Tag Archives: high

#430630 CORE2 consumer robot controller by ...

Hardware, software and cloud for fast robot prototyping and development
Kraków, Poland, June 27th, 2017 – Robotic development platform creator Husarion has launched its next-generation dedicated robot controller CORE2. Available now at the Crowd Supply crowdfunding platform, CORE2 enables the rapid prototyping and development of consumer and service robots. It’s especially suitable for engineers designing commercial appliances and robotics students or hobbyists. Whether the next robotic idea is a tiny rover that penetrates tunnels, a surveillance drone, or a room-sized 3D printer, the CORE2 can serve as the brains behind it.
Photo Credit: Husarionwww.husarion.com
Husarion’s platform greatly simplifies robot development, making it as easy as creating a website. It provides engineers with embedded hardware, preconfigured software and easy online management. From the simple, proof-of-concept prototypes made with LEGO® Mindstorms to complex designs ready for mass manufacturing, the core technology stays the same throughout the process, shortening the time to market significantly. It’s designed as an innovation for the consumer robotics industry similar to what Arduino or Raspberry PI were to the Maker Movement.

“We are on the verge of a consumer robotics revolution”, says Dominik Nowak, CEO of Husarion. “Big industrial businesses have long been utilizing robots, but until very recently the consumer side hasn’t seen that many of them. This is starting to change now with the democratization of tools, the Maker Movement and technology maturing. We believe Husarion is uniquely positioned for the upcoming boom, offering robot developers a holistic solution and lowering the barrier of entry to the market.”

The hardware part of the platform is the Husarion CORE2 board, a computer that interfaces directly with motors, servos, encoders or sensors. It’s powered by an ARM® CORTEX-M4 CPU, features 42x I/O ports and can support up to 4x DC motors and 6x servomechanisms. Wireless connectivity is provided by a built-in Wi-Fi module.
Photo Credit: Husarion – www.husarion.com
The Husarion CORE2-ROS is an alternative configuration with a Raspberry Pi 3 ARMv8-powered board layered on top, with a preinstalled Robot Operating System (ROS) custom Linux distribution. It allows users to tap into the rich sets of modules and building tools already available for ROS. Real-time capabilities and high computing power enable advanced use cases, such as fully autonomous devices.

Developing software for CORE2-powered robots is easy. Husarion provides Web IDE, allowing engineers to program their connected robots directly from within the browser. There’s also an offline SDK and a convenient extension for Visual Studio Code. The open-source library hFramework based on Real Time Operating System masks the complexity of interface communication behind an elegant, easy-to-use API.

CORE2 also works with Arduino libraries, which can be used with no modifications at all through the compatibility layer of the hFramework API.
Photo Credit: Husarion – www.husarion.com
For online access, programming and control, Husarion provides its dedicated Cloud. By registering the CORE2-powerd robot at https://cloud.husarion.com, developers can update firmware online, build a custom Web control UI and share controls of their device with anyone.

Starting at $89, Husarion CORE2 and CORE2-ROS controllers are now on sale through Crowd Supply.

Husarion also offers complete development kits, extra servo controllers and additional modules for compatibility with LEGO® Mindstorms or Makeblock® mechanics. For more information, please visit: https://www.crowdsupply.com/husarion/core2.

Key points:
A dedicated robot hardware controller, with built-in interfaces for sensors, servos, DC motors and encoders

Programming with free tools: online (via Husarion Cloud Web IDE) or offline (Visual Studio Code extension)
Compatible with ROS, provides C++ 11 open-source programming framework based on RTOS
Husarion Cloud: control, program and share robots, with customizable control UI
Allows faster development and more advanced robotics than general maker boards like Arduino or Raspberry Pi

About Husarion
Husarion was founded in 2013 in Kraków, Poland. In 2015, Husarion successfully financed a Kickstarter campaign for RoboCORE, the company’s first-generation controller. The company delivers a fast prototyping platform for consumer robots. Thanks to Husarion’s hardware modules, efficient programming tools and cloud management, engineers can rapidly develop and iterate on their robot ideas. Husarion simplifies the development of connected, commercial robots ready for mass production and provides kits for academic education.

For more information, visit: https://husarion.com/.
Photo Credit: Husarion – www.husarion.com

Photo Credit: Husarion – www.husarion.com

Media contact:

Piotr Sarotapublic relations consultant
SAROTA PR – public relations agencyphone: +48 12 684 12 68mobile: +48 606 895 326email: piotr(at)sarota.pl
http://www.sarota.pl/
Jakub Misiurapublic relations specialist
phone: +48 12 349 03 52mobile: +48 696 778 568email: jakub.misiura(at)sarota.pl

Photo Credit: Husarion – www.husarion.com
Photo Credit: Husarion – www.husarion.com
Photo Credit: Husarion – www.husarion.com

The post CORE2 consumer robot controller by Husarion appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#428626 Cimcorp to fully automate Turkish Tire ...

Cimcorp Selected to Supply Turnkey Automated Handling System to Large Turkish Tire Manufacturer, Petlas
The leading tire handling specialist’s system will handle tires in the tire-finishing and palletizing areas in Turkish manufacturer’s expanded facility
Ulvila, Finland – November 9, 2016 – Cimcorp, leading global supplier of turnkey automation for intralogistics and tire-handling solutions, announces it has been selected to implement a fully automated handling system in Petlas Tire Corporation’s (Petlas) factory in Kirsehir, Turkey. Based on Cimcorp’s Dream Factory solution, the automation will take care of the handling of passenger car radial (PCR) finished tires in the tire-finishing and palletizing areas. Work on the order is already underway and the’ turnkey material handling system will become fully operational in fall 2017.
The order, Cimcorp’s first project for Petlas, is part of a huge investment program to expand the Kirsehir plant in order to increase Petlas’ PCR production capacity and meet growing demand.
Turkey achieved record car production and export levels in 2015, with production up by 16 percent and exports up 12 percent over the preceding year. This growth rate is higher than in any other European country and, with its automotive plants rolling out 1.36 million vehicles in 2015, Turkey is now the seventh largest automotive producer in Europe.
With the production equipment – the tire-building machines, presses and testing machines – already installed, Petlas is commencing the automation of the plant’s material handling. This comprises Cimcorp’s robotic buffer stores, tire conveyors and control software – Cimcorp WCS (Warehouse Control Software) – to take care of all material flows. Using linear robots operating on overhead gantries, the system will automate the handling and transfer of finished tires from the trimming stations, through visual inspection and uniformity testing, to palletizing.
Yahya Ertem, general manager, Petlas Tire Corporation, said, “We think highly of Cimcorp’s software, which integrates the machines into one entity and keeps the flow of material and data under complete control. Cimcorp’s Dream Factory solution fits with our vision to achieve ‘excellence in business’ and will help us to achieve our strategic goals.”
Tero Peltomäki, vice president of sales and projects, Cimcorp, said, “It has been fantastic to work with the Petlas team, honing our design into the best possible solution for the Kirsehir plant. The automation will help Petlas to enhance its market position as a leading tire manufacturer and distributor and we look forward to working on future automation projects with the company.”
To receive high-resolution images, please send requests to Heidi Scott via email at: lasendio@dprgroup.com

About Cimcorp
Cimcorp Group – part of Murata Machinery, Ltd. (Muratec) – is a leading global supplier of turnkey automation for intralogistics, using advanced robotics and software technologies. As well as being a manufacturer and integrator of pioneering material handling systems for the tire industry, Cimcorp has developed unique robotic solutions for order fulfillment and storage that are being used in the food & beverage, retail, e-commerce, FMCG and postal services sectors. With locations in Finland, Canada and the United States, the group has around 300 employees and has delivered over 2,000 logistics automation solutions. Designed to reduce operating costs, ensure traceability and improve efficiency, these systems are used within manufacturing and distribution centers in 40 countries across five continents. For more information, visit www.cimcorp.com.
About Petlas Tire Corporation (Petlas)
Founded in 1976, Petlas Tire Corporation has operations in 98 countries worldwide and employs 2,150 people. The company’s plant in Kirsehir currently has the capacity to produce 8 million PCR (passenger car radial) tires, 2 million agricultural tires, 500,000 TBR (truck & bus radial) tires and 300,000 OTR (off-the-road) tires per year. For more information, visit www.petlas.com.

The post Cimcorp to fully automate Turkish Tire Manufacturer Petlas appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#428367 Fusion for Energy signs multi-million ...

Fusion for Energy signs multi-million deal with Airbus Safran Launchers, Nuvia Limited and Cegelec CEM to develop robotics equipment for ITER
The contract for a value of nearly 100 million EUR is considered to be the single biggest robotics deal to date in the field of fusion energy. The state of the art equipment will form part of ITER, the world’s largest experimental fusion facility and the first in history to produce 500 MW. The prestigious project brings together seven parties (China, Europe, Japan, India, the Republic of Korea, the Russian Federation and the USA) which represent 50% of the world’s population and 80% of the global GDP.
The collaboration between Fusion for Energy (F4E), the EU organisation managing Europe’s contribution to ITER, with a consortium of companies consisting of Airbus Safran Launchers (France-Germany), Nuvia Limited (UK) and Cegelec CEM (France), companies of the VINCI Group, will run for a period of seven years. The UK Atomic Energy Authority (UK), Instituto Superior Tecnico (Portugal), AVT Europe NV (Belgium) and Millennium (France) will also be part of this deal which will deliver remotely operated systems for the transportation and confinement of components located in the ITER vacuum vessel.
The contract carries also a symbolic importance marking the signature all procurement packages managed by Europe in the field of remote handling. Carlo Damiani, F4E’s Project Manager for ITER Remote Handling Systems, explained that “F4E’s stake in ITER offers an unparalleled opportunity to companies and laboratories to develop expertise and an industrial culture in fusion reactors’ maintenance.”
Cut-away image of the ITER machine showing the casks at the three levels of the ITER machine. ITER IO © (Remote1 web). Photo Credit: f4e.europa.euIllustration of lorry next to an ITER cask. F4E © (Remote 2 web). Photo Credit: f4e.europa.euAerial view of the ITER construction site, October 2016. F4E © (ITER site aerial Oct). Photo Credit: f4e.europa.eu

Why ITER requires Remote Handling?
Remote handling refers to the high-tech systems that will help us maintain and repair the ITER machine. The space where the bulky equipment will operate is limited and the exposure of some of the components to radioactivity, prohibit any manual intervention inside the vacuum vessel.

What will be delivered through this contract?
The transfer of components from the ITER vacuum vessel to the Hot Cell building, where they will be deposited for maintenance, will need to be carried out with the help of massive double-door containers known as casks. According to current estimates, 15 of these casks will need to be manufactured and in their largest configuration they will measure 8.5 m x 3.7 m x 2.6 m approaching 100 tonnes when transporting the heaviest components. These enormous “boxes”, resembling to a conventional lorry container, will be remotely operated as they move between the different levels and buildings of the machine. Apart from the transportation and confinement of components, the ITER Cask and Plug Remote Handling System will also ensure the installation of the remote handling equipment entering into the vacuum vessel to pick up the components to be removed. The technologies underpinning this system will encompass a variety of high-tech skills and comply with nuclear safety requirements. A proven manufacturing experience in similar fields and the development of bespoke systems to perform mechanical transfers will be essential.

Background information
MEMO: Fusion for Energy signs multi-million deal with Airbus Safran Launchers, Nuvia Limited and Cegelec CEM to develop robotics equipment for ITER
Multimedia
To see how the ITER Remote Handling System will operate click on clip 1 and clip 2
To see the progress of the ITER construction site click here
To take a virtual tour on the ITER construction site click here

Image captions
Cut-away image of the ITER machine showing the casks at the three levels of the ITER machine. ITER IO © (Remote1 web)

Illustration of lorry next to an ITER cask. F4E © (Remote 2 web)

Aerial view of the ITER construction site, October 2016. F4E © (ITER site aerial Oct)

The consortium of companies
The consortium combines the space expertise of Airbus Safran Launchers, adapted to this extreme environment to ensure safe conditions for the ITER teams; with Nuvia comes a wealth of nuclear experience dating back to the beginnings of the UK Nuclear industry. Nuvia has delivered solutions to some of the world’s most complex nuclear challenges; and with Cegelec CEM as a specialist in mechanical projects for French nuclear sector, which contributes over 30 years in the nuclear arena, including turnkey projects for large scientific installations, as well as the realisation of complex mechanical systems.

Fusion for Energy
Fusion for Energy (F4E) is the European Union’s organisation for Europe’s contribution to ITER.
One of the main tasks of F4E is to work together with European industry, SMEs and research organisations to develop and provide a wide range of high technology components together with engineering, maintenance and support services for the ITER project.
F4E supports fusion R&D initiatives through the Broader Approach Agreement signed with Japan and prepares for the construction of demonstration fusion reactors (DEMO).
F4E was created by a decision of the Council of the European Union as an independent legal entity and was established in April 2007 for a period of 35 years.
Its offices are in Barcelona, Spain.
http://www.fusionforenergy.europa.eu
http://www.youtube.com/user/fusionforenergy
http://twitter.com/fusionforenergy
http://www.flickr.com/photos/fusionforenergy

ITER
ITER is a first-of-a-kind global collaboration. It will be the world’s largest experimental fusion facility and is designed to demonstrate the scientific and technological feasibility of fusion power. It is expected to produce a significant amount of fusion power (500 MW) for about seven minutes. Fusion is the process which powers the sun and the stars. When light atomic nuclei fuse together form heavier ones, a large amount of energy is released. Fusion research is aimed at developing a safe, limitless and environmentally responsible energy source.
Europe will contribute almost half of the costs of its construction, while the other six parties to this joint international venture (China, Japan, India, the Republic of Korea, the Russian Federation and the USA), will contribute equally to the rest.
The site of the ITER project is in Cadarache, in the South of France.
http://www.iter.org

For Fusion for Energy media enquiries contact:
Aris Apollonatos
E-mail: aris.apollonatos@f4e.europa.eu
Tel: + 34 93 3201833 + 34 649 179 42
The post Fusion for Energy signs multi-million deal to develop robotics equipment for ITER appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#428133 H-Ros – Hardware Robot Operating ...

As ROS – Robot Operating System is being used by more and more robots, a new form of building robots that uses ROS is coming into play, which is called H-Ros, Hardware Robot Operating System. This is currently supported by several companies that adopt its standard interfaces. Each piece runs ROS 2.0 on its own has its own ROS nodes and topics. Building robots is about putting together different H-ROS components that can come from different manufacturers but still interoperate thanks to the standard hardware interfaces defined within H-ROS. The blocks that make up the system fall into 5 categories, which are, sensing, actuation, communication, cognition and hybrid components. Below is the press release provied to us by Erle Robotics, which is one of the several firms that are currently working on this.
////////////////////////////////////////////////////////////////////////////////////
Erle Robotics announced a new platform that provides manufacturers tools for building interoperable robot components that can easily be exchanged between robots
Photo Credit: https://www.h-ros.com/, www.erlerobotics.com

Erle Robotics announced during ROSCon 2016 in Seoul, Korea, a new game-changing standard for building robot components, H-ROS: the Hardware Robot Operating System. H-ROS provides manufacturers tools for building interoperable robot components that can easily be exchanged or replaced between robots.

Powered by the popular Robot Operating System (ROS), H-ROS offers building-block-style parts that come as reusable and reconfigurable components allowing developers, to easily upgrade their robots with hardware from different manufacturers and add new features in seconds.

With H-ROS, building robots will be about placing H-ROS-compatible hardware components together to build new robot configurations. Constructing robots won’t be restricted to a few with high technical skills but it will be extended to a great majority with a general understanding of the sensing and actuation needed in a particular scenario.

H-ROS was initially funded by the US Defense Advanced Research Projects Agency (DARPA) through the Robotics Fast Track program in 2016 and developed by Erle Robotics. The platform has already been tested by several international manufacturers who have built robots out of this technology. This is the case of H-ROS Turtlebot, which was presented during the conference in Seoul.

H-ROS is now available for selected industry partners and will soon be released for the wider robotics community. Additional information can be requested through its official web page at https://h-ros.com/.
Photo Credit: https://www.h-ros.com/, www.erlerobotics.comPhoto Credit: https://www.h-ros.com/, www.erlerobotics.comPhoto Credit: https://www.h-ros.com/, www.erlerobotics.comPhoto Credit: https://www.h-ros.com/, www.erlerobotics.com
The post H-Ros – Hardware Robot Operating System appeared first on Roboticmagazine. Continue reading

Posted in Human Robots