Tag Archives: how to
#439875 Not So Mysterious After All: Researchers ...
The deep learning neural networks at the heart of modern artificial intelligence are often described as “black boxes” whose inner workings are inscrutable. But new research calls that idea into question, with significant implications for privacy.
Unlike traditional software whose functions are predetermined by a developer, neural networks learn how to process or analyze data by training on examples. They do this by continually adjusting the strength of the links between their many neurons.
By the end of this process, the way they make decisions is tied up in a tangled network of connections that can be impossible to follow. As a result, it’s often assumed that even if you have access to the model itself, it’s more or less impossible to work out the data that the system was trained on.
But a pair of recent papers have brought this assumption into question, according to MIT Technology Review, by showing that two very different techniques can be used to identify the data a model was trained on. This could have serious implications for AI systems trained on sensitive information like health records or financial data.
The first approach takes aim at generative adversarial networks (GANs), the AI systems behind deepfake images. These systems are increasingly being used to create synthetic faces that are supposedly completely unrelated to real people.
But researchers from the University of Caen Normandy in France showed that they could easily link generated faces from a popular model to real people whose data had been used to train the GAN. They did this by getting a second facial recognition model to compare the generated faces against training samples to spot if they shared the same identity.
The images aren’t an exact match, as the GAN has modified them, but the researchers found multiple examples where generated faces were clearly linked to images in the training data. In a paper describing the research, they point out that in many cases the generated face is simply the original face in a different pose.
While the approach is specific to face-generation GANs, the researchers point out that similar ideas could be applied to things like biometric data or medical images. Another, more general approach to reverse engineering neural nets could do that straight off the bat, though.
A group from Nvidia has shown that they can infer the data the model was trained on without even seeing any examples of the trained data. They used an approach called model inversion, which effectively runs the neural net in reverse. This technique is often used to analyze neural networks, but using it to recover the input data had only been achieved on simple networks under very specific sets of assumptions.
In a recent paper, the researchers described how they were able to scale the approach to large networks by splitting the problem up and carrying out inversions on each of the networks’ layers separately. With this approach, they were able to recreate training data images using nothing but the models themselves.
While carrying out either attack is a complex process that requires intimate access to the model in question, both highlight the fact that AIs may not be the black boxes we thought they were, and determined attackers could extract potentially sensitive information from them.
Given that it’s becoming increasingly easy to reverse engineer someone else’s model using your own AI, the requirement to have access to the neural network isn’t even that big of a barrier.
The problem isn’t restricted to image-based algorithms. Last year, researchers from a consortium of tech companies and universities showed that they could extract news headlines, JavaScript code, and personally identifiable information from the large language model GPT-2.
These issues are only going to become more pressing as AI systems push their way into sensitive areas like health, finance, and defense. There are some solutions on the horizon, such as differential privacy, where models are trained on the statistical features of aggregated data rather than individual data points, or homomorphic encryption, an emerging paradigm that makes it possible to compute directly on encrypted data.
But these approaches are still a long way from being standard practice, so for the time being, entrusting your data to the black box of AI may not be as safe as you think.
Image Credit: Connect world / Shutterstock.com Continue reading
#439815 How to Prepare Your Workforce for AI ...
Image by John Conde from Pixabay Despite a myriad of articles, research papers, and conversations regarding artificial intelligence and machine learning development, the predictions about its impact range significantly. The absolute majority agrees that AI is one of the keys to digital transformation and that it will change the business and job market forever. However, it’s …
The post How to Prepare Your Workforce for AI Disruption? appeared first on TFOT. Continue reading
#439105 This Robot Taught Itself to Walk in a ...
Recently, in a Berkeley lab, a robot called Cassie taught itself to walk, a little like a toddler might. Through trial and error, it learned to move in a simulated world. Then its handlers sent it strolling through a minefield of real-world tests to see how it’d fare.
And, as it turns out, it fared pretty damn well. With no further fine-tuning, the robot—which is basically just a pair of legs—was able to walk in all directions, squat down while walking, right itself when pushed off balance, and adjust to different kinds of surfaces.
It’s the first time a machine learning approach known as reinforcement learning has been so successfully applied in two-legged robots.
This likely isn’t the first robot video you’ve seen, nor the most polished.
For years, the internet has been enthralled by videos of robots doing far more than walking and regaining their balance. All that is table stakes these days. Boston Dynamics, the heavyweight champ of robot videos, regularly releases mind-blowing footage of robots doing parkour, back flips, and complex dance routines. At times, it can seem the world of iRobot is just around the corner.
This sense of awe is well-earned. Boston Dynamics is one of the world’s top makers of advanced robots.
But they still have to meticulously hand program and choreograph the movements of the robots in their videos. This is a powerful approach, and the Boston Dynamics team has done incredible things with it.
In real-world situations, however, robots need to be robust and resilient. They need to regularly deal with the unexpected, and no amount of choreography will do. Which is how, it’s hoped, machine learning can help.
Reinforcement learning has been most famously exploited by Alphabet’s DeepMind to train algorithms that thrash humans at some the most difficult games. Simplistically, it’s modeled on the way we learn. Touch the stove, get burned, don’t touch the damn thing again; say please, get a jelly bean, politely ask for another.
In Cassie’s case, the Berkeley team used reinforcement learning to train an algorithm to walk in a simulation. It’s not the first AI to learn to walk in this manner. But going from simulation to the real world doesn’t always translate.
Subtle differences between the two can (literally) trip up a fledgling robot as it tries out its sim skills for the first time.
To overcome this challenge, the researchers used two simulations instead of one. The first simulation, an open source training environment called MuJoCo, was where the algorithm drew upon a large library of possible movements and, through trial and error, learned to apply them. The second simulation, called Matlab SimMechanics, served as a low-stakes testing ground that more precisely matched real-world conditions.
Once the algorithm was good enough, it graduated to Cassie.
And amazingly, it didn’t need further polishing. Said another way, when it was born into the physical world—it knew how to walk just fine. In addition, it was also quite robust. The researchers write that two motors in Cassie’s knee malfunctioned during the experiment, but the robot was able to adjust and keep on trucking.
Other labs have been hard at work applying machine learning to robotics.
Last year Google used reinforcement learning to train a (simpler) four-legged robot. And OpenAI has used it with robotic arms. Boston Dynamics, too, will likely explore ways to augment their robots with machine learning. New approaches—like this one aimed at training multi-skilled robots or this one offering continuous learning beyond training—may also move the dial. It’s early yet, however, and there’s no telling when machine learning will exceed more traditional methods.
And in the meantime, Boston Dynamics bots are testing the commercial waters.
Still, robotics researchers, who were not part of the Berkeley team, think the approach is promising. Edward Johns, head of Imperial College London’s Robot Learning Lab, told MIT Technology Review, “This is one of the most successful examples I have seen.”
The Berkeley team hopes to build on that success by trying out “more dynamic and agile behaviors.” So, might a self-taught parkour-Cassie be headed our way? We’ll see.
Image Credit: University of California Berkeley Hybrid Robotics via YouTube Continue reading
#439087 In an AI world we need to teach students ...
Robots are writing more of what we read on the internet. And artificial intelligence (AI) writing tools are becoming freely available for anyone, including students, to use. Continue reading