Tag Archives: history

#437120 The New Indiana Jones? AI. Here’s How ...

Archaeologists have uncovered scores of long-abandoned settlements along coastal Madagascar that reveal environmental connections to modern-day communities. They have detected the nearly indiscernible bumps of earthen mounds left behind by prehistoric North American cultures. Still other researchers have mapped Bronze Age river systems in the Indus Valley, one of the cradles of civilization.

All of these recent discoveries are examples of landscape archaeology. They’re also examples of how artificial intelligence is helping scientists hunt for new archaeological digs on a scale and at a pace unimaginable even a decade ago.

“AI in archaeology has been increasing substantially over the past few years,” said Dylan Davis, a PhD candidate in the Department of Anthropology at Penn State University. “One of the major uses of AI in archaeology is for the detection of new archaeological sites.”

The near-ubiquitous availability of satellite data and other types of aerial imagery for many parts of the world has been both a boon and a bane to archaeologists. They can cover far more ground, but the job of manually mowing their way across digitized landscapes is still time-consuming and laborious. Machine learning algorithms offer a way to parse through complex data far more quickly.

AI Gives Archaeologists a Bird’s Eye View
Davis developed an automated algorithm for identifying large earthen and shell mounds built by native populations long before Europeans arrived with far-off visions of skyscrapers and superhighways in their eyes. The sites still hidden in places like the South Carolina wilderness contain a wealth of information about how people lived, even what they ate, and the ways they interacted with the local environment and other cultures.

In this particular case, the imagery comes from LiDAR, which uses light pulses that can penetrate tree canopies to map forest floors. The team taught the computer the shape, size, and texture characteristics of the mounds so it could identify potential sites from the digital 3D datasets that it analyzed.

“The process resulted in several thousand possible features that my colleagues and I checked by hand,” Davis told Singularity Hub. “While not entirely automated, this saved the equivalent of years of manual labor that would have been required for analyzing the whole LiDAR image by hand.”

In Madagascar—where Davis is studying human settlement history across the world’s fourth largest island over a timescale of millennia—he developed a predictive algorithm to help locate archaeological sites using freely available satellite imagery. His team was able to survey and identify more than 70 new archaeological sites—and potentially hundreds more—across an area of more than 1,000 square kilometers during the course of about a year.

Machines Learning From the Past Prepare Us for the Future
One impetus behind the rapid identification of archaeological sites is that many are under threat from climate change, such as coastal erosion from sea level rise, or other human impacts. Meanwhile, traditional archaeological approaches are expensive and laborious—serious handicaps in a race against time.

“It is imperative to record as many archaeological sites as we can in a short period of time. That is why AI and machine learning are useful for my research,” Davis said.

Studying the rise and fall of past civilizations can also teach modern humans a thing or two about how to grapple with these current challenges.

Researchers at the Institut Català d’Arqueologia Clàssica (ICAC) turned to machine-learning algorithms to reconstruct more than 20,000 kilometers of paleo-rivers along the Indus Valley civilization of what is now part of modern Pakistan and India. Such AI-powered mapping techniques wouldn’t be possible using satellite images alone.

That effort helped locate many previously unknown archaeological sites and unlocked new insights into those Bronze Age cultures. However, the analytics can also assist governments with important water resource management today, according to Hèctor A. Orengo Romeu, co-director of the Landscape Archaeology Research Group at ICAC.

“Our analyses can contribute to the forecasts of the evolution of aquifers in the area and provide valuable information on aspects such as the variability of agricultural productivity or the influence of climate change on the expansion of the Thar desert, in addition to providing cultural management tools to the government,” he said.

Leveraging AI for Language and Lots More
While landscape archaeology is one major application of AI in archaeology, it’s far from the only one. In 2000, only about a half-dozen scientific papers referred to the use of AI, according to the Web of Science, reputedly the world’s largest global citation database. Last year, more than 65 papers were published concerning the use of machine intelligence technologies in archaeology, with a significant uptick beginning in 2015.

AI methods, for instance, are being used to understand the chemical makeup of artifacts like pottery and ceramics, according to Davis. “This can help identify where these materials were made and how far they were transported. It can also help us to understand the extent of past trading networks.”

Linguistic anthropologists have also used machine intelligence methods to trace the evolution of different languages, Davis said. “Using AI, we can learn when and where languages emerged around the world.”

In other cases, AI has helped reconstruct or decipher ancient texts. Last year, researchers at Google’s DeepMind used a deep neural network called PYTHIA to recreate missing inscriptions in ancient Greek from damaged surfaces of objects made of stone or ceramics.

Named after the Oracle at Delphi, PYTHIA “takes a sequence of damaged text as input, and is trained to predict character sequences comprising hypothesised restorations of ancient Greek inscriptions,” the researchers reported.

In a similar fashion, Chinese scientists applied a convolutional neural network (CNN) to untangle another ancient tongue once found on turtle shells and ox bones. The CNN managed to classify oracle bone morphology in order to piece together fragments of these divination objects, some with inscriptions that represent the earliest evidence of China’s recorded history.

“Differentiating the materials of oracle bones is one of the most basic steps for oracle bone morphology—we need to first make sure we don’t assemble pieces of ox bones with tortoise shells,” lead author of the study, associate professor Shanxiong Chen at China’s Southwest University, told Synced, an online tech publication in China.

AI Helps Archaeologists Get the Scoop…
And then there are applications of AI in archaeology that are simply … interesting. Just last month, researchers published a paper about a machine learning method trained to differentiate between human and canine paleofeces.

The algorithm, dubbed CoproID, compares the gut microbiome DNA found in the ancient material with DNA found in modern feces, enabling it to get the scoop on the origin of the poop.

Also known as coprolites, paleo-feces from humans and dogs are often found in the same archaeological sites. Scientists need to know which is which if they’re trying to understand something like past diets or disease.

“CoproID is the first line of identification in coprolite analysis to confirm that what we’re looking for is actually human, or a dog if we’re interested in dogs,” Maxime Borry, a bioinformatics PhD student at the Max Planck Institute for the Science of Human History, told Vice.

…But Machine Intelligence Is Just Another Tool
There is obviously quite a bit of work that can be automated through AI. But there’s no reason for archaeologists to hit the unemployment line any time soon. There are also plenty of instances where machines can’t yet match humans in identifying objects or patterns. At other times, it’s just faster doing the analysis yourself, Davis noted.

“For ‘big data’ tasks like detecting archaeological materials over a continental scale, AI is useful,” he said. “But for some tasks, it is sometimes more time-consuming to train an entire computer algorithm to complete a task that you can do on your own in an hour.”

Still, there’s no telling what the future will hold for studying the past using artificial intelligence.

“We have already started to see real improvements in the accuracy and reliability of these approaches, but there is a lot more to do,” Davis said. “Hopefully, we start to see these methods being directly applied to a variety of interesting questions around the world, as these methods can produce datasets that would have been impossible a few decades ago.”

Image Credit: James Wheeler from Pixabay Continue reading

Posted in Human Robots

#436988 This Week’s Awesome Tech Stories From ...

FUTURE
We Need to Start Modeling Alternative Futures
Andrew Marino | The Verge
“‘I’m going to be the first person to tell you if you gave me all the data in the world and all the computers in the world, at this moment in time I cannot tell you what things are going to look like in three months,’ [says quantitative futurist Amy Webb.] ‘And that’s fine because that tells us we still have some agency. …The good news is if you are willing to lean into uncertainty and to accept the fact that you can’t control everything, but also you are not helpless in whatever comes next.'”

GOVERNANCE
The Dangers of Moving All of Democracy Online
Marion Fourcade and Henry Farrell | Wired
“As we try to protect democracy from coronavirus, we must see technology as a scalpel, not a sledgehammer. …If we’re very lucky, we’ll have restrained, targeted, and temporary measures that will be effective against the pandemic. If we’re not, we’ll create an open-ended, sweeping surveillance system that will undermine democratic freedoms without doing much to stop coronavirus.”

TECHNOLOGY
Why Does It Suddenly Feel Like 1999 on the Internet?
Tanya Basu and Karen Hao | MIT Technology Review
“You see it in the renewed willingness of people to form virtual relationships. …Now casually hanging out with randos (virtually, of course) is cool again. People are joining video calls with people they’ve never met for everything from happy hours to book clubs to late-night flirting. They’re sharing in collective moments of creativity on Google Sheets, looking for new pandemic pen pals, and sending softer, less pointed emails.”

SCIENCE
Covid-19 Changed How the World Does Science, Together
Matt Apuzzo and David D. Kirkpatrick | The New York Times
“While political leaders have locked their borders, scientists have been shattering theirs, creating a global collaboration unlike any in history. Never before, researchers say, have so many experts in so many countries focused simultaneously on a single topic and with such urgency. Nearly all other research has ground to a halt.”

ARTIFICIAL INTELLIGENCE
A Debate Between AI Experts Shows a Battle Over the Technology’s Future
Karen Hao | MIT Technology Review
“The disagreements [the two experts] expressed mirror many of the clashes within the field, highlighting how powerfully the technology has been shaped by a persistent battle of ideas and how little certainty there is about where it’s headed next.”

BIOTECH
Meet the Xenobots, Virtual Creatures Brought to Life
Joshua Sokol | The New York Times
“If the last few decades of progress in artificial intelligence and in molecular biology hooked up, their love child—a class of life unlike anything that has ever lived—might resemble the dark specks doing lazy laps around a petri dish in a laboratory at Tufts University.”

ENVIRONMENT
Rivian Wants to Bring Electric Trucks to the Masses
Jon Gertner | Wired
“The pickup walks a careful line between Detroit traditionalism and EV iconoclasm. Where Tesla’s forthcoming Cybertruck looks like origami on wheels, the R1T, slim and limber, looks more like an F-150 on a gym-and-yoga regimen.”

ENERGY
The Promise and Peril of Nuclear Power
John R. Quain | Gizmodo
“To save us from the coming climate catastrophe, we need an energy hero, boasting limitless power and no greenhouse gas emissions (or nearly none). So it’s time, say some analysts, to resuscitate the nuclear energy industry. Doing so could provide carbon-free energy. But any plan to make nuclear power a big part of the energy mix also comes with serious financial risks as well as questions about if there’s enough time to enlist an army of nuclear power plants in the battle against the climate crisis.”

Image Credit: Jason Rosewell / Unsplash Continue reading

Posted in Human Robots

#436984 Robots to the Rescue: How They Can Help ...

As the coronavirus pandemic forces people to keep their distance, could this be robots‘ time to shine? A group of scientists think so, and they’re calling for robots to do the “dull, dirty, and dangerous jobs” of infectious disease management.

Social distancing has emerged as one of the most effective strategies for slowing the spread of COVID-19, but it’s also bringing many jobs to a standstill and severely restricting our daily lives. And unfortunately, the one group that can’t rely on its protective benefits are the medical and emergency services workers we’re relying on to save us.

Robots could be a solution, according to the editorial board of Science Robotics, by helping replace humans in a host of critical tasks, from disinfecting hospitals to collecting patient samples and automating lab tests.

According to the authors, the key areas where robots could help are clinical care, logistics, and reconnaissance, which refers to tasks like identifying the infected or making sure people comply with quarantines or social distancing requirements. Outside of the medical sphere, robots could also help keep the economy and infrastructure going by standing in for humans in factories or vital utilities like waste management or power plants.

When it comes to clinical care, robots can play important roles in disease prevention, diagnosis and screening, and patient care, the researchers say. Robots have already been widely deployed to disinfect hospitals and other public spaces either using UV light that kills bugs or by repurposing agricultural robots and drones to spray disinfectant, reducing the exposure of cleaning staff to potentially contaminated surfaces. They are also being used to carry out crucial deliveries of food and medication without exposing humans.

But they could also play an important role in tracking the disease, say the researchers. Thermal cameras combined with image recognition algorithms are already being used to detect potential cases at places like airports, but incorporating them into mobile robots or drones could greatly expand the coverage of screening programs.

A more complex challenge—but one that could significantly reduce medical workers’ exposure to the virus—would be to design robots that could automate the collection of nasal swabs used to test for COVID-19. Similarly automated blood collection for tests could be of significant help, and researchers are already investigating using ultrasound to help robots locate veins to draw blood from.

Convincing people it’s safe to let a robot stick a swab up their nose or jab a needle in their arm might be a hard sell right now, but a potentially more realistic scenario would be to get robots to carry out laboratory tests on collected samples to reduce exposure to lab technicians. Commercial laboratory automation systems already exist, so this might be a more achievable near-term goal.

Not all solutions need to be automated, though. While autonomous systems will be helpful for reducing the workload of stretched health workers, remote systems can still provide useful distancing. Remote control robotics systems are already becoming increasingly common in the delicate business of surgery, so it would be entirely feasible to create remote systems to carry out more prosaic medical tasks.

Such systems would make it possible for experts to contribute remotely in many different places without having to travel. And robotic systems could combine medical tasks like patient monitoring with equally important social interaction for people who may have been shut off from human contact.

In a teleconference last week Guang-Zhong Yang, a medical roboticist from Carnegie Mellon University and founding editor of Science Robotics, highlighted the importance of including both doctors and patients in the design of these robots to ensure they are safe and effective, but also to make sure people trust them to observe social protocols and not invade their privacy.

But Yang also stressed the importance of putting the pieces in place to enable the rapid development and deployment of solutions. During the 2015 Ebola outbreak, the White House Office of Science and Technology Policy and the National Science Foundation organized workshops to identify where robotics could help deal with epidemics.

But once the threat receded, attention shifted elsewhere, and by the time the next pandemic came around little progress had been made on potential solutions. The result is that it’s unclear how much help robots will really be able to provide to the COVID-19 response.

That means it’s crucial to invest in a sustained research effort into this field, say the paper’s authors, with more funding and multidisciplinary research partnerships between government agencies and industry so that next time around we will be prepared.

“These events are rare and then it’s just that people start to direct their efforts to other applications,” said Yang. “So I think this time we really need to nail it, because without a sustained approach to this history will repeat itself and robots won’t be ready.”

Image Credit: ABB’s YuMi collaborative robot. Image courtesy of ABB Continue reading

Posted in Human Robots

#436946 Coronavirus May Mean Automation Is ...

We’re in the midst of a public health emergency, and life as we know it has ground to a halt. The places we usually go are closed, the events we were looking forward to are canceled, and some of us have lost our jobs or fear losing them soon.

But although it may not seem like it, there are some silver linings; this crisis is bringing out the worst in some (I’m looking at you, toilet paper hoarders), but the best in many. Italians on lockdown are singing together, Spaniards on lockdown are exercising together, this entrepreneur made a DIY ventilator and put it on YouTube, and volunteers in Italy 3D printed medical valves for virus treatment at a fraction of their usual cost.

Indeed, if you want to feel like there’s still hope for humanity instead of feeling like we’re about to snowball into terribleness as a species, just look at these examples—and I’m sure there are many more out there. There’s plenty of hope and opportunity to be found in this crisis.

Peter Xing, a keynote speaker and writer on emerging technologies and associate director in technology and growth initiatives at KPMG, would agree. Xing believes the coronavirus epidemic is presenting us with ample opportunities for increased automation and remote delivery of goods and services. “The upside right now is the burgeoning platform of the digital transformation ecosystem,” he said.

In a thought-provoking talk at Singularity University’s COVID-19 virtual summit this week, Xing explained how the outbreak is accelerating our transition to a highly-automated society—and painted a picture of what the future may look like.

Confronting Scarcity
You’ve probably seen them by now—the barren shelves at your local grocery store. Whether you were in the paper goods aisle, the frozen food section, or the fresh produce area, it was clear something was amiss; the shelves were empty. One of the most inexplicable items people have been panic-bulk-buying is toilet paper.

Xing described this toilet paper scarcity as a prisoner’s dilemma, pointing out that we have a scarcity problem right now in terms of our mindset, not in terms of actual supply shortages. “It’s a prisoner’s dilemma in that we’re all prisoners in our homes right now, and we can either hoard or not hoard, and the outcomes depend on how we collaborate with each other,” he said. “But it’s not a zero-sum game.”

Xing referenced a CNN article about why toilet paper, of all things, is one of the items people have been panic-buying most (I, too, have been utterly baffled by this phenomenon). But maybe there’d be less panic if we knew more about the production methods and supply chain involved in manufacturing toilet paper. It turns out it’s a highly automated process (you can learn more about it in this documentary by National Geographic) and requires very few people (though it does require about 27,000 trees a day—so stop bulk-buying it! Just stop!).

The supply chain limitation here is in the raw material; we certainly can’t keep cutting down this many trees a day forever. But—somewhat ironically, given the Costco cartloads of TP people have been stuffing into their trunks and backseats—thanks to automation, toilet paper isn’t something stores are going to stop receiving anytime soon.

Automation For All
Now we have a reason to apply this level of automation to, well, pretty much everything.

Though our current situation may force us into using more robots and automated systems sooner than we’d planned, it will end up saving us money and creating opportunity, Xing believes. He cited “fast-casual” restaurants (Chipotle, Panera, etc.) as a prime example.

Currently, people in the US spend much more to eat at home than we do to eat in fast-casual restaurants if you take into account the cost of the food we’re preparing plus the value of the time we’re spending on cooking, grocery shopping, and cleaning up after meals. According to research from investment management firm ARK Invest, taking all these costs into account makes for about $12 per meal for food cooked at home.

That’s the same as or more than the cost of grabbing a burrito or a sandwich at the joint around the corner. As more of the repetitive, low-skill tasks involved in preparing fast casual meals are automated, their cost will drop even more, giving us more incentive to forego home cooking. (But, it’s worth noting that these figures don’t take into account that eating at home is, in most cases, better for you since you’re less likely to fill your food with sugar, oil, or various other taste-enhancing but health-destroying ingredients—plus, there are those of us who get a nearly incomparable amount of joy from laboring over then savoring a homemade meal).

Now that we’re not supposed to be touching each other or touching anything anyone else has touched, but we still need to eat, automating food preparation sounds appealing (and maybe necessary). Multiple food delivery services have already implemented a contactless delivery option, where customers can choose to have their food left on their doorstep.

Besides the opportunities for in-restaurant automation, “This is an opportunity for automation to happen at the last mile,” said Xing. Delivery drones, robots, and autonomous trucks and vans could all play a part. In fact, use of delivery drones has ramped up in China since the outbreak.

Speaking of deliveries, service robots have steadily increased in numbers at Amazon; as of late 2019, the company employed around 650,000 humans and 200,000 robots—and costs have gone down as robots have gone up.

ARK Invest’s research predicts automation could add $800 billion to US GDP over the next 5 years and $12 trillion during the next 15 years. On this trajectory, GDP would end up being 40 percent higher with automation than without it.

Automating Ourselves?
This is all well and good, but what do these numbers and percentages mean for the average consumer, worker, or citizen?

“The benefits of automation aren’t being passed on to the average citizen,” said Xing. “They’re going to the shareholders of the companies creating the automation.” This is where policies like universal basic income and universal healthcare come in; in the not-too-distant future, we may see more movement toward measures like these (depending how the election goes) that spread the benefit of automation out rather than concentrating it in a few wealthy hands.

In the meantime, though, some people are benefiting from automation in ways that maybe weren’t expected. We’re in the midst of what’s probably the biggest remote-work experiment in US history, not to mention remote learning. Tools that let us digitally communicate and collaborate, like Slack, Zoom, Dropbox, and Gsuite, are enabling remote work in a way that wouldn’t have been possible 20 or even 10 years ago.

In addition, Xing said, tools like DataRobot and H2O.ai are democratizing artificial intelligence by allowing almost anyone, not just data scientists or computer engineers, to run machine learning algorithms. People are codifying the steps in their own repetitive work processes and having their computers take over tasks for them.

As 3D printing gets cheaper and more accessible, it’s also being more widely adopted, and people are finding more applications (case in point: the Italians mentioned above who figured out how to cheaply print a medical valve for coronavirus treatment).

The Mother of Invention
This movement towards a more automated society has some positives: it will help us stay healthy during times like the present, it will drive down the cost of goods and services, and it will grow our GDP in the long run. But by leaning into automation, will we be enabling a future that keeps us more physically, psychologically, and emotionally distant from each other?

We’re in a crisis, and desperate times call for desperate measures. We’re sheltering in place, practicing social distancing, and trying not to touch each other. And for most of us, this is really unpleasant and difficult. We can’t wait for it to be over.

For better or worse, this pandemic will likely make us pick up the pace on our path to automation, across many sectors and processes. The solutions people implement during this crisis won’t disappear when things go back to normal (and, depending who you talk to, they may never really do so).

But let’s make sure to remember something. Even once robots are making our food and drones are delivering it, and our computers are doing data entry and email replies on our behalf, and we all have 3D printers to make anything we want at home—we’re still going to be human. And humans like being around each other. We like seeing one another’s faces, hearing one another’s voices, and feeling one another’s touch—in person, not on a screen or in an app.

No amount of automation is going to change that, and beyond lowering costs or increasing GDP, our greatest and most crucial responsibility will always be to take care of each other.

Image Credit: Gritt Zheng on Unsplash Continue reading

Posted in Human Robots

#436911 Scientists Linked Artificial and ...

Scientists have linked up two silicon-based artificial neurons with a biological one across multiple countries into a fully-functional network. Using standard internet protocols, they established a chain of communication whereby an artificial neuron controls a living, biological one, and passes on the info to another artificial one.

Whoa.

We’ve talked plenty about brain-computer interfaces and novel computer chips that resemble the brain. We’ve covered how those “neuromorphic” chips could link up into tremendously powerful computing entities, using engineered communication nodes called artificial synapses.

As Moore’s law is dying, we even said that neuromorphic computing is one path towards the future of extremely powerful, low energy consumption artificial neural network-based computing—in hardware—that could in theory better link up with the brain. Because the chips “speak” the brain’s language, in theory they could become neuroprosthesis hubs far more advanced and “natural” than anything currently possible.

This month, an international team put all of those ingredients together, turning theory into reality.

The three labs, scattered across Padova, Italy, Zurich, Switzerland, and Southampton, England, collaborated to create a fully self-controlled, hybrid artificial-biological neural network that communicated using biological principles, but over the internet.

The three-neuron network, linked through artificial synapses that emulate the real thing, was able to reproduce a classic neuroscience experiment that’s considered the basis of learning and memory in the brain. In other words, artificial neuron and synapse “chips” have progressed to the point where they can actually use a biological neuron intermediary to form a circuit that, at least partially, behaves like the real thing.

That’s not to say cyborg brains are coming soon. The simulation only recreated a small network that supports excitatory transmission in the hippocampus—a critical region that supports memory—and most brain functions require enormous cross-talk between numerous neurons and circuits. Nevertheless, the study is a jaw-dropping demonstration of how far we’ve come in recreating biological neurons and synapses in artificial hardware.

And perhaps one day, the currently “experimental” neuromorphic hardware will be integrated into broken biological neural circuits as bridges to restore movement, memory, personality, and even a sense of self.

The Artificial Brain Boom
One important thing: this study relies heavily on a decade of research into neuromorphic computing, or the implementation of brain functions inside computer chips.

The best-known example is perhaps IBM’s TrueNorth, which leveraged the brain’s computational principles to build a completely different computer than what we have today. Today’s computers run on a von Neumann architecture, in which memory and processing modules are physically separate. In contrast, the brain’s computing and memory are simultaneously achieved at synapses, small “hubs” on individual neurons that talk to adjacent ones.

Because memory and processing occur on the same site, biological neurons don’t have to shuttle data back and forth between processing and storage compartments, massively reducing processing time and energy use. What’s more, a neuron’s history will also influence how it behaves in the future, increasing flexibility and adaptability compared to computers. With the rise of deep learning, which loosely mimics neural processing as the prima donna of AI, the need to reduce power while boosting speed and flexible learning is becoming ever more tantamount in the AI community.

Neuromorphic computing was partially born out of this need. Most chips utilize special ingredients that change their resistance (or other physical characteristics) to mimic how a neuron might adapt to stimulation. Some chips emulate a whole neuron, that is, how it responds to a history of stimulation—does it get easier or harder to fire? Others imitate synapses themselves, that is, how easily they will pass on the information to another neuron.

Although single neuromorphic chips have proven to be far more efficient and powerful than current computer chips running machine learning algorithms in toy problems, so far few people have tried putting the artificial components together with biological ones in the ultimate test.

That’s what this study did.

A Hybrid Network
Still with me? Let’s talk network.

It’s gonna sound complicated, but remember: learning is the formation of neural networks, and neurons that fire together wire together. To rephrase: when learning, neurons will spontaneously organize into networks so that future instances will re-trigger the entire network. To “wire” together, downstream neurons will become more responsive to their upstream neural partners, so that even a whisper will cause them to activate. In contrast, some types of stimulation will cause the downstream neuron to “chill out” so that only an upstream “shout” will trigger downstream activation.

Both these properties—easier or harder to activate downstream neurons—are essentially how the brain forms connections. The “amping up,” in neuroscience jargon, is long-term potentiation (LTP), whereas the down-tuning is LTD (long-term depression). These two phenomena were first discovered in the rodent hippocampus more than half a century ago, and ever since have been considered as the biological basis of how the brain learns and remembers, and implicated in neurological problems such as addition (seriously, you can’t pass Neuro 101 without learning about LTP and LTD!).

So it’s perhaps especially salient that one of the first artificial-brain hybrid networks recapitulated this classic result.

To visualize: the three-neuron network began in Switzerland, with an artificial neuron with the badass name of “silicon spiking neuron.” That neuron is linked to an artificial synapse, a “memristor” located in the UK, which is then linked to a biological rat neuron cultured in Italy. The rat neuron has a “smart” microelectrode, controlled by the artificial synapse, to stimulate it. This is the artificial-to-biological pathway.

Meanwhile, the rat neuron in Italy also has electrodes that listen in on its electrical signaling. This signaling is passed back to another artificial synapse in the UK, which is then used to control a second artificial neuron back in Switzerland. This is the biological-to-artificial pathway back. As a testimony in how far we’ve come in digitizing neural signaling, all of the biological neural responses are digitized and sent over the internet to control its far-out artificial partner.

Here’s the crux: to demonstrate a functional neural network, just having the biological neuron passively “pass on” electrical stimulation isn’t enough. It has to show the capacity to learn, that is, to be able to mimic the amping up and down-tuning that are LTP and LTD, respectively.

You’ve probably guessed the results: certain stimulation patterns to the first artificial neuron in Switzerland changed how the artificial synapse in the UK operated. This, in turn, changed the stimulation to the biological neuron, so that it either amped up or toned down depending on the input.

Similarly, the response of the biological neuron altered the second artificial synapse, which then controlled the output of the second artificial neuron. Altogether, the biological and artificial components seamlessly linked up, over thousands of miles, into a functional neural circuit.

Cyborg Mind-Meld
So…I’m still picking my jaw up off the floor.

It’s utterly insane seeing a classic neuroscience learning experiment repeated with an integrated network with artificial components. That said, a three-neuron network is far from the thousands of synapses (if not more) needed to truly re-establish a broken neural circuit in the hippocampus, which DARPA has been aiming to do. And LTP/LTD has come under fire recently as the de facto brain mechanism for learning, though so far they remain cemented as neuroscience dogma.

However, this is one of the few studies where you see fields coming together. As Richard Feynman famously said, “What I cannot recreate, I cannot understand.” Even though neuromorphic chips were built on a high-level rather than molecular-level understanding of how neurons work, the study shows that artificial versions can still synapse with their biological counterparts. We’re not just on the right path towards understanding the brain, we’re recreating it, in hardware—if just a little.

While the study doesn’t have immediate use cases, practically it does boost both the neuromorphic computing and neuroprosthetic fields.

“We are very excited with this new development,” said study author Dr. Themis Prodromakis at the University of Southampton. “On one side it sets the basis for a novel scenario that was never encountered during natural evolution, where biological and artificial neurons are linked together and communicate across global networks; laying the foundations for the Internet of Neuro-electronics. On the other hand, it brings new prospects to neuroprosthetic technologies, paving the way towards research into replacing dysfunctional parts of the brain with AI chips.”

Image Credit: Gerd Altmann from Pixabay Continue reading

Posted in Human Robots