Tag Archives: highly

#431987 OptoForce Industrial Robot Sensors

OptoForce Sensors Providing Industrial Robots with

a “Sense of Touch” to Advance Manufacturing Automation

Global efforts to expand the capabilities of industrial robots are on the rise, as the demand from manufacturing companies to strengthen their operations and improve performance grows.

Hungary-based OptoForce, with a North American office in Charlotte, North Carolina, is one company that continues to support organizations with new robotic capabilities, as evidenced by its several new applications released in 2017.

The company, a leading robotics technology provider of multi-axis force and torque sensors, delivers 6 degrees of freedom force and torque measurement for industrial automation, and provides sensors for most of the currently-used industrial robots.

It recently developed and brought to market three new applications for KUKA industrial robots.

The new applications are hand guiding, presence detection, and center pointing and will be utilized by both end users and systems integrators. Each application is summarized below and what they provide for KUKA robots, along with video demonstrations to show how they operate.

Photo By: www.optoforce.com

Hand Guiding: With OptoForce’s Hand Guiding application, KUKA robots can easily and smoothly move in an assigned direction and selected route. This video shows specifically how to program the robot for hand guiding.

Presence Detection: This application allows KUKA robots to detect the presence of a specific object and to find the object even if it has moved. Visit here to learn more about presence detection.
Center Pointing: With this application, the OptoForce sensor helps the KUKA robot find the center point of an object by providing the robot with a sense of touch. This solution also works with glossy metal objects where a vision system would not be able to define its position. This video shows in detail how the center pointing application works.

The company’s CEO explained how these applications help KUKA robots and industrial automation.

Photo By: www.optoforce.com
“OptoForce’s new applications for KUKA robots pave the way for substantial improvements in industrial automation for both end users and systems integrators,” said Ákos Dömötör, CEO of OptoForce. “Our 6-axis force/torque sensors are combined with highly functional hardware and a comprehensive software package, which include the pre-programmed industrial applications. Essentially, we’re adding a ‘sense of touch’ to KUKA robot arms, enabling these robots to have abilities similar to a human hand, and opening up numerous new capabilities in industrial automation.”

Along with these new applications recently released for KUKA robots, OptoForce sensors are also being used by various companies on numerous industrial robots and manufacturing automation projects around the world. Examples of other uses include: path recording, polishing plastic and metal, box insertion, placing pins in holes, stacking/destacking, palletizing, and metal part sanding.

Specifically, some of the projects current underway by companies include: a plastic parting line removal; an obstacle detection for a major car manufacturing company; and a center point insertion application for a car part supplier, where the task of the robot is to insert a mirror, completely centered, onto a side mirror housing.

For more information, visit www.optoforce.com.

This post was provided by: OptoForce

The post OptoForce Industrial Robot Sensors appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#431906 Low-Cost Soft Robot Muscles Can Lift 200 ...

Jerky mechanical robots are staples of science fiction, but to seamlessly integrate into everyday life they’ll need the precise yet powerful motor control of humans. Now scientists have created a new class of artificial muscles that could soon make that a reality.
The advance is the latest breakthrough in the field of soft robotics. Scientists are increasingly designing robots using soft materials that more closely resemble biological systems, which can be more adaptable and better suited to working in close proximity to humans.
One of the main challenges has been creating soft components that match the power and control of the rigid actuators that drive mechanical robots—things like motors and pistons. Now researchers at the University of Colorado Boulder have built a series of low-cost artificial muscles—as little as 10 cents per device—using soft plastic pouches filled with electrically insulating liquids that contract with the force and speed of mammalian skeletal muscles when a voltage is applied to them.

Three different designs of the so-called hydraulically amplified self-healing electrostatic (HASEL) actuators were detailed in two papers in the journals Science and Science Robotics last week. They could carry out a variety of tasks, from gently picking up delicate objects like eggs or raspberries to lifting objects many times their own weight, such as a gallon of water, at rapid repetition rates.
“We draw our inspiration from the astonishing capabilities of biological muscle,” Christoph Keplinger, an assistant professor at UC Boulder and senior author of both papers, said in a press release. “Just like biological muscle, HASEL actuators can reproduce the adaptability of an octopus arm, the speed of a hummingbird and the strength of an elephant.”
The artificial muscles work by applying a voltage to hydrogel electrodes on either side of pouches filled with liquid insulators, which can be as simple as canola oil. This creates an attraction between the two electrodes, pulling them together and displacing the liquid. This causes a change of shape that can push or pull levers, arms or any other articulated component.
The design is essentially a synthesis of two leading approaches to actuating soft robots. Pneumatic and hydraulic actuators that pump fluids around have been popular due to their high forces, easy fabrication and ability to mimic a variety of natural motions. But they tend to be bulky and relatively slow.
Dielectric elastomer actuators apply an electric field across a solid insulating layer to make it flex. These can mimic the responsiveness of biological muscle. But they are not very versatile and can also fail catastrophically, because the high voltages required can cause a bolt of electricity to blast through the insulator, destroying it. The likelihood of this happening increases in line with the size of their electrodes, which makes it hard to scale them up. By combining the two approaches, researchers get the best of both worlds, with the power, versatility and easy fabrication of a fluid-based system and the responsiveness of electrically-powered actuators.
One of the designs holds particular promise for robotics applications, as it behaves a lot like biological muscle. The so-called Peano-HASEL actuators are made up of multiple rectangular pouches connected in series, which allows them to contract linearly, just like real muscle. They can lift more than 200 times their weight, but being electrically powered, they exceed the flexing speed of human muscle.
As the name suggests, the HASEL actuators are also self-healing. They are still prone to the same kind of electrical damage as dielectric elastomer actuators, but the liquid insulator is able to immediately self-heal by redistributing itself and regaining its insulating properties.
The muscles can even monitor the amount of strain they’re under to provide the same kind of feedback biological systems would. The muscle’s capacitance—its ability to store an electric charge—changes as the device stretches, which makes it possible to power the arm while simultaneously measuring what position it’s in.
The researchers say this could imbue robots with a similar sense of proprioception or body-awareness to that found in plants and animals. “Self-sensing allows for the development of closed-loop feedback controllers to design highly advanced and precise robots for diverse applications,” Shane Mitchell, a PhD student in Keplinger’s lab and an author on both papers, said in an email.
The researchers say the high voltages required are an ongoing challenge, though they’ve already designed devices in the lab that use a fifth of the voltage of those features in the recent papers.
In most of their demonstrations, these soft actuators were being used to power rigid arms and levers, pointing to the fact that future robots are likely to combine both rigid and soft components, much like animals do. The potential applications for the technology range from more realistic prosthetics to much more dextrous robots that can work easily alongside humans.
It will take some work before these devices appear in commercial robots. But the combination of high-performance with simple and inexpensive fabrication methods mean other researchers are likely to jump in, so innovation could be rapid.
Image Credit: Keplinger Research Group/University of Colorado Continue reading

Posted in Human Robots

#431839 The Hidden Human Workforce Powering ...

The tech industry touts its ability to automate tasks and remove slow and expensive humans from the equation. But in the background, a lot of the legwork training machine learning systems, solving problems software can’t, and cleaning up its mistakes is still done by people.
This was highlighted recently when Expensify, which promises to automatically scan photos of receipts to extract data for expense reports, was criticized for sending customers’ personally identifiable receipts to workers on Amazon’s Mechanical Turk (MTurk) crowdsourcing platform.
The company uses text analysis software to read the receipts, but if the automated system falls down then the images are passed to a human for review. While entrusting this job to random workers on MTurk was maybe not so wise—and the company quickly stopped after the furor—the incident brought to light that this kind of human safety net behind AI-powered services is actually very common.
As Wired notes, similar services like Ibotta and Receipt Hog that collect receipt information for marketing purposes also use crowdsourced workers. In a similar vein, while most users might assume their Facebook newsfeed is governed by faceless algorithms, the company has been ramping up the number of human moderators it employs to catch objectionable content that slips through the net, as has YouTube. Twitter also has thousands of human overseers.
Humans aren’t always witting contributors either. The old text-based reCAPTCHA problems Google used to use to distinguish humans from machines was actually simultaneously helping the company digitize books by getting humans to interpret hard-to-read text.
“Every product that uses AI also uses people,” Jeffrey Bigham, a crowdsourcing expert at Carnegie Mellon University, told Wired. “I wouldn’t even say it’s a backstop so much as a core part of the process.”
Some companies are not shy about their use of crowdsourced workers. Startup Eloquent Labs wants to insert them between customer service chatbots and human agents who step in when the machines fail. Many times the AI is pretty certain what particular work means, and an MTurk worker can step in and quickly classify them faster and cheaper than a service agent.
Fashion retailer Gilt provides “pre-emptive shipping,” which uses data analytics to predict what people will buy to get products to them faster. The company uses MTurk workers to provide subjective critiques of clothing that feed into their models.
MTurk isn’t the only player. Companies like Cloudfactory and Crowdflower provide crowdsourced human manpower tailored to particular niches, and some companies prefer to maintain their own communities of workers. Unlabel uses an army of 50,000 humans to check and edit the translations its artificial intelligence system produces for customers.
Most of the time these human workers aren’t just filling in the gaps, they’re also helping to train the machine learning component of these companies’ services by providing new examples of how to solve problems. Other times humans aren’t used “in-the-loop” with AI systems, but to prepare data sets they can learn from by labeling images, text, or audio.
It’s even possible to use crowdsourced workers to carry out tasks typically tackled by machine learning, such as large-scale image analysis and forecasting.
Zooniverse gets citizen scientists to classify images of distant galaxies or videos of animals to help academics analyze large data sets too complex for computers. Almanis creates forecasts on everything from economics to politics with impressive accuracy by giving those who sign up to the website incentives for backing the correct answer to a question. Researchers have used MTurkers to power a chatbot, and there’s even a toolkit for building algorithms to control this human intelligence called TurKit.
So what does this prominent role for humans in AI services mean? Firstly, it suggests that many tools people assume are powered by AI may in fact be relying on humans. This has obvious privacy implications, as the Expensify story highlighted, but should also raise concerns about whether customers are really getting what they pay for.
One example of this is IBM’s Watson for oncology, which is marketed as a data-driven AI system for providing cancer treatment recommendations. But an investigation by STAT highlighted that it’s actually largely driven by recommendations from a handful of (admittedly highly skilled) doctors at Memorial Sloan Kettering Cancer Center in New York.
Secondly, humans intervening in AI-run processes also suggests AI is still largely helpless without us, which is somewhat comforting to know among all the doomsday predictions of AI destroying jobs. At the same time, though, much of this crowdsourced work is monotonous, poorly paid, and isolating.
As machines trained by human workers get better at all kinds of tasks, this kind of piecemeal work filling in the increasingly small gaps in their capabilities may get more common. While tech companies often talk about AI augmenting human intelligence, for many it may actually end up being the other way around.
Image Credit: kentoh / Shutterstock.com Continue reading

Posted in Human Robots

#431836 Do Our Brains Use Deep Learning to Make ...

The first time Dr. Blake Richards heard about deep learning, he was convinced that he wasn’t just looking at a technique that would revolutionize artificial intelligence. He also knew he was looking at something fundamental about the human brain.
That was the early 2000s, and Richards was taking a course with Dr. Geoff Hinton at the University of Toronto. Hinton, a pioneer architect of the algorithm that would later take the world by storm, was offering an introductory course on his learning method inspired by the human brain.
The key words here are “inspired by.” Despite Richards’ conviction, the odds were stacked against him. The human brain, as it happens, seems to lack a critical function that’s programmed into deep learning algorithms. On the surface, the algorithms were violating basic biological facts already proven by neuroscientists.
But what if, superficial differences aside, deep learning and the brain are actually compatible?
Now, in a new study published in eLife, Richards, working with DeepMind, proposed a new algorithm based on the biological structure of neurons in the neocortex. Also known as the cortex, this outermost region of the brain is home to higher cognitive functions such as reasoning, prediction, and flexible thought.
The team networked their artificial neurons together into a multi-layered network and challenged it with a classic computer vision task—identifying hand-written numbers.
The new algorithm performed well. But the kicker is that it analyzed the learning examples in a way that’s characteristic of deep learning algorithms, even though it was completely based on the brain’s fundamental biology.
“Deep learning is possible in a biological framework,” concludes the team.
Because the model is only a computer simulation at this point, Richards hopes to pass the baton to experimental neuroscientists, who could actively test whether the algorithm operates in an actual brain.
If so, the data could then be passed back to computer scientists to work out the next generation of massively parallel and low-energy algorithms to power our machines.
It’s a first step towards merging the two fields back into a “virtuous circle” of discovery and innovation.
The blame game
While you’ve probably heard of deep learning’s recent wins against humans in the game of Go, you might not know the nitty-gritty behind the algorithm’s operations.
In a nutshell, deep learning relies on an artificial neural network with virtual “neurons.” Like a towering skyscraper, the network is structured into hierarchies: lower-level neurons process aspects of an input—for example, a horizontal or vertical stroke that eventually forms the number four—whereas higher-level neurons extract more abstract aspects of the number four.
To teach the network, you give it examples of what you’re looking for. The signal propagates forward in the network (like climbing up a building), where each neuron works to fish out something fundamental about the number four.
Like children trying to learn a skill the first time, initially the network doesn’t do so well. It spits out what it thinks a universal number four should look like—think a Picasso-esque rendition.
But here’s where the learning occurs: the algorithm compares the output with the ideal output, and computes the difference between the two (dubbed “error”). This error is then “backpropagated” throughout the entire network, telling each neuron: hey, this is how far off you were, so try adjusting your computation closer to the ideal.
Millions of examples and tweakings later, the network inches closer to the desired output and becomes highly proficient at the trained task.
This error signal is crucial for learning. Without efficient “backprop,” the network doesn’t know which of its neurons are off kilter. By assigning blame, the AI can better itself.
The brain does this too. How? We have no clue.
Biological No-Go
What’s clear, though, is that the deep learning solution doesn’t work.
Backprop is a pretty needy function. It requires a very specific infrastructure for it to work as expected.
For one, each neuron in the network has to receive the error feedback. But in the brain, neurons are only connected to a few downstream partners (if that). For backprop to work in the brain, early-level neurons need to be able to receive information from billions of connections in their downstream circuits—a biological impossibility.
And while certain deep learning algorithms adapt a more local form of backprop— essentially between neurons—it requires their connection forwards and backwards to be symmetric. This hardly ever occurs in the brain’s synapses.
More recent algorithms adapt a slightly different strategy, in that they implement a separate feedback pathway that helps the neurons to figure out errors locally. While it’s more biologically plausible, the brain doesn’t have a separate computational network dedicated to the blame game.
What it does have are neurons with intricate structures, unlike the uniform “balls” that are currently applied in deep learning.
Branching Networks
The team took inspiration from pyramidal cells that populate the human cortex.
“Most of these neurons are shaped like trees, with ‘roots’ deep in the brain and ‘branches’ close to the surface,” says Richards. “What’s interesting is that these roots receive a different set of inputs than the branches that are way up at the top of the tree.”
This is an illustration of a multi-compartment neural network model for deep learning. Left: Reconstruction of pyramidal neurons from mouse primary visual cortex. Right: Illustration of simplified pyramidal neuron models. Image Credit: CIFAR
Curiously, the structure of neurons often turn out be “just right” for efficiently cracking a computational problem. Take the processing of sensations: the bottoms of pyramidal neurons are right smack where they need to be to receive sensory input, whereas the tops are conveniently placed to transmit feedback errors.
Could this intricate structure be evolution’s solution to channeling the error signal?
The team set up a multi-layered neural network based on previous algorithms. But rather than having uniform neurons, they gave those in middle layers—sandwiched between the input and output—compartments, just like real neurons.
When trained with hand-written digits, the algorithm performed much better than a single-layered network, despite lacking a way to perform classical backprop. The cell-like structure itself was sufficient to assign error: the error signals at one end of the neuron are naturally kept separate from input at the other end.
Then, at the right moment, the neuron brings both sources of information together to find the best solution.
There’s some biological evidence for this: neuroscientists have long known that the neuron’s input branches perform local computations, which can be integrated with signals that propagate backwards from the so-called output branch.
However, we don’t yet know if this is the brain’s way of dealing blame—a question that Richards urges neuroscientists to test out.
What’s more, the network parsed the problem in a way eerily similar to traditional deep learning algorithms: it took advantage of its multi-layered structure to extract progressively more abstract “ideas” about each number.
“[This is] the hallmark of deep learning,” the authors explain.
The Deep Learning Brain
Without doubt, there will be more twists and turns to the story as computer scientists incorporate more biological details into AI algorithms.
One aspect that Richards and team are already eyeing is a top-down predictive function, in which signals from higher levels directly influence how lower levels respond to input.
Feedback from upper levels doesn’t just provide error signals; it could also be nudging lower processing neurons towards a “better” activity pattern in real-time, says Richards.
The network doesn’t yet outperform other non-biologically derived (but “brain-inspired”) deep networks. But that’s not the point.
“Deep learning has had a huge impact on AI, but, to date, its impact on neuroscience has been limited,” the authors say.
Now neuroscientists have a lead they could experimentally test: that the structure of neurons underlie nature’s own deep learning algorithm.
“What we might see in the next decade or so is a real virtuous cycle of research between neuroscience and AI, where neuroscience discoveries help us to develop new AI and AI can help us interpret and understand our experimental data in neuroscience,” says Richards.
Image Credit: christitzeimaging.com / Shutterstock.com Continue reading

Posted in Human Robots

#431790 FT 300 force torque sensor

Robotiq Updates FT 300 Sensitivity For High Precision Tasks With Universal RobotsForce Torque Sensor feeds data to Universal Robots force mode
Quebec City, Canada, November 13, 2017 – Robotiq launches a 10 times more sensitive version of its FT 300 Force Torque Sensor. With Plug + Play integration on all Universal Robots, the FT 300 performs highly repeatable precision force control tasks such as finishing, product testing, assembly and precise part insertion.
This force torque sensor comes with an updated free URCap software able to feed data to the Universal Robots Force Mode. “This new feature allows the user to perform precise force insertion assembly and many finishing applications where force control with high sensitivity is required” explains Robotiq CTO Jean-Philippe Jobin*.
The URCap also includes a new calibration routine. “We’ve integrated a step-by-step procedure that guides the user through the process, which takes less than 2 minutes” adds Jobin. “A new dashboard also provides real-time force and moment readings on all 6 axes. Moreover, pre-built programming functions are now embedded in the URCap for intuitive programming.”
See some of the FT 300’s new capabilities in the following demo videos:
#1 How to calibrate with the FT 300 URCap Dashboard
#2 Linear search demo
#3 Path recording demo
Visit the FT 300 webpage or get a quote here
Get the FT 300 specs here
Get more info in the FAQ
Get free Skills to accelerate robot programming of force control tasks.
Get free robot cell deployment resources on leanrobotics.org
* Available with Universal Robots CB3.1 controller only
About Robotiq
Robotiq’s Lean Robotics methodology and products enable manufacturers to deploy productive robot cells across their factory. They leverage the Lean Robotics methodology for faster time to production and increased productivity from their robots. Production engineers standardize on Robotiq’s Plug + Play components for their ease of programming, built-in integration, and adaptability to many processes. They rely on the Flow software suite to accelerate robot projects and optimize robot performance once in production.
Robotiq is the humans behind the robots: an employee-owned business with a passionate team and an international partner network.
Media contact
David Maltais, Communications and Public Relations Coordinator
d.maltais@robotiq.com
1-418-929-2513
////
Press Release Provided by: Robotiq.Com
The post FT 300 force torque sensor appeared first on Roboticmagazine. Continue reading

Posted in Human Robots