Tag Archives: highlights

#438286 Humanoids that’ll blow your mind!

Here, the PRO Robots Channel highlights five of the most advanced humanoid robots.

Posted in Human Robots

#438613 Video Friday: Digit Takes a Hike

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

It's winter in Oregon, so everything is damp, all the time. No problem for Digit!

Also the case for summer in Oregon.

[ Agility Robotics ]

While other organisms form collective flocks, schools, or swarms for such purposes as mating, predation, and protection, the Lumbriculus variegatus worms are unusual in their ability to braid themselves together to accomplish tasks that unconnected individuals cannot. A new study reported by researchers at the Georgia Institute of Technology describes how the worms self-organize to act as entangled “active matter,” creating surprising collective behaviors whose principles have been applied to help blobs of simple robots evolve their own locomotion.

No, this doesn't squick me out at all, why would it.

[ Georgia Tech ]

A few years ago, we wrote about Zhifeng Huang's jet-foot equipped bipedal robot, and he's been continuing to work on it to the point where it can now step over gaps that are an absolutely astonishing 147% of its leg length.

[ Paper ]

Thanks Zhifeng!

The Inception Drive is a novel, ultra-compact design for an Infinitely Variable Transmission (IVT) that uses nested-pulleys to adjust the gear ratio between input and output shafts. This video shows the first proof-of-concept prototype for a “Fully Balanced” design, where the spinning masses within the drive are completely balanced to reduce vibration, thereby allowing the drive to operate more efficiently and at higher speeds than achievable on an unbalanced design.

As shown in this video, the Inception Drive can change both the speed and direction of rotation of the output shaft while keeping the direction and speed of the input shaft constant. This ability to adjust speed and direction within such a compact package makes the Inception Drive a compelling choice for machine designers in a wide variety of fields, including robotics, automotive, and renewable-energy generation.

[ SRI ]

Robots with kinematic loops are known to have superior mechanical performance. However, due to these loops, their modeling and control is challenging, and prevents a more widespread use. In this paper, we describe a versatile Inverse Kinematics (IK) formulation for the retargeting of expressive motions onto mechanical systems with loops.

[ Disney Research ]

Watch Engineered Arts put together one of its Mesmer robots in a not at all uncanny way.

[ Engineered Arts ]

There's been a bunch of interesting research into vision-based tactile sensing recently; here's some from Van Ho at JAIST:

[ Paper ]

Thanks Van!

This is really more of an automated system than a robot, but these little levitating pucks are very very slick.

ACOPOS 6D is based on the principle of magnetic levitation: Shuttles with integrated permanent magnets float over the surface of electromagnetic motor segments. The modular motor segments are 240 x 240 millimeters in size and can be arranged freely in any shape. A variety of shuttle sizes carry payloads of 0.6 to 14 kilograms and reach speeds of up to 2 meters per second. They can move freely in two-dimensional space, rotate and tilt along three axes and offer precise control over the height of levitation. All together, that gives them six degrees of motion control freedom.

[ ACOPOS ]

Navigation and motion control of a robot to a destination are tasks that have historically been performed with the assumption that contact with the environment is harmful. This makes sense for rigid-bodied robots where obstacle collisions are fundamentally dangerous. However, because many soft robots have bodies that are low-inertia and compliant, obstacle contact is inherently safe. We find that a planner that takes into account and capitalizes on environmental contact produces paths that are more robust to uncertainty than a planner that avoids all obstacle contact.

[ CHARM Lab ]

The quadrotor experts at UZH have been really cranking it up recently.

Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant disturbance at high speeds, introducing large positional tracking errors, and are extremely difficult to model. To fly at high speeds, feedback control must be able to account for these aerodynamic effects in real-time. This necessitates a modelling procedure that is both accurate and efficient to evaluate. Therefore, we present an approach to model aerodynamic effects using Gaussian Processes, which we incorporate into a Model Predictive Controller to achieve efficient and precise real-time feedback control, leading to up to 70% reduction in trajectory tracking error at high speeds. We verify our method by extensive comparison to a state-of-the-art linear drag model in synthetic and real-world experiments at speeds of up to 14m/s and accelerations beyond 4g.

[ Paper ]

I have not heard much from Harvest Automation over the last couple years and their website was last updated in 2016, but I guess they're selling robots in France, so that's good?

[ Harvest Automation ]

Last year, Clearpath Robotics introduced a ROS package for Spot which enables robotics developers to leverage ROS capabilities out-of-the-box. Here at OTTO Motors, we thought it would be a compelling test case to see just how easy it would be to integrate Spot into our test fleet of OTTO materials handling robots.

[ OTTO Motors ]

Video showcasing recent robotics activities at PRISMA Lab, coordinated by Prof. Bruno Siciliano, at Università di Napoli Federico II.

[ PRISMA Lab ]

Thanks Fan!

State estimation framework developed by the team CoSTAR for the DARPA Subterranean Challenge, where the team achieved 2nd and 1st places in the Tunnel and Urban circuits.

[ Paper ]

Highlights from the 2020 ROS Industrial conference.

[ ROS Industrial ]

Thanks Thilo!

Not robotics, but entertaining anyway. From the CHI 1995 Technical Video Program, “The Tablet Newspaper: a Vision for the Future.”

[ CHI 1995 ]

This week's GRASP on Robotics seminar comes from Allison Okamura at Stanford, on “Wearable Haptic Devices for Ubiquitous Communication.”

Haptic devices allow touch-based information transfer between humans and intelligent systems, enabling communication in a salient but private manner that frees other sensory channels. For such devices to become ubiquitous, their physical and computational aspects must be intuitive and unobtrusive. We explore the design of a wide array of haptic feedback mechanisms, ranging from devices that can be actively touched by the fingertips to multi-modal haptic actuation mounted on the arm. We demonstrate how these devices are effective in virtual reality, human-machine communication, and human-human communication.

[ UPenn ] Continue reading

Posted in Human Robots

#438012 Video Friday: These Robots Have Made 1 ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
Let us know if you have suggestions for next week, and enjoy today's videos.

We're proud to announce Starship Delivery Robots have now completed 1,000,000 autonomous deliveries around the world. We were unsure where the one millionth delivery was going to take place, as there are around 15-20 service areas open globally, all with robots doing deliveries every minute. In the end it took place at Bowling Green, Ohio, to a student called Annika Keeton who is a freshman studying pre-health Biology at BGSU. Annika is now part of Starship’s history!

[ Starship ]

I adore this little DIY walking robot- with modular feet and little dials to let you easily adjust the walking parameters, it's an affordable kit that's way more nuanced than most.

It's called Bakiwi, and it costs €95. A squee cover made from feathers or fur is an extra €17. Here's a more serious look at what it can do:

[ Bakiwi ]

Thanks Oswald!

Savva Morozov, an AeroAstro junior, works on autonomous navigation for the MIT mini cheetah robot and reflects on the value of a crowded Infinite Corridor.

[ MIT ]

The world's most advanced haptic feedback gloves just got a huge upgrade! HaptX Gloves DK2 achieves a level of realism that other haptic devices can't match. Whether you’re training your workforce, designing a new product, or controlling robots from a distance, HaptX Gloves make it feel real.

They're the only gloves with true-contact haptics, with patented technology that displace your skin the same way a real object would. With 133 points of tactile feedback per hand, for full palm and fingertip coverage. HaptX Gloves DK2 feature the industry's most powerful force feedback, ~2X the strength of other force feedback gloves. They're also the most accurate motion tracking gloves, with 30 tracked degrees of freedom, sub-millimeter precision, no perceivable latency, and no occlusion.

[ HaptX ]

Yardroid is an outdoor robot “guided by computer vision and artificial intelligence” that seems like it can do almost everything.

These are a lot of autonomous capabilities, but so far, we've only seen the video. So, best not to get too excited until we know more about how it works.

[ Yardroid ]

Thanks Dan!

Since as far as we know, Pepper can't spread COVID, it had a busy year.

I somehow missed seeing that chimpanzee magic show, but here it is:

[ Simon Pierro ] via [ SoftBank Robotics ]

In spite of the pandemic, Professor Hod Lipson’s Robotics Studio persevered and even thrived— learning to work on global teams, to develop protocols for sharing blueprints and code, and to test, evaluate, and refine their designs remotely. Equipped with a 3D printer and a kit of electronics prototyping equipment, our students engineered bipedal robots that were conceptualized, fabricated, programmed, and endlessly iterated around the globe in bedrooms, kitchens, backyards, and any other makeshift laboratory you can imagine.

[ Hod Lipson ]

Thanks Fan!

We all know how much quadrupeds love ice!

[ Ghost Robotics ]

We took the opportunity of the last storm to put the Warthog in the snow of Université Laval. Enjoy!

[ Norlab ]

They've got a long way to go, but autonomous indoor firefighting drones seem like a fantastic idea.

[ CTU ]

Individual manipulators are limited by their vertical total load capacity. This places a fundamental limit on the weight of loads that a single manipulator can move. Cooperative manipulation with two arms has the potential to increase the net weight capacity of the overall system. However, it is critical that proper load sharing takes place between the two arms. In this work, we outline a method that utilizes mechanical intelligence in the form of a whiffletree.

And your word of the day is whiffletree, which is “a mechanism to distribute force evenly through linkages.”

[ DART Lab ]

Thanks Raymond!

Some highlights of robotic projects at FZI in 2020, all using ROS.

[ FZI ]

Thanks Fan!

iRobot CEO Colin Angle threatens my job by sharing some cool robots.

[ iRobot ]

A fascinating new talk from Henry Evans on robotic caregivers.

[ HRL ]

The ANA Avatar XPRIZE semifinals selection submission for Team AVATRINA. The setting is a mock clinic, with the patient sitting on a wheelchair and nurse having completed an initial intake. Avatar enters the room controlled by operator (Doctor). A rolling tray table with medical supplies (stethoscope, pulse oximeter, digital thermometer, oxygen mask, oxygen tube) is by the patient’s side. Demonstrates head tracking, stereo vision, fine manipulation, bimanual manipulation, safe impedance control, and navigation.

[ Team AVATRINA ]

This five year old talk from Mikell Taylor, who wrote for us a while back and is now at Amazon Robotics, is entitled “Nobody Cares About Your Robot.” For better or worse, it really doesn't sound like it was written five years ago.

Robotics for the consumer market – Mikell Taylor from Scott Handsaker on Vimeo.

[ Mikell Taylor ]

Fall River Community Media presents this wonderful guy talking about his love of antique robot toys.

If you enjoy this kind of slow media, Fall River also has weekly Hot Dogs Cool Cats adoption profiles that are super relaxing to watch.

[ YouTube ] Continue reading

Posted in Human Robots

#437693 Video Friday: Drone Helps Explore ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Clearpath Robotics and Boston Dynamics were obviously destined to partner up with Spot, because Spot 100 percent stole its color scheme from Clearpath, which has a monopoly on yellow and black robots. But seriously, the news here is that thanks to Clearpath, Spot now works seamlessly with ROS.

[ Clearpath Robotics ]

A new video created by Swisscom Ventures highlights a research expedition sponsored by Moncler to explore the deepest ice caves in the world using Flyability’s Elios drone. […] The expedition was sponsored by apparel company Moncler and took place over two weeks in 2018 on the Greenland ice sheet, the second largest body of ice in the world after Antarctica. Research focused on an area about 80 kilometers east of Kangerlussuaq, where scientists wanted to study the movement of water deep underground to better understand the effects of climate change on the melting ice.

[ Flyability ]

Shane Wighton of the “Stuff Made Here” YouTube channel, whose terrifying haircut machine we featured a few months ago, has improved on his robotic basketball hoop. It’s actually more than an improvement: It’s a complete redesign that nearly drove Wighton insane. But the result is pretty cool. It’s fun to watch him building a highly complicated system while always seeking simple and elegant designs for its components.

[ Stuff Made Here ]

SpaceX rockets are really just giant, explosion-powered drones that go into space sometimes. So let's watch more videos of them! This one is sped up, and puts a flight into just a couple of minutes.

[ SpaceX ]

Neato Robotics makes some solid autonomous vacuums, and these incremental upgrades feature improved battery life and better air filters.

[ Neato Robotics ]

A full-scale engineering model of NASA's Perseverance Mars rover now resides in a garage facing the Mars Yard at NASA's Jet Propulsion Laboratory in Southern California.

This vehicle system test bed rover (VSTB) is also known as OPTIMISM, which stands for Operational Perseverance Twin for Integration of Mechanisms and Instruments Sent to Mars. OPTIMISM was built in a warehouselike assembly room near the Mars Yard – an area that simulates the Red Planet's rocky surface. The rover helps the mission test hardware and software before it’s transmitted to the real rover on Mars. OPTIMISM will share the space with the Curiosity rover's twin MAGGIE.

[ JPL ]

Heavy asset industries like shipping, oil and gas, and manufacturing are grounded in repetitive tasks like locating items on large industrial sites — a tedious task that can take as long 45 minutes to find critical items like a forklift in an area that spans the size of multiple football fields. Not only is this work boring, it’s dangerous and inefficient. Robots like Spot, however, love this sort of work.

Spot can provide real-time updates on the location of assets and complete other mundane tasks. In this case, Spot is using software from Cognite to roam the vast shipyard to locate and manage more than 100,000 assets stored across the facility. What used to take humans hours can be managed on an ongoing basis by Spot — leaving employees to focus on more strategic tasks.

[ Cognite ]

The KNEXT Barista system helps high volume premium coffee providers who want to offer artisan coffee specialities in consistent quality.

[ Kuka ]

In this paper, we study this idea of generality in the locomotion domain. We develop a learning framework that can learn sophisticated locomotion behavior for a wide spectrum of legged robots, such as bipeds, tripeds, quadrupeds and hexapods, including wheeled variants. Our learning framework relies on a data-efficient, off-policy multi-task RL algorithm and a small set of reward functions that are semantically identical across robots.

[ DeepMind ]

Thanks Dave!

Even though it seems like the real risk of COVID is catching it from another person, robotics companies are doing what they can with UVC disinfecting systems.

[ BlueBotics ]

Aeditive develop robotic 3D printing solutions for the production of concrete components. At the heart of their production plant are two large robots that cooperate to manufacture the component. The automation technology they build on is a robotic shotcrete process. During this process, they apply concrete layer by layer and thus manufacture complete components. This means that their customers no longer dependent on formwork, which is expensive and time-consuming to create. Instead, their customers can manufacture components directly on a steel pallet without these moulds.

[ Aeditive ]

Something BIG is coming next month from Robotiq!

My guess: an elephant.

[ Robotiq ]

TurtleBot3 is a great little home robot, as long as you have a TurtleBot3-sized home.

[ Robotis ]

How do you calculate the coordinated movements of two robot arms so they can accurately guide a highly flexible tool? ETH researchers have integrated all aspects of the optimisation calculations into an algorithm. The hot-​wire cutter will be used, among other things, to develop building blocks for a mortar-​free structure.

[ ETH Zurich ]

And now, this.

[ RobotStart ] Continue reading

Posted in Human Robots

#437671 Video Friday: Researchers 3D Print ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online]
IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The Giant Gundam in Yokohama is actually way cooler than I thought it was going to be.

[ Gundam Factory ] via [ YouTube ]

A new 3D-printing method will make it easier to manufacture and control the shape of soft robots, artificial muscles and wearable devices. Researchers at UC San Diego show that by controlling the printing temperature of liquid crystal elastomer, or LCE, they can control the material’s degree of stiffness and ability to contract—also known as degree of actuation. What’s more, they are able to change the stiffness of different areas in the same material by exposing it to heat.

[ UCSD ]

Thanks Ioana!

This is the first successful reactive stepping test on our new torque-controlled biped robot named Bolt. The robot has 3 active degrees of freedom per leg and one passive joint in ankle. Since there is no active joint in ankle, the robot only relies on step location and timing adaptation to stabilize its motion. Not only can the robot perform stepping without active ankles, but it is also capable of rejecting external disturbances as we showed in this video.

[ ODRI ]

The curling robot “Curly” is the first AI-based robot to demonstrate competitive curling skills in an icy real environment with its high uncertainties. Scientists from seven different Korean research institutions including Prof. Klaus-Robert Müller, head of the machine-learning group at TU Berlin and guest professor at Korea University, have developed an AI-based curling robot.

[ TU Berlin ]

MoonRanger, a small robotic rover being developed by Carnegie Mellon University and its spinoff Astrobotic, has completed its preliminary design review in preparation for a 2022 mission to search for signs of water at the moon’s south pole. Red Whittaker explains why the new MoonRanger Lunar Explorer design is innovative and different from prior planetary rovers.

[ CMU ]

Cobalt’s security robot can now navigate unmodified elevators, which is an impressive feat.

Also, EXTERMINATE!

[ Cobalt ]

OrionStar, the robotics company invested in by Cheetah Mobile, announced the Robotic Coffee Master. Incorporating 3,000 hours of AI learning, 30,000 hours of robotic arm testing and machine vision training, the Robotic Coffee Master can perform complex brewing techniques, such as curves and spirals, with millimeter-level stability and accuracy (reset error ≤ 0.1mm).

[ Cheetah Mobile ]

DARPA OFFensive Swarm-Enabled Tactics (OFFSET) researchers recently tested swarms of autonomous air and ground vehicles at the Leschi Town Combined Arms Collective Training Facility (CACTF), located at Joint Base Lewis-McChord (JBLM) in Washington. The Leschi Town field experiment is the fourth of six planned experiments for the OFFSET program, which seeks to develop large-scale teams of collaborative autonomous systems capable of supporting ground forces operating in urban environments.

[ DARPA ]

Here are some highlights from Team Explorer’s SubT Urban competition back in February.

[ Team Explorer ]

Researchers with the Skoltech Intelligent Space Robotics Laboratory have developed a system that allows easy interaction with a micro-quadcopter with LEDs that can be used for light-painting. The researchers used a 92x92x29 mm Crazyflie 2.0 quadrotor that weighs just 27 grams, equipped with a light reflector and an array of controllable RGB LEDs. The control system consists of a glove equipped with an inertial measurement unit (IMU; an electronic device that tracks the movement of a user’s hand), and a base station that runs a machine learning algorithm.

[ Skoltech ]

“DeKonBot” is the prototype of a cleaning and disinfection robot for potentially contaminated surfaces in buildings such as door handles, light switches or elevator buttons. While other cleaning robots often spray the cleaning agents over a large area, DeKonBot autonomously identifies the surface to be cleaned.

[ Fraunhofer IPA ]

On Oct. 20, the OSIRIS-REx mission will perform the first attempt of its Touch-And-Go (TAG) sample collection event. Not only will the spacecraft navigate to the surface using innovative navigation techniques, but it could also collect the largest sample since the Apollo missions.

[ NASA ]

With all the robotics research that seems to happen in places where snow is more of an occasional novelty or annoyance, it’s good to see NORLAB taking things more seriously

[ NORLAB ]

Telexistence’s Model-T robot works very slowly, but very safely, restocking shelves.

[ Telexistence ] via [ YouTube ]

Roboy 3.0 will be unveiled next month!

[ Roboy ]

KUKA ready2_educate is your training cell for hands-on education in robotics. It is especially aimed at schools, universities and company training facilities. The training cell is a complete starter package and your perfect partner for entry into robotics.

[ KUKA ]

A UPenn GRASP Lab Special Seminar on Data Driven Perception for Autonomy, presented by Dapo Afolabi from UC Berkeley.

Perception systems form a crucial part of autonomous and artificial intelligence systems since they convert data about the relationship between an autonomous system and its environment into meaningful information. Perception systems can be difficult to build since they may involve modeling complex physical systems or other autonomous agents. In such scenarios, data driven models may be used to augment physics based models for perception. In this talk, I will present work making use of data driven models for perception tasks, highlighting the benefit of such approaches for autonomous systems.

[ GRASP Lab ]

A Maryland Robotics Center Special Robotics Seminar on Underwater Autonomy, presented by Ioannis Rekleitis from the University of South Carolina.

This talk presents an overview of algorithmic problems related to marine robotics, with a particular focus on increasing the autonomy of robotic systems in challenging environments. I will talk about vision-based state estimation and mapping of underwater caves. An application of monitoring coral reefs is going to be discussed. I will also talk about several vehicles used at the University of South Carolina such as drifters, underwater, and surface vehicles. In addition, a short overview of the current projects will be discussed. The work that I will present has a strong algorithmic flavour, while it is validated in real hardware. Experimental results from several testing campaigns will be presented.

[ MRC ]

This week’s CMU RI Seminar comes from Scott Niekum at UT Austin, on Scaling Probabilistically Safe Learning to Robotics.

Before learning robots can be deployed in the real world, it is critical that probabilistic guarantees can be made about the safety and performance of such systems. This talk focuses on new developments in three key areas for scaling safe learning to robotics: (1) a theory of safe imitation learning; (2) scalable reward inference in the absence of models; (3) efficient off-policy policy evaluation. The proposed algorithms offer a blend of safety and practicality, making a significant step towards safe robot learning with modest amounts of real-world data.

[ CMU RI ] Continue reading

Posted in Human Robots