Tag Archives: high
#438801 This AI Thrashes the Hardest Atari Games ...
Learning from rewards seems like the simplest thing. I make coffee, I sip coffee, I’m happy. My brain registers “brewing coffee” as an action that leads to a reward.
That’s the guiding insight behind deep reinforcement learning, a family of algorithms that famously smashed most of Atari’s gaming catalog and triumphed over humans in strategy games like Go. Here, an AI “agent” explores the game, trying out different actions and registering ones that let it win.
Except it’s not that simple. “Brewing coffee” isn’t one action; it’s a series of actions spanning several minutes, where you’re only rewarded at the very end. By just tasting the final product, how do you learn to fine-tune grind coarseness, water to coffee ratio, brewing temperature, and a gazillion other factors that result in the reward—tasty, perk-me-up coffee?
That’s the problem with “sparse rewards,” which are ironically very abundant in our messy, complex world. We don’t immediately get feedback from our actions—no video-game-style dings or points for just grinding coffee beans—yet somehow we’re able to learn and perform an entire sequence of arm and hand movements while half-asleep.
This week, researchers from UberAI and OpenAI teamed up to bestow this talent on AI.
The trick is to encourage AI agents to “return” to a previous step, one that’s promising for a winning solution. The agent then keeps a record of that state, reloads it, and branches out again to intentionally explore other solutions that may have been left behind on the first go-around. Video gamers are likely familiar with this idea: live, die, reload a saved point, try something else, repeat for a perfect run-through.
The new family of algorithms, appropriately dubbed “Go-Explore,” smashed notoriously difficult Atari games like Montezuma’s Revenge that were previously unsolvable by its AI predecessors, while trouncing human performance along the way.
It’s not just games and digital fun. In a computer simulation of a robotic arm, the team found that installing Go-Explore as its “brain” allowed it to solve a challenging series of actions when given very sparse rewards. Because the overarching idea is so simple, the authors say, it can be adapted and expanded to other real-world problems, such as drug design or language learning.
Growing Pains
How do you reward an algorithm?
Rewards are very hard to craft, the authors say. Take the problem of asking a robot to go to a fridge. A sparse reward will only give the robot “happy points” if it reaches its destination, which is similar to asking a baby, with no concept of space and danger, to crawl through a potential minefield of toys and other obstacles towards a fridge.
“In practice, reinforcement learning works very well, if you have very rich feedback, if you can tell, ‘hey, this move is good, that move is bad, this move is good, that move is bad,’” said study author Joost Huinzinga. However, in situations that offer very little feedback, “rewards can intentionally lead to a dead end. Randomly exploring the space just doesn’t cut it.”
The other extreme is providing denser rewards. In the same robot-to-fridge example, you could frequently reward the bot as it goes along its journey, essentially helping “map out” the exact recipe to success. But that’s troubling as well. Over-holding an AI’s hand could result in an extremely rigid robot that ignores new additions to its path—a pet, for example—leading to dangerous situations. It’s a deceptive AI solution that seems effective in a simple environment, but crashes in the real world.
What we need are AI agents that can tackle both problems, the team said.
Intelligent Exploration
The key is to return to the past.
For AI, motivation usually comes from “exploring new or unusual situations,” said Huizinga. It’s efficient, but comes with significant downsides. For one, the AI agent could prematurely stop going back to promising areas because it thinks it had already found a good solution. For another, it could simply forget a previous decision point because of the mechanics of how it probes the next step in a problem.
For a complex task, the end result is an AI that randomly stumbles around towards a solution while ignoring potentially better ones.
“Detaching from a place that was previously visited after collecting a reward doesn’t work in difficult games, because you might leave out important clues,” Huinzinga explained.
Go-Explore solves these problems with a simple principle: first return, then explore. In essence, the algorithm saves different approaches it previously tried and loads promising save points—once more likely to lead to victory—to explore further.
Digging a bit deeper, the AI stores screen caps from a game. It then analyzes saved points and groups images that look alike as a potential promising “save point” to return to. Rinse and repeat. The AI tries to maximize its final score in the game, and updates its save points when it achieves a new record score. Because Atari doesn’t usually allow people to revisit any random point, the team used an emulator, which is a kind of software that mimics the Atari system but with custom abilities such as saving and reloading at any time.
The trick worked like magic. When pitted against 55 Atari games in the OpenAI gym, now commonly used to benchmark reinforcement learning algorithms, Go-Explore knocked out state-of-the-art AI competitors over 85 percent of the time.
It also crushed games previously unbeatable by AI. Montezuma’s Revenge, for example, requires you to move Pedro, the blocky protagonist, through a labyrinth of underground temples while evading obstacles such as traps and enemies and gathering jewels. One bad jump could derail the path to the next level. It’s a perfect example of sparse rewards: you need a series of good actions to get to the reward—advancing onward.
Go-Explore didn’t just beat all levels of the game, a first for AI. It also scored higher than any previous record for reinforcement learning algorithms at lower levels while toppling the human world record.
Outside a gaming environment, Go-Explore was also able to boost the performance of a simulated robot arm. While it’s easy for humans to follow high-level guidance like “put the cup on this shelf in a cupboard,” robots often need explicit training—from grasping the cup to recognizing a cupboard, moving towards it while avoiding obstacles, and learning motions to not smash the cup when putting it down.
Here, similar to the real world, the digital robot arm was only rewarded when it placed the cup onto the correct shelf, out of four possible shelves. When pitted against another algorithm, Go-Explore quickly figured out the movements needed to place the cup, while its competitor struggled with even reliably picking the cup up.
Combining Forces
By itself, the “first return, then explore” idea behind Go-Explore is already powerful. The team thinks it can do even better.
One idea is to change the mechanics of save points. Rather than reloading saved states through the emulator, it’s possible to train a neural network to do the same, without needing to relaunch a saved state. It’s a potential way to make the AI even smarter, the team said, because it can “learn” to overcome one obstacle once, instead of solving the same problem again and again. The downside? It’s much more computationally intensive.
Another idea is to combine Go-Explore with an alternative form of learning, called “imitation learning.” Here, an AI observes human behavior and mimics it through a series of actions. Combined with Go-Explore, said study author Adrien Ecoffet, this could make more robust robots capable of handling all the complexity and messiness in the real world.
To the team, the implications go far beyond Go-Explore. The concept of “first return, then explore” seems to be especially powerful, suggesting “it may be a fundamental feature of learning in general.” The team said, “Harnessing these insights…may be essential…to create generally intelligent agents.”
Image Credit: Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune Continue reading →
#438769 Will Robots Make Good Friends? ...
In the 2012 film Robot and Frank, the protagonist, a retired cat burglar named Frank, is suffering the early symptoms of dementia. Concerned and guilty, his son buys him a “home robot” that can talk, do household chores like cooking and cleaning, and remind Frank to take his medicine. It’s a robot the likes of which we’re getting closer to building in the real world.
The film follows Frank, who is initially appalled by the idea of living with a robot, as he gradually begins to see the robot as both functionally useful and socially companionable. The film ends with a clear bond between man and machine, such that Frank is protective of the robot when the pair of them run into trouble.
This is, of course, a fictional story, but it challenges us to explore different kinds of human-to-robot bonds. My recent research on human-robot relationships examines this topic in detail, looking beyond sex robots and robot love affairs to examine that most profound and meaningful of relationships: friendship.
My colleague and I identified some potential risks, like the abandonment of human friends for robotic ones, but we also found several scenarios where robotic companionship can constructively augment people’s lives, leading to friendships that are directly comparable to human-to-human relationships.
Philosophy of Friendship
The robotics philosopher John Danaher sets a very high bar for what friendship means. His starting point is the “true” friendship first described by the Greek philosopher Aristotle, which saw an ideal friendship as premised on mutual good will, admiration, and shared values. In these terms, friendship is about a partnership of equals.
Building a robot that can satisfy Aristotle’s criteria is a substantial technical challenge and is some considerable way off, as Danaher himself admits. Robots that may seem to be getting close, such as Hanson Robotics’ Sophia, base their behavior on a library of pre-prepared responses: a humanoid chatbot, rather than a conversational equal. Anyone who’s had a testing back-and-forth with Alexa or Siri will know AI still has some way to go in this regard.
Aristotle also talked about other forms of “imperfect” friendship, such as “utilitarian” and “pleasure” friendships, which are considered inferior to true friendship because they don’t require symmetrical bonding and are often to one party’s unequal benefit. This form of friendship sets a relatively very low bar which some robots, like “sexbots” and robotic pets, clearly already meet.
Artificial Amigos
For some, relating to robots is just a natural extension of relating to other things in our world, like people, pets, and possessions. Psychologists have even observed how people respond naturally and socially towards media artefacts like computers and televisions. Humanoid robots, you’d have thought, are more personable than your home PC.
However, the field of “robot ethics” is far from unanimous on whether we can—or should— develop any form of friendship with robots. For an influential group of UK researchers who charted a set of “ethical principles of robotics,” human-robot “companionship” is an oxymoron, and to market robots as having social capabilities is dishonest and should be treated with caution, if not alarm. For these researchers, wasting emotional energy on entities that can only simulate emotions will always be less rewarding than forming human-to-human bonds.
But people are already developing bonds with basic robots, like vacuum-cleaning and lawn-trimming machines that can be bought for less than the price of a dishwasher. A surprisingly large number of people give these robots pet names—something they don’t do with their dishwashers. Some even take their cleaning robots on holiday.
Other evidence of emotional bonds with robots include the Shinto blessing ceremony for Sony Aibo robot dogs that were dismantled for spare parts, and the squad of US troops who fired a 21-gun salute, and awarded medals, to a bomb-disposal robot named “Boomer” after it was destroyed in action.
These stories, and the psychological evidence we have so far, make clear that we can extend emotional connections to things that are very different to us, even when we know they are manufactured and pre-programmed. But do those connections constitute a friendship comparable to that shared between humans?
True Friendship?
A colleague and I recently reviewed the extensive literature on human-to-human relationships to try to understand how, and if, the concepts we found could apply to bonds we might form with robots. We found evidence that many coveted human-to-human friendships do not in fact live up to Aristotle’s ideal.
We noted a wide range of human-to-human relationships, from relatives and lovers to parents, carers, service providers, and the intense (but unfortunately one-way) relationships we maintain with our celebrity heroes. Few of these relationships could be described as completely equal and, crucially, they are all destined to evolve over time.
All this means that expecting robots to form Aristotelian bonds with us is to set a standard even human relationships fail to live up to. We also observed forms of social connectedness that are rewarding and satisfying and yet are far from the ideal friendship outlined by the Greek philosopher.
We know that social interaction is rewarding in its own right, and something that, as social mammals, humans have a strong need for. It seems probable that relationships with robots could help to address the deep-seated urge we all feel for social connection—like providing physical comfort, emotional support, and enjoyable social exchanges—currently provided by other humans.
Our paper also discussed some potential risks. These arise particularly in settings where interaction with a robot could come to replace interaction with people, or where people are denied a choice as to whether they interact with a person or a robot—in a care setting, for instance.
These are important concerns, but they’re possibilities and not inevitabilities. In the literature we reviewed we actually found evidence of the opposite effect: robots acting to scaffold social interactions with others, acting as ice-breakers in groups, and helping people to improve their social skills or to boost their self-esteem.
It appears likely that, as time progresses, many of us will simply follow Frank’s path towards acceptance: scoffing at first, before settling into the idea that robots can make surprisingly good companions. Our research suggests that’s already happening—though perhaps not in a way of which Aristotle would have approved.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Image Credit: Andy Kelly on Unsplash Continue reading →
#438755 Soft Legged Robot Uses Pneumatic ...
Soft robots are inherently safe, highly resilient, and potentially very cheap, making them promising for a wide array of applications. But development on them has been a bit slow relative to other areas of robotics, at least partially because soft robots can’t directly benefit from the massive increase in computing power and sensor and actuator availability that we’ve seen over the last few decades. Instead, roboticists have had to get creative to find ways of achieving the functionality of conventional robotics components using soft materials and compatible power sources.
In the current issue of Science Robotics, researchers from UC San Diego demonstrate a soft walking robot with four legs that moves with a turtle-like gait controlled by a pneumatic circuit system made from tubes and valves. This air-powered nervous system can actuate multiple degrees of freedom in sequence from a single source of pressurized air, offering a huge reduction in complexity and bringing a very basic form of decision making onto the robot itself.
Generally, when people talk about soft robots, the robots are only mostly soft. There are some components that are very difficult to make soft, including pressure sources and the necessary electronics to direct that pressure between different soft actuators in a way that can be used for propulsion. What’s really cool about this robot is that researchers have managed to take a pressure source (either a single tether or an onboard CO2 cartridge) and direct it to four different legs, each with three different air chambers, using an oscillating three valve circuit made entirely of soft materials.
Photo: UCSD
The pneumatic circuit that powers and controls the soft quadruped.
The inspiration for this can be found in biology—natural organisms, including quadrupeds, use nervous system components called central pattern generators (CPGs) to prompt repetitive motions with limbs that are used for walking, flying, and swimming. This is obviously more complicated in some organisms than in others, and is typically mediated by sensory feedback, but the underlying structure of a CPG is basically just a repeating circuit that drives muscles in sequence to produce a stable, continuous gait. In this case, we’ve got pneumatic muscles being driven in opposing pairs, resulting in a diagonal couplet gait, where diagonally opposed limbs rotate forwards and backwards at the same time.
Diagram: Science Robotics
(J) Pneumatic logic circuit for rhythmic leg motion. A constant positive pressure source (P+) applied to three inverter components causes a high-pressure state to propagate around the circuit, with a delay at each inverter. While the input to one inverter is high, the attached actuator (i.e., A1, A2, or A3) is inflated. This sequence of high-pressure states causes each pair of legs of the robot to rotate in a direction determined by the pneumatic connections. (K) By reversing the sequence of activation of the pneumatic oscillator circuit, the attached actuators inflate in a new sequence (A1, A3, and A2), causing (L) the legs of the robot to rotate in reverse. (M) Schematic bottom view of the robot with the directions of leg motions indicated for forward walking.
Diagram: Science Robotics
Each of the valves acts as an inverter by switching the normally closed half (top) to open and the normally open half (bottom) to closed.
The circuit itself is made up of three bistable pneumatic valves connected by tubing that acts as a delay by providing resistance to the gas moving through it that can be adjusted by altering the tube’s length and inner diameter. Within the circuit, the movement of the pressurized gas acts as both a source of energy and as a signal, since wherever the pressure is in the circuit is where the legs are moving. The simplest circuit uses only three valves, and can keep the robot walking in one single direction, but more valves can add more complex leg control options. For example, the researchers were able to use seven valves to tune the phase offset of the gait, and even just one additional valve (albeit of a slightly more complex design) could enable reversal of the system, causing the robot to walk backwards in response to input from a soft sensor. And with another complex valve, a manual (tethered) controller could be used for omnidirectional movement.
This work has some similarities to the rover that JPL is developing to explore Venus—that rover isn’t a soft robot, of course, but it operates under similar constraints in that it can’t rely on conventional electronic systems for autonomous navigation or control. It turns out that there are plenty of clever ways to use mechanical (or in this case, pneumatic) intelligence to make robots with relatively complex autonomous behaviors, meaning that in the future, soft (or soft-ish) robots could find valuable roles in situations where using a non-compliant system is not a good option.
For more on why we should be so excited about soft robots and just how soft a soft robot needs to be, we spoke with Michael Tolley, who runs the Bioinspired Robotics and Design Lab at UCSD, and Dylan Drotman, the paper’s first author.
IEEE Spectrum: What can soft robots do for us that more rigid robotic designs can’t?
Michael Tolley: At the very highest level, one of the fundamental assumptions of robotics is that you have rigid bodies connected at joints, and all your motion happens at these joints. That's a really nice approach because it makes the math easy, frankly, and it simplifies control. But when you look around us in nature, even though animals do have bones and joints, the way we interact with the world is much more complicated than that simple story. I’m interested in where we can take advantage of material properties in robotics. If you look at robots that have to operate in very unknown environments, I think you can build in some of the intelligence for how to deal with those environments into the body of the robot itself. And that’s the category this work really falls under—it's about navigating the world.
Dylan Drotman: Walking through confined spaces is a good example. With the rigid legged robot, you would have to completely change the way that the legs move to walk through a confined space, while if you have flexible legs, like the robot in our paper, you can use relatively simple control strategies to squeeze through an area you wouldn’t be able to get through with a rigid system.
How smart can a soft robot get?
Drotman: Right now we have a sensor on the front that's connected through a fluidic transmission to a bistable valve that causes the robot to reverse. We could add other sensors around the robot to allow it to change direction whenever it runs into an obstacle to effectively make an electronics-free version of a Roomba.
Tolley: Stepping back a little bit from that, one could make an argument that we’re using basic memory elements to generate very basic signals. There’s nothing in principle that would stop someone from making a pneumatic computer—it’s just very complicated to make something that complex. I think you could build on this and do more intelligent decision making, but using this specific design and the components we’re using, it’s likely to be things that are more direct responses to the environment.
How well would robots like these scale down?
Drotman: At the moment we’re manufacturing these components by hand, so the idea would be to make something more like a printed circuit board instead, and looking at how the channel sizes and the valve design would affect the actuation properties. We’ll also be coming up with new circuits, and different designs for the circuits themselves.
Tolley: Down to centimeter or millimeter scale, I don’t think you’d have fundamental fluid flow problems. I think you’re going to be limited more by system design constraints. You’ll have to be able to locomote while carrying around your pressure source, and possibly some other components that are also still rigid. When you start to talk about really small scales, though, it's not as clear to me that you really need an intrinsically soft robot. If you think about insects, their structural geometry can make them behave like they’re soft, but they’re not intrinsically soft.
Should we be thinking about soft robots and compliant robots in the same way, or are they fundamentally different?
Tolley: There’s certainly a connection between the two. You could have a compliant robot that behaves in a very similar way to an intrinsically soft robot, or a robot made of intrinsically soft materials. At that point, it comes down to design and manufacturing and practical limitations on what you can make. I think when you get down to small scales, the two sort of get connected.
There was some interesting work several years ago on using explosions to power soft robots. Is that still a thing?
Tolley: One of the opportunities with soft robots is that with material compliance, you have the potential to store energy. I think there’s exciting potential there for rapid motion with a soft body. Combustion is one way of doing that with power coming from a chemical source all at once, but you could also use a relatively weak muscle that over time stores up energy in a soft body and then releases it.
Is it realistic to expect complete softness from soft robots, or will they likely always have rigid components because they have to store or generate and move pressurized gas somehow?
Tolley: If you look in nature, you do have soft pumps like the heart, but although it’s soft, it’s still relatively stiff. Like, if you grab a heart, it’s not totally squishy. I haven’t done it, but I’d imagine. If you have a container that you’re pressurizing, it has to be stiff enough to not just blow up like a balloon. Certainly pneumatics or hydraulics are not the only way to go for soft actuators; there has been some really nice work on smart muscles and smart materials like hydraulic electrostatic (HASEL) actuators. They seem promising, but all of these actuators have challenges. We’ve chosen to stick with pressurized pneumatics in the near term; longer term, I think you’ll start to see more of these smart material actuators become more practical.
Personally, I don’t have any problem with soft robots having some rigid components. Most animals on land have some rigid components, but they can still take advantage of being soft, so it’s probably going to be a combination. But I do also like the vision of making an entirely soft, squishy thing. Continue reading →
#438751 Soft Legged Robot Uses Pneumatic ...
Soft robots are inherently safe, highly resilient, and potentially very cheap, making them promising for a wide array of applications. But development on them has been a bit slow relative to other areas of robotics, at least partially because soft robots can’t directly benefit from the massive increase in computing power and sensor and actuator availability that we’ve seen over the last few decades. Instead, roboticists have had to get creative to find ways of achieving the functionality of conventional robotics components using soft materials and compatible power sources.
In the current issue of Science Robotics, researchers from UC San Diego demonstrate a soft walking robot with four legs that moves with a turtle-like gait controlled by a pneumatic circuit system made from tubes and valves. This air-powered nervous system can actuate multiple degrees of freedom in sequence from a single source of pressurized air, offering a huge reduction in complexity and bringing a very basic form of decision making onto the robot itself.
Generally, when people talk about soft robots, the robots are only mostly soft. There are some components that are very difficult to make soft, including pressure sources and the necessary electronics to direct that pressure between different soft actuators in a way that can be used for propulsion. What’s really cool about this robot is that researchers have managed to take a pressure source (either a single tether or an onboard CO2 cartridge) and direct it to four different legs, each with three different air chambers, using an oscillating three valve circuit made entirely of soft materials.
Photo: UCSD
The pneumatic circuit that powers and controls the soft quadruped.
The inspiration for this can be found in biology—natural organisms, including quadrupeds, use nervous system components called central pattern generators (CPGs) to prompt repetitive motions with limbs that are used for walking, flying, and swimming. This is obviously more complicated in some organisms than in others, and is typically mediated by sensory feedback, but the underlying structure of a CPG is basically just a repeating circuit that drives muscles in sequence to produce a stable, continuous gait. In this case, we’ve got pneumatic muscles being driven in opposing pairs, resulting in a diagonal couplet gait, where diagonally opposed limbs rotate forwards and backwards at the same time.
Diagram: Science Robotics
(J) Pneumatic logic circuit for rhythmic leg motion. A constant positive pressure source (P+) applied to three inverter components causes a high-pressure state to propagate around the circuit, with a delay at each inverter. While the input to one inverter is high, the attached actuator (i.e., A1, A2, or A3) is inflated. This sequence of high-pressure states causes each pair of legs of the robot to rotate in a direction determined by the pneumatic connections. (K) By reversing the sequence of activation of the pneumatic oscillator circuit, the attached actuators inflate in a new sequence (A1, A3, and A2), causing (L) the legs of the robot to rotate in reverse. (M) Schematic bottom view of the robot with the directions of leg motions indicated for forward walking.
Diagram: Science Robotics
Each of the valves acts as an inverter by switching the normally closed half (top) to open and the normally open half (bottom) to closed.
The circuit itself is made up of three bistable pneumatic valves connected by tubing that acts as a delay by providing resistance to the gas moving through it that can be adjusted by altering the tube’s length and inner diameter. Within the circuit, the movement of the pressurized gas acts as both a source of energy and as a signal, since wherever the pressure is in the circuit is where the legs are moving. The simplest circuit uses only three valves, and can keep the robot walking in one single direction, but more valves can add more complex leg control options. For example, the researchers were able to use seven valves to tune the phase offset of the gait, and even just one additional valve (albeit of a slightly more complex design) could enable reversal of the system, causing the robot to walk backwards in response to input from a soft sensor. And with another complex valve, a manual (tethered) controller could be used for omnidirectional movement.
This work has some similarities to the rover that JPL is developing to explore Venus—that rover isn’t a soft robot, of course, but it operates under similar constraints in that it can’t rely on conventional electronic systems for autonomous navigation or control. It turns out that there are plenty of clever ways to use mechanical (or in this case, pneumatic) intelligence to make robots with relatively complex autonomous behaviors, meaning that in the future, soft (or soft-ish) robots could find valuable roles in situations where using a non-compliant system is not a good option.
For more on why we should be so excited about soft robots and just how soft a soft robot needs to be, we spoke with Michael Tolley, who runs the Bioinspired Robotics and Design Lab at UCSD, and Dylan Drotman, the paper’s first author.
IEEE Spectrum: What can soft robots do for us that more rigid robotic designs can’t?
Michael Tolley: At the very highest level, one of the fundamental assumptions of robotics is that you have rigid bodies connected at joints, and all your motion happens at these joints. That's a really nice approach because it makes the math easy, frankly, and it simplifies control. But when you look around us in nature, even though animals do have bones and joints, the way we interact with the world is much more complicated than that simple story. I’m interested in where we can take advantage of material properties in robotics. If you look at robots that have to operate in very unknown environments, I think you can build in some of the intelligence for how to deal with those environments into the body of the robot itself. And that’s the category this work really falls under—it's about navigating the world.
Dylan Drotman: Walking through confined spaces is a good example. With the rigid legged robot, you would have to completely change the way that the legs move to walk through a confined space, while if you have flexible legs, like the robot in our paper, you can use relatively simple control strategies to squeeze through an area you wouldn’t be able to get through with a rigid system.
How smart can a soft robot get?
Drotman: Right now we have a sensor on the front that's connected through a fluidic transmission to a bistable valve that causes the robot to reverse. We could add other sensors around the robot to allow it to change direction whenever it runs into an obstacle to effectively make an electronics-free version of a Roomba.
Tolley: Stepping back a little bit from that, one could make an argument that we’re using basic memory elements to generate very basic signals. There’s nothing in principle that would stop someone from making a pneumatic computer—it’s just very complicated to make something that complex. I think you could build on this and do more intelligent decision making, but using this specific design and the components we’re using, it’s likely to be things that are more direct responses to the environment.
How well would robots like these scale down?
Drotman: At the moment we’re manufacturing these components by hand, so the idea would be to make something more like a printed circuit board instead, and looking at how the channel sizes and the valve design would affect the actuation properties. We’ll also be coming up with new circuits, and different designs for the circuits themselves.
Tolley: Down to centimeter or millimeter scale, I don’t think you’d have fundamental fluid flow problems. I think you’re going to be limited more by system design constraints. You’ll have to be able to locomote while carrying around your pressure source, and possibly some other components that are also still rigid. When you start to talk about really small scales, though, it's not as clear to me that you really need an intrinsically soft robot. If you think about insects, their structural geometry can make them behave like they’re soft, but they’re not intrinsically soft.
Should we be thinking about soft robots and compliant robots in the same way, or are they fundamentally different?
Tolley: There’s certainly a connection between the two. You could have a compliant robot that behaves in a very similar way to an intrinsically soft robot, or a robot made of intrinsically soft materials. At that point, it comes down to design and manufacturing and practical limitations on what you can make. I think when you get down to small scales, the two sort of get connected.
There was some interesting work several years ago on using explosions to power soft robots. Is that still a thing?
Tolley: One of the opportunities with soft robots is that with material compliance, you have the potential to store energy. I think there’s exciting potential there for rapid motion with a soft body. Combustion is one way of doing that with power coming from a chemical source all at once, but you could also use a relatively weak muscle that over time stores up energy in a soft body and then releases it.
Is it realistic to expect complete softness from soft robots, or will they likely always have rigid components because they have to store or generate and move pressurized gas somehow?
Tolley: If you look in nature, you do have soft pumps like the heart, but although it’s soft, it’s still relatively stiff. Like, if you grab a heart, it’s not totally squishy. I haven’t done it, but I’d imagine. If you have a container that you’re pressurizing, it has to be stiff enough to not just blow up like a balloon. Certainly pneumatics or hydraulics are not the only way to go for soft actuators; there has been some really nice work on smart muscles and smart materials like hydraulic electrostatic (HASEL) actuators. They seem promising, but all of these actuators have challenges. We’ve chosen to stick with pressurized pneumatics in the near term; longer term, I think you’ll start to see more of these smart material actuators become more practical.
Personally, I don’t have any problem with soft robots having some rigid components. Most animals on land have some rigid components, but they can still take advantage of being soft, so it’s probably going to be a combination. But I do also like the vision of making an entirely soft, squishy thing. Continue reading →
#437193 TyroBot: DIY Humanoid Robot
“TyroBot” is a novice-friendly (but high-tech) 3D-printable open source kit that can be assembled in a few hours, and is very easy to program. It’s great way to teach yourself robotics and programming! Read more, or back them on Kickstarter.