starting to use the incredible benefits of artificial intelligence. If you still don’t believe that chatbots can replace customer service representatives, I suggest you try to develop a bot based on your favorite TV show, movie or book character and talk with him/her for a while. This way, you will be able to understand the concept that stands behind this amazing technology and use it to improve your business.
Now I’m off to talk to Cersei. Maybe she will feed me some Season 8 spoilers.
This article was originally published by Chatbots Magazine. Read the original post here.
Image credits for screenshots in post: Branislav Srdanovic
Banner stock media provided by new_vision_studio / Pond5 Continue reading

Posted in Human Robots