Tag Archives: household
#433506 MIT’s New Robot Taught Itself to Pick ...
Back in 2016, somewhere in a Google-owned warehouse, more than a dozen robotic arms sat for hours quietly grasping objects of various shapes and sizes. For hours on end, they taught themselves how to pick up and hold the items appropriately—mimicking the way a baby gradually learns to use its hands.
Now, scientists from MIT have made a new breakthrough in machine learning: their new system can not only teach itself to see and identify objects, but also understand how best to manipulate them.
This means that, armed with the new machine learning routine referred to as “dense object nets (DON),” the robot would be capable of picking up an object that it’s never seen before, or in an unfamiliar orientation, without resorting to trial and error—exactly as a human would.
The deceptively simple ability to dexterously manipulate objects with our hands is a huge part of why humans are the dominant species on the planet. We take it for granted. Hardware innovations like the Shadow Dexterous Hand have enabled robots to softly grip and manipulate delicate objects for many years, but the software required to control these precision-engineered machines in a range of circumstances has proved harder to develop.
This was not for want of trying. The Amazon Robotics Challenge offers millions of dollars in prizes (and potentially far more in contracts, as their $775m acquisition of Kiva Systems shows) for the best dexterous robot able to pick and package items in their warehouses. The lucrative dream of a fully-automated delivery system is missing this crucial ability.
Meanwhile, the Robocup@home challenge—an offshoot of the popular Robocup tournament for soccer-playing robots—aims to make everyone’s dream of having a robot butler a reality. The competition involves teams drilling their robots through simple household tasks that require social interaction or object manipulation, like helping to carry the shopping, sorting items onto a shelf, or guiding tourists around a museum.
Yet all of these endeavors have proved difficult; the tasks often have to be simplified to enable the robot to complete them at all. New or unexpected elements, such as those encountered in real life, more often than not throw the system entirely. Programming the robot’s every move in explicit detail is not a scalable solution: this can work in the highly-controlled world of the assembly line, but not in everyday life.
Computer vision is improving all the time. Neural networks, including those you train every time you prove that you’re not a robot with CAPTCHA, are getting better at sorting objects into categories, and identifying them based on sparse or incomplete data, such as when they are occluded, or in different lighting.
But many of these systems require enormous amounts of input data, which is impractical, slow to generate, and often needs to be laboriously categorized by humans. There are entirely new jobs that require people to label, categorize, and sift large bodies of data ready for supervised machine learning. This can make machine learning undemocratic. If you’re Google, you can make thousands of unwitting volunteers label your images for you with CAPTCHA. If you’re IBM, you can hire people to manually label that data. If you’re an individual or startup trying something new, however, you will struggle to access the vast troves of labeled data available to the bigger players.
This is why new systems that can potentially train themselves over time or that allow robots to deal with situations they’ve never seen before without mountains of labelled data are a holy grail in artificial intelligence. The work done by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is part of a new wave of “self-supervised” machine learning systems—little of the data used was labeled by humans.
The robot first inspects the new object from multiple angles, building up a 3D picture of the object with its own coordinate system. This then allows the robotic arm to identify a particular feature on the object—such as a handle, or the tongue of a shoe—from various different angles, based on its relative distance to other grid points.
This is the real innovation: the new means of representing objects to grasp as mapped-out 3D objects, with grid points and subsections of their own. Rather than using a computer vision algorithm to identify a door handle, and then activating a door handle grasping subroutine, the DON system treats all objects by making these spatial maps before classifying or manipulating them, enabling it to deal with a greater range of objects than in other approaches.
“Many approaches to manipulation can’t identify specific parts of an object across the many orientations that object may encounter,” said PhD student Lucas Manuelli, who wrote a new paper about the system with lead author and fellow student Pete Florence, alongside MIT professor Russ Tedrake. “For example, existing algorithms would be unable to grasp a mug by its handle, especially if the mug could be in multiple orientations, like upright, or on its side.”
Class-specific descriptors, which can be applied to the object features, can allow the robot arm to identify a mug, find the handle, and pick the mug up appropriately. Object-specific descriptors allow the robot arm to select a particular mug from a group of similar items. I’m already dreaming of a robot butler reliably picking my favourite mug when it serves me coffee in the morning.
Google’s robot arm-y was an attempt to develop a general grasping algorithm: one that could identify, categorize, and appropriately grip as many items as possible. This requires a great deal of training time and data, which is why Google parallelized their project by having 14 robot arms feed data into a single neural network brain: even then, the algorithm may fail with highly specific tasks. Specialist grasping algorithms might require less training if they’re limited to specific objects, but then your software is useless for general tasks.
As the roboticists noted, their system, with its ability to identify parts of an object rather than just a single object, is better suited to specific tasks, such as “grasp the racquet by the handle,” than Amazon Robotics Challenge robots, which identify whole objects by segmenting an image.
This work is small-scale at present. It has been tested with a few classes of objects, including shoes, hats, and mugs. Yet the use of these dense object nets as a way for robots to represent and manipulate new objects may well be another step towards the ultimate goal of generalized automation: a robot capable of performing every task a person can. If that point is reached, the question that will remain is how to cope with being obsolete.
Image Credit: Tom Buehler/CSAIL Continue reading
#432893 These 4 Tech Trends Are Driving Us ...
From a first-principles perspective, the task of feeding eight billion people boils down to converting energy from the sun into chemical energy in our bodies.
Traditionally, solar energy is converted by photosynthesis into carbohydrates in plants (i.e., biomass), which are either eaten by the vegans amongst us, or fed to animals, for those with a carnivorous preference.
Today, the process of feeding humanity is extremely inefficient.
If we could radically reinvent what we eat, and how we create that food, what might you imagine that “future of food” would look like?
In this post we’ll cover:
Vertical farms
CRISPR engineered foods
The alt-protein revolution
Farmer 3.0
Let’s dive in.
Vertical Farming
Where we grow our food…
The average American meal travels over 1,500 miles from farm to table. Wine from France, beef from Texas, potatoes from Idaho.
Imagine instead growing all of your food in a 50-story tall vertical farm in downtown LA or off-shore on the Great Lakes where the travel distance is no longer 1,500 miles but 50 miles.
Delocalized farming will minimize travel costs at the same time that it maximizes freshness.
Perhaps more importantly, vertical farming also allows tomorrow’s farmer the ability to control the exact conditions of her plants year round.
Rather than allowing the vagaries of the weather and soil conditions to dictate crop quality and yield, we can now perfectly control the growing cycle.
LED lighting provides the crops with the maximum amount of light, at the perfect frequency, 24 hours a day, 7 days a week.
At the same time, sensors and robots provide the root system the exact pH and micronutrients required, while fine-tuning the temperature of the farm.
Such precision farming can generate yields that are 200% to 400% above normal.
Next let’s explore how we can precision-engineer the genetic properties of the plant itself.
CRISPR and Genetically Engineered Foods
What food do we grow?
A fundamental shift is occurring in our relationship with agriculture. We are going from evolution by natural selection (Darwinism) to evolution by human direction.
CRISPR (the cutting edge gene editing tool) is providing a pathway for plant breeding that is more predictable, faster and less expensive than traditional breeding methods.
Rather than our crops being subject to nature’s random, environmental whim, CRISPR unlocks our capability to modify our crops to match the available environment.
Further, using CRISPR we will be able to optimize the nutrient density of our crops, enhancing their value and volume.
CRISPR may also hold the key to eliminating common allergens from crops. As we identify the allergen gene in peanuts, for instance, we can use CRISPR to silence that gene, making the crops we raise safer for and more accessible to a rapidly growing population.
Yet another application is our ability to make plants resistant to infection or more resistant to drought or cold.
Helping to accelerate the impact of CRISPR, the USDA recently announced that genetically engineered crops will not be regulated—providing an opening for entrepreneurs to capitalize on the opportunities for optimization CRISPR enables.
CRISPR applications in agriculture are an opportunity to help a billion people and become a billionaire in the process.
Protecting crops against volatile environments, combating crop diseases and increasing nutrient values, CRISPR is a promising tool to help feed the world’s rising population.
The Alt-Protein/Lab-Grown Meat Revolution
Something like a third of the Earth’s arable land is used for raising livestock—a massive amount of land—and global demand for meat is predicted to double in the coming decade.
Today, we must grow an entire cow—all bones, skin, and internals included—to produce a steak.
Imagine if we could instead start with a single muscle stem cell and only grow the steak, without needing the rest of the cow? Think of it as cellular agriculture.
Imagine returning millions, perhaps billions, of acres of grazing land back to the wilderness? This is the promise of lab-grown meats.
Lab-grown meat can also be engineered (using technology like CRISPR) to be packed with nutrients and be the healthiest, most delicious protein possible.
We’re watching this technology develop in real time. Several startups across the globe are already working to bring artificial meats to the food industry.
JUST, Inc. (previously Hampton Creek) run by my friend Josh Tetrick, has been on a mission to build a food system where everyone can get and afford delicious, nutritious food. They started by exploring 300,000+ species of plants all around the world to see how they can make food better and now are investing heavily in stem-cell-grown meats.
Backed by Richard Branson and Bill Gates, Memphis Meats is working on ways to produce real meat from animal cells, rather than whole animals. So far, they have produced beef, chicken, and duck using cultured cells from living animals.
As with vertical farming, transitioning production of our majority protein source to a carefully cultivated environment allows for agriculture to optimize inputs (water, soil, energy, land footprint), nutrients and, importantly, taste.
Farmer 3.0
Vertical farming and cellular agriculture are reinventing how we think about our food supply chain and what food we produce.
The next question to answer is who will be producing the food?
Let’s look back at how farming evolved through history.
Farmers 0.0 (Neolithic Revolution, around 9000 BCE): The hunter-gatherer to agriculture transition gains momentum, and humans cultivated the ability to domesticate plants for food production.
Farmers 1.0 (until around the 19th century): Farmers spent all day in the field performing backbreaking labor, and agriculture accounted for most jobs.
Farmers 2.0 (mid-20th century, Green Revolution): From the invention of the first farm tractor in 1812 through today, transformative mechanical biochemical technologies (fertilizer) boosted yields and made the job of farming easier, driving the US farm job rate down to less than two percent today.
Farmers 3.0: In the near future, farmers will leverage exponential technologies (e.g., AI, networks, sensors, robotics, drones), CRISPR and genetic engineering, and new business models to solve the world’s greatest food challenges and efficiently feed the eight-billion-plus people on Earth.
An important driver of the Farmer 3.0 evolution is the delocalization of agriculture driven by vertical and urban farms. Vertical farms and urban agriculture are empowering a new breed of agriculture entrepreneurs.
Let’s take a look at an innovative incubator in Brooklyn, New York called Square Roots.
Ten farm-in-a-shipping-containers in a Brooklyn parking lot represent the first Square Roots campus. Each 8-foot x 8.5-foot x 20-foot shipping container contains an equivalent of 2 acres of produce and can yield more than 50 pounds of produce each week.
For 13 months, one cohort of next-generation food entrepreneurs takes part in a curriculum with foundations in farming, business, community and leadership.
The urban farming incubator raised a $5.4 million seed funding round in August 2017.
Training a new breed of entrepreneurs to apply exponential technology to growing food is essential to the future of farming.
One of our massive transformative purposes at the Abundance Group is to empower entrepreneurs to generate extraordinary wealth while creating a world of abundance. Vertical farms and cellular agriculture are key elements enabling the next generation of food and agriculture entrepreneurs.
Conclusion
Technology is driving food abundance.
We’re already seeing food become demonetized, as the graph below shows.
From 1960 to 2014, the percent of income spent on food in the U.S. fell from 19 percent to under 10 percent of total disposable income—a dramatic decrease over the 40 percent of household income spent on food in 1900.
The dropping percent of per-capita disposable income spent on food. Source: USDA, Economic Research Service, Food Expenditure Series
Ultimately, technology has enabled a massive variety of food at a significantly reduced cost and with fewer resources used for production.
We’re increasingly going to optimize and fortify the food supply chain to achieve more reliable, predictable, and nutritious ways to obtain basic sustenance.
And that means a world with abundant, nutritious, and inexpensive food for every man, woman, and child.
What an extraordinary time to be alive.
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital.
Abundance-Digital is my ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: Nejron Photo / Shutterstock.com Continue reading
#432181 Putting AI in Your Pocket: MIT Chip Cuts ...
Neural networks are powerful things, but they need a lot of juice. Engineers at MIT have now developed a new chip that cuts neural nets’ power consumption by up to 95 percent, potentially allowing them to run on battery-powered mobile devices.
Smartphones these days are getting truly smart, with ever more AI-powered services like digital assistants and real-time translation. But typically the neural nets crunching the data for these services are in the cloud, with data from smartphones ferried back and forth.
That’s not ideal, as it requires a lot of communication bandwidth and means potentially sensitive data is being transmitted and stored on servers outside the user’s control. But the huge amounts of energy needed to power the GPUs neural networks run on make it impractical to implement them in devices that run on limited battery power.
Engineers at MIT have now designed a chip that cuts that power consumption by up to 95 percent by dramatically reducing the need to shuttle data back and forth between a chip’s memory and processors.
Neural nets consist of thousands of interconnected artificial neurons arranged in layers. Each neuron receives input from multiple neurons in the layer below it, and if the combined input passes a certain threshold it then transmits an output to multiple neurons above it. The strength of the connection between neurons is governed by a weight, which is set during training.
This means that for every neuron, the chip has to retrieve the input data for a particular connection and the connection weight from memory, multiply them, store the result, and then repeat the process for every input. That requires a lot of data to be moved around, expending a lot of energy.
The new MIT chip does away with that, instead computing all the inputs in parallel within the memory using analog circuits. That significantly reduces the amount of data that needs to be shoved around and results in major energy savings.
The approach requires the weights of the connections to be binary rather than a range of values, but previous theoretical work had suggested this wouldn’t dramatically impact accuracy, and the researchers found the chip’s results were generally within two to three percent of the conventional non-binary neural net running on a standard computer.
This isn’t the first time researchers have created chips that carry out processing in memory to reduce the power consumption of neural nets, but it’s the first time the approach has been used to run powerful convolutional neural networks popular for image-based AI applications.
“The results show impressive specifications for the energy-efficient implementation of convolution operations with memory arrays,” Dario Gil, vice president of artificial intelligence at IBM, said in a statement.
“It certainly will open the possibility to employ more complex convolutional neural networks for image and video classifications in IoT [the internet of things] in the future.”
It’s not just research groups working on this, though. The desire to get AI smarts into devices like smartphones, household appliances, and all kinds of IoT devices is driving the who’s who of Silicon Valley to pile into low-power AI chips.
Apple has already integrated its Neural Engine into the iPhone X to power things like its facial recognition technology, and Amazon is rumored to be developing its own custom AI chips for the next generation of its Echo digital assistant.
The big chip companies are also increasingly pivoting towards supporting advanced capabilities like machine learning, which has forced them to make their devices ever more energy-efficient. Earlier this year ARM unveiled two new chips: the Arm Machine Learning processor, aimed at general AI tasks from translation to facial recognition, and the Arm Object Detection processor for detecting things like faces in images.
Qualcomm’s latest mobile chip, the Snapdragon 845, features a GPU and is heavily focused on AI. The company has also released the Snapdragon 820E, which is aimed at drones, robots, and industrial devices.
Going a step further, IBM and Intel are developing neuromorphic chips whose architectures are inspired by the human brain and its incredible energy efficiency. That could theoretically allow IBM’s TrueNorth and Intel’s Loihi to run powerful machine learning on a fraction of the power of conventional chips, though they are both still highly experimental at this stage.
Getting these chips to run neural nets as powerful as those found in cloud services without burning through batteries too quickly will be a big challenge. But at the current pace of innovation, it doesn’t look like it will be too long before you’ll be packing some serious AI power in your pocket.
Image Credit: Blue Planet Studio / Shutterstock.com Continue reading
#431343 How Technology Is Driving Us Toward Peak ...
At some point in the future—and in some ways we are already seeing this—the amount of physical stuff moving around the world will peak and begin to decline. By “stuff,” I am referring to liquid fuels, coal, containers on ships, food, raw materials, products, etc.
New technologies are moving us toward “production-at-the-point-of-consumption” of energy, food, and products with reduced reliance on a global supply chain.
The trade of physical stuff has been central to globalization as we’ve known it. So, this declining movement of stuff may signal we are approaching “peak globalization.”
To be clear, even as the movement of stuff may slow, if not decline, the movement of people, information, data, and ideas around the world is growing exponentially and is likely to continue doing so for the foreseeable future.
Peak globalization may provide a pathway to preserving the best of globalization and global interconnectedness, enhancing economic and environmental sustainability, and empowering individuals and communities to strengthen democracy.
At the same time, some of the most troublesome aspects of globalization may be eased, including massive financial transfers to energy producers and loss of jobs to manufacturing platforms like China. This shift could bring relief to the “losers” of globalization and ease populist, nationalist political pressures that are roiling the developed countries.
That is quite a claim, I realize. But let me explain the vision.
New Technologies and Businesses: Digital, Democratized, Decentralized
The key factors moving us toward peak globalization and making it economically viable are new technologies and innovative businesses and business models allowing for “production-at-the-point-of-consumption” of energy, food, and products.
Exponential technologies are enabling these trends by sharply reducing the “cost of entry” for creating businesses. Driven by Moore’s Law, powerful technologies have become available to almost anyone, anywhere.
Beginning with the microchip, which has had a 100-billion-fold improvement in 40 years—10,000 times faster and 10 million times cheaper—the marginal cost of producing almost everything that can be digitized has fallen toward zero.
A hard copy of a book, for example, will always entail the cost of materials, printing, shipping, etc., even if the marginal cost falls as more copies are produced. But the marginal cost of a second digital copy, such as an e-book, streaming video, or song, is nearly zero as it is simply a digital file sent over the Internet, the world’s largest copy machine.* Books are one product, but there are literally hundreds of thousands of dollars in once-physical, separate products jammed into our devices at little to no cost.
A smartphone alone provides half the human population access to artificial intelligence—from SIRI, search, and translation to cloud computing—geolocation, free global video calls, digital photography and free uploads to social network sites, free access to global knowledge, a million apps for a huge variety of purposes, and many other capabilities that were unavailable to most people only a few years ago.
As powerful as dematerialization and demonetization are for private individuals, they’re having a stronger effect on businesses. A small team can access expensive, advanced tools that before were only available to the biggest organizations. Foundational digital platforms, such as the internet and GPS, and the platforms built on top of them by the likes of Google, Apple, Amazon, and others provide the connectivity and services democratizing business tools and driving the next generation of new startups.
“As these trends gain steam in coming decades, they’ll bleed into and fundamentally transform global supply chains.”
An AI startup, for example, doesn’t need its own server farm to train its software and provide service to customers. The team can rent computing power from Amazon Web Services. This platform model enables small teams to do big things on the cheap. And it isn’t just in software. Similar trends are happening in hardware too. Makers can 3D print or mill industrial grade prototypes of physical stuff in a garage or local maker space and send or sell designs to anyone with a laptop and 3D printer via online platforms.
These are early examples of trends that are likely to gain steam in coming decades, and as they do, they’ll bleed into and fundamentally transform global supply chains.
The old model is a series of large, connected bits of centralized infrastructure. It makes sense to mine, farm, or manufacture in bulk when the conditions, resources, machines, and expertise to do so exist in particular places and are specialized and expensive. The new model, however, enables smaller-scale production that is local and decentralized.
To see this more clearly, let’s take a look at the technological trends at work in the three biggest contributors to the global trade of physical stuff—products, energy, and food.
Products
3D printing (additive manufacturing) allows for distributed manufacturing near the point of consumption, eliminating or reducing supply chains and factory production lines.
This is possible because product designs are no longer made manifest in assembly line parts like molds or specialized mechanical tools. Rather, designs are digital and can be called up at will to guide printers. Every time a 3D printer prints, it can print a different item, so no assembly line needs to be set up for every different product. 3D printers can also print an entire finished product in one piece or reduce the number of parts of larger products, such as engines. This further lessens the need for assembly.
Because each item can be customized and printed on demand, there is no cost benefit from scaling production. No inventories. No shipping items across oceans. No carbon emissions transporting not only the final product but also all the parts in that product shipped from suppliers to manufacturer. Moreover, 3D printing builds items layer by layer with almost no waste, unlike “subtractive manufacturing” in which an item is carved out of a piece of metal, and much or even most of the material can be waste.
Finally, 3D printing is also highly scalable, from inexpensive 3D printers (several hundred dollars) for home and school use to increasingly capable and expensive printers for industrial production. There are also 3D printers being developed for printing buildings, including houses and office buildings, and other infrastructure.
The technology for finished products is only now getting underway, and there are still challenges to overcome, such as speed, quality, and range of materials. But as methods and materials advance, it will likely creep into more manufactured goods.
Ultimately, 3D printing will be a general purpose technology that involves many different types of printers and materials—such as plastics, metals, and even human cells—to produce a huge range of items, from human tissue and potentially human organs to household items and a range of industrial items for planes, trains, and automobiles.
Energy
Renewable energy production is located at or relatively near the source of consumption.
Although electricity generated by solar, wind, geothermal, and other renewable sources can of course be transmitted over longer distances, it is mostly generated and consumed locally or regionally. It is not transported around the world in tankers, ships, and pipelines like petroleum, coal, and natural gas.
Moreover, the fuel itself is free—forever. There is no global price on sun or wind. The people relying on solar and wind power need not worry about price volatility and potential disruption of fuel supplies as a result of political, market, or natural causes.
Renewables have their problems, of course, including intermittency and storage, and currently they work best if complementary to other sources, especially natural gas power plants that, unlike coal plants, can be turned on or off and modulated like a gas stove, and are half the carbon emissions of coal.
Within the next decades or so, it is likely the intermittency and storage problems will be solved or greatly mitigated. In addition, unlike coal and natural gas power plants, solar is scalable, from solar panels on individual homes or even cars and other devices, to large-scale solar farms. Solar can be connected with microgrids and even allow for autonomous electricity generation by homes, commercial buildings, and communities.
It may be several decades before fossil fuel power plants can be phased out, but the development cost of renewables has been falling exponentially and, in places, is beginning to compete with coal and gas. Solar especially is expected to continue to increase in efficiency and decline in cost.
Given these trends in cost and efficiency, renewables should become obviously cheaper over time—if the fuel is free for solar and has to be continually purchased for coal and gas, at some point the former is cheaper than the latter. Renewables are already cheaper if externalities such as carbon emissions and environmental degradation involved in obtaining and transporting the fuel are included.
Food
Food can be increasingly produced near the point of consumption with vertical farms and eventually with printed food and even printed or cultured meat.
These sources bring production of food very near the consumer, so transportation costs, which can be a significant portion of the cost of food to consumers, are greatly reduced. The use of land and water are reduced by 95% or more, and energy use is cut by nearly 50%. In addition, fertilizers and pesticides are not required and crops can be grown 365 days a year whatever the weather and in more climates and latitudes than is possible today.
While it may not be practical to grow grains, corn, and other such crops in vertical farms, many vegetables and fruits can flourish in such facilities. In addition, cultured or printed meat is being developed—the big challenge is scaling up and reducing cost—that is based on cells from real animals without slaughtering the animals themselves.
There are currently some 70 billion animals being raised for food around the world [PDF] and livestock alone counts for about 15% of global emissions. Moreover, livestock places huge demands on land, water, and energy. Like vertical farms, cultured or printed meat could be produced with no more land use than a brewery and with far less water and energy.
A More Democratic Economy Goes Bottom Up
This is a very brief introduction to the technologies that can bring “production-at-the-point-of-consumption” of products, energy, and food to cities and regions.
What does this future look like? Here’s a simplified example.
Imagine a universal manufacturing facility with hundreds of 3D printers printing tens of thousands of different products on demand for the local community—rather than assembly lines in China making tens of thousands of the same product that have to be shipped all over the world since no local market can absorb all of the same product.
Nearby, a vertical farm and cultured meat facility produce much of tomorrow night’s dinner. These facilities would be powered by local or regional wind and solar. Depending on need and quality, some infrastructure and machinery, like solar panels and 3D printers, would live in these facilities and some in homes and businesses.
The facilities could be owned by a large global corporation—but still locally produce goods—or they could be franchised or even owned and operated independently by the local population. Upkeep and management at each would provide jobs for communities nearby. Eventually, not only would global trade of parts and products diminish, but even required supplies of raw materials and feed stock would decline since there would be less waste in production, and many materials would be recycled once acquired.
“Peak globalization could be a viable pathway to an economic foundation that puts people first while building a more economically and environmentally sustainable future.”
This model suggests a shift toward a “bottom up” economy that is more democratic, locally controlled, and likely to generate more local jobs.
The global trends in democratization of technology make the vision technologically plausible. Much of this technology already exists and is improving and scaling while exponentially decreasing in cost to become available to almost anyone, anywhere.
This includes not only access to key technologies, but also to education through digital platforms available globally. Online courses are available for free, ranging from advanced physics, math, and engineering to skills training in 3D printing, solar installations, and building vertical farms. Social media platforms can enable local and global collaboration and sharing of knowledge and best practices.
These new communities of producers can be the foundation for new forms of democratic governance as they recognize and “capitalize” on the reality that control of the means of production can translate to political power. More jobs and local control could weaken populist, anti-globalization political forces as people recognize they could benefit from the positive aspects of globalization and international cooperation and connectedness while diminishing the impact of globalization’s downsides.
There are powerful vested interests that stand to lose in such a global structural shift. But this vision builds on trends that are already underway and are gaining momentum. Peak globalization could be a viable pathway to an economic foundation that puts people first while building a more economically and environmentally sustainable future.
This article was originally posted on Open Democracy (CC BY-NC 4.0). The version above was edited with the author for length and includes additions. Read the original article on Open Democracy.
* See Jeremy Rifkin, The Zero Marginal Cost Society, (New York: Palgrave Macmillan, 2014), Part II, pp. 69-154.
Image Credit: Sergey Nivens / Shutterstock.com Continue reading