Tag Archives: high
#433696 3 Big Ways Tech Is Disrupting Global ...
Disruptive business models are often powered by alternative financing. In Part 1 of this series, I discussed how mobile is redefining money and banking and shared some of the dramatic transformations in the global remittance infrastructure.
In this article, we’ll discuss:
Peer-to-peer lending
AI financial advisors and robo traders
Seamless Transactions
Let’s dive right back in…
Decentralized Lending = Democratized Access to Finances
Peer-to-peer (P2P) lending is an age-old practice, traditionally with high risk and extreme locality. Now, the P2P funding model is being digitized and delocalized, bringing lending online and across borders.
Zopa, the first official crowdlending platform, arrived in the United Kingdom in 2004. Since then, the consumer crowdlending platform has facilitated lending of over 3 billion euros ($3.5 billion USD) of loans.
Person-to-business crowdlending took off, again in the U.K., in 2005 with Funding Circle, now with over 5 billion euros (~5.8 billion USD) of capital loaned to small businesses around the world.
Crowdlending next took off in the US in 2006, with platforms like Prosper and Lending Club. The US crowdlending industry has boomed to $21 billion in loans, across 515,000 loans.
Let’s take a step back… to a time before banks, when lending took place between trusted neighbors in small villages across the globe. Lending started as peer-to-peer transactions.
As villages turned into towns, towns turned into cities, and cities turned into sprawling metropolises, neighborly trust and the ability to communicate across urban landscapes broke down. That’s where banks and other financial institutions came into play—to add trust back into the lending equation.
With crowdlending, we are evidently returning to this pre-centralized-banking model of loans, and moving away from cumbersome intermediaries (e.g. high fees, regulations, and extra complexity).
Fueled by the permeation of the internet, P2P lending took on a new form as ‘crowdlending’ in the early 2000s. Now, as blockchain and artificial intelligence arrive on the digital scene, P2P lending platforms are being overhauled with transparency, accountability, reliability, and immutability.
Artificial Intelligence Micro Lending & Credit Scores
We are beginning to augment our quantitative decision-making with neural networks processing borrowers’ financial data to determine their financial ‘fate’ (or, as some call it, your credit score). Companies like Smart Finance Group (backed by Kai Fu Lee and Sinovation Ventures) are using artificial intelligence to minimize default rates for tens of millions of microloans.
Smart Finance is fueled by users’ personal data, particularly smartphone data and usage behavior. Users are required to give Smart Finance access to their smartphone data, so that Smart Finance’s artificial intelligence engine can generate a credit score from the personal information.
The benefits of this AI-powered lending platform do not stop at increased loan payback rates; there’s a massive speed increase as well. Smart Finance loans are frequently approved in under eight seconds. As we’ve seen with other artificial intelligence disruptions, data is the new gold.
Digitizing access to P2P loans paves the way for billions of people currently without access to banking to leapfrog the centralized banking system, just as Africa bypassed landline phones and went straight to mobile. Leapfrogging centralized banking and the credit system is exactly what Smart Finance has done for hundreds of millions of people in China.
Blockchain-Backed Crowdlending
As artificial intelligence accesses even the most mundane mobile browsing data to assign credit scores, blockchain technologies, particularly immutable ledgers and smart contracts, are massive disruptors to the archaic banking system, building additional trust and transparency on top of current P2P lending models.
Immutable ledgers provide the necessary transparency for accurate credit and loan defaulting history. Smart contracts executed on these immutable ledgers bring the critical ability to digitally replace cumbersome, expensive third parties (like banks), allowing individual borrowers or businesses to directly connect with willing lenders.
Two of the leading blockchain platforms for P2P lending are ETHLend and SALT Lending.
ETHLend is an Ethereum-based decentralized application aiming to bring transparency and trust to P2P lending through Ethereum network smart contracts.
Secure Automated Lending Technology (SALT) allows cryptocurrency asset holders to use their digital assets as collateral for cash loans, without the need to liquidate their holdings, giving rise to a digital-asset-backed lending market.
While blockchain poses a threat to many of the large, centralized banking institutions, some are taking advantage of the new technology to optimize their internal lending, credit scoring, and collateral operations.
In March 2018, ING and Credit Suisse successfully exchanged 25 million euros using HQLA-X, a blockchain-based collateral lending platform.
HQLA-X runs on the R3 Corda blockchain, a platform designed specifically to help heritage financial and commerce institutions migrate away from their inefficient legacy financial infrastructure.
Blockchain and tokenization are going through their own fintech and regulation shakeup right now. In a future blog, I’ll discuss the various efforts to more readily assure smart contracts, and the disruptive business model of security tokens and the US Securities and Exchange Commission.
Parallels to the Global Abundance of Capital
The abundance of capital being created by the advent of P2P loans closely relates to the unprecedented global abundance of capital.
Initial coin offerings (ICOs) and crowdfunding are taking a strong stand in disrupting the $164 billion venture capital market. The total amount invested in ICOs has risen from $6.6 billion in 2017 to $7.15 billion USD in the first half of 2018. Crowdfunding helped projects raise more than $34 billion in 2017, with experts projecting that global crowdfunding investments will reach $300 billion by 2025.
In the last year alone, using ICOs, over a dozen projects have raised hundreds of millions of dollars in mere hours. Take Filecoin, for example, which raised $257 million in only 30 days; its first $135 million was raised in the first hour. Similarly, the Dragon Coin project (which itself is revolutionizing remittance in high-stakes casinos around the world) raised $320 million in its 30-day public ICO.
Some Important Takeaways…
Technology-backed fundraising and financial services are disrupting the world’s largest financial institutions. Anyone, anywhere, at anytime will be able to access the capital they need to pursue their idea.
The speed at which we can go from “I’ve got an idea” to “I run a billion-dollar company” is moving faster than ever.
Following Ray Kurzweil’s Law of Accelerating Returns, the rapid decrease in time to access capital is intimately linked (and greatly dependent on) a financial infrastructure (technology, institutions, platforms, and policies) that can adapt and evolve just as rapidly.
This new abundance of capital requires financial decision-making with ever-higher market prediction precision. That’s exactly where artificial intelligence is already playing a massive role.
Artificial Intelligence, Robo Traders, and Financial Advisors
On May 6, 2010, the Dow Jones Industrial Average suddenly collapsed by 998.5 points (equal to 8 percent, or $1 trillion). The crash lasted over 35 minutes and is now known as the ‘Flash Crash’. While no one knows the specific reason for this 2010 stock market anomaly, experts widely agree that the Flash Crash had to do with algorithmic trading.
With the ability to have instant, trillion-dollar market impacts, algorithmic trading and artificial intelligence are undoubtedly ingrained in how financial markets operate.
In 2017, CNBC.com estimated that 90 percent of daily trading volume in stock trading is done by machine algorithms, and only 10 percent is carried out directly by humans.
Artificial intelligence and financial management algorithms are not only available to top Wall Street players.
Robo-advisor financial management apps, like Wealthfront and Betterment, are rapidly permeating the global market. Wealthfront currently has $9.5 billion in assets under management, and Betterment has $10 billion.
Artificial intelligent financial agents are already helping financial institutions protect your money and fight fraud. A prime application for machine learning is in detecting anomalies in your spending and transaction habits, and flagging potentially fraudulent transactions.
As artificial intelligence continues to exponentially increase in power and capabilities, increasingly powerful trading and financial management bots will come online, finding massive new and previously lost streams of wealth.
How else are artificial intelligence and automation transforming finance?
Disruptive Remittance and Seamless Transactions
When was the last time you paid in cash at a toll booth? How about for a taxi ride?
EZ-Pass, the electronic tolling company implemented extensively on the East Coast, has done wonders to reduce traffic congestion and increase traffic flow.
Driving down I-95 on the East Coast of the United States, drivers rarely notice their financial transaction with the state’s tolling agencies. The transactions are seamless.
The Uber app enables me to travel without my wallet. I can forget about payment on my trip, free up my mental bandwidth and time for higher-priority tasks. The entire process is digitized and, by extension, automated and integrated into Uber’s platform (Note: This incredible convenience many times causes me to accidentally walk out of taxi cabs without paying!).
In January 2018, we saw the success of the first cutting-edge, AI-powered Amazon Go store open in Seattle, Washington. The store marked a new era in remittance and transactions. Gone are the days of carrying credit cards and cash, and gone are the cash registers. And now, on the heals of these early ‘beta-tests’, Amazon is considering opening as many as 3,000 of these cashierless stores by 2023.
Amazon Go stores use AI algorithms that watch various video feeds (from advanced cameras) throughout the store to identify who picks up groceries, exactly what products they select, and how much to charge that person when they walk out of the store. It’s a grab and go experience.
Let’s extrapolate the notion of seamless, integrated payment systems from Amazon Go and Uber’s removal of post-ride payment to the rest of our day-to-day experience.
Imagine this near future:
As you near the front door of your home, your AI assistant summons a self-driving Uber that takes you to the Hyperloop station (after all, you work in L.A. but live in San Francisco).
At the station, you board your pod, without noticing that your ticket purchase was settled via a wireless payment checkpoint.
After work, you stop at the Amazon Go and pick up dinner. Your virtual AI assistant passes your Amazon account information to the store’s payment checkpoint, as the store’s cameras and sensors track you, your cart and charge you auto-magically.
At home, unbeknownst to you, your AI has already restocked your fridge and pantry with whatever items you failed to pick up at the Amazon Go.
Once we remove the actively transacting aspect of finance, what else becomes possible?
Top Conclusions
Extraordinary transformations are happening in the finance world. We’ve only scratched the surface of the fintech revolution. All of these transformative financial technologies require high-fidelity assurance, robust insurance, and a mechanism for storing value.
I’ll dive into each of these other facets of financial services in future articles.
For now, thanks to coming global communication networks being deployed on 5G, Alphabet’s LUNE, SpaceX’s Starlink and OneWeb, by 2024, nearly all 8 billion people on Earth will be online.
Once connected, these new minds, entrepreneurs, and customers need access to money and financial services to meaningfully participate in the world economy.
By connecting lenders and borrowers around the globe, decentralized lending drives down global interest rates, increases global financial market participation, and enables economic opportunity to the billions of people who are about to come online.
We’re living in the most abundant time in human history, and fintech is just getting started.
Join Me
Abundance Digital Online Community: I have created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance Digital. This is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: Novikov Aleksey / Shutterstock.com Continue reading
#433486 This AI Predicts Obesity ...
A research team at the University of Washington has trained an artificial intelligence system to spot obesity—all the way from space. The system used a convolutional neural network (CNN) to analyze 150,000 satellite images and look for correlations between the physical makeup of a neighborhood and the prevalence of obesity.
The team’s results, presented in JAMA Network Open, showed that features of a given neighborhood could explain close to two-thirds (64.8 percent) of the variance in obesity. Researchers found that analyzing satellite data could help increase understanding of the link between peoples’ environment and obesity prevalence. The next step would be to make corresponding structural changes in the way neighborhoods are built to encourage physical activity and better health.
Training AI to Spot Obesity
Convolutional neural networks (CNNs) are particularly adept at image analysis, object recognition, and identifying special hierarchies in large datasets.
Prior to analyzing 150,000 high-resolution satellite images of Bellevue, Seattle, Tacoma, Los Angeles, Memphis, and San Antonio, the researchers trained the CNN on 1.2 million images from the ImageNet database. The categorizations were correlated with obesity prevalence estimates for the six urban areas from census tracts gathered by the 500 Cities project.
The system was able to identify the presence of certain features that increased likelihood of obesity in a given area. Some of these features included tightly–packed houses, being close to roadways, and living in neighborhoods with a lack of greenery.
Visualization of features identified by the convolutional neural network (CNN) model. The images on the left column are satellite images taken from Google Static Maps API (application programming interface). Images in the middle and right columns are activation maps taken from the second convolutional layer of VGG-CNN-F network after forward pass of the respective satellite images through the network. From Google Static Maps API, DigitalGlobe, US Geological Survey (accessed July 2017). Credit: JAMA Network Open
Your Surroundings Are Key
In their discussion of the findings, the researchers stressed that there are limitations to the conclusions that can be drawn from the AI’s results. For example, socio-economic factors like income likely play a major role for obesity prevalence in a given geographic area.
However, the study concluded that the AI-powered analysis showed the prevalence of specific man-made features in neighborhoods consistently correlating with obesity prevalence and not necessarily correlating with socioeconomic status.
The system’s success rates varied between studied cities, with Memphis being the highest (73.3 percent) and Seattle being the lowest (55.8 percent).
AI Takes To the Sky
Around a third of the US population is categorized as obese. Obesity is linked to a number of health-related issues, and the AI-generated results could potentially help improve city planning and better target campaigns to limit obesity.
The study is one of the latest of a growing list that uses AI to analyze images and extrapolate insights.
A team at Stanford University has used a CNN to predict poverty via satellite imagery, assisting governments and NGOs to better target their efforts. A combination of the public Automatic Identification System for shipping, satellite imagery, and Google’s AI has proven able to identify illegal fishing activity. Researchers have even been able to use AI and Google Street View to predict what party a given city will vote for, based on what cars are parked on the streets.
In each case, the AI systems have been able to look at volumes of data about our world and surroundings that are beyond the capabilities of humans and extrapolate new insights. If one were to moralize about the good and bad sides of AI (new opportunities vs. potential job losses, for example) it could seem that it comes down to what we ask AI systems to look at—and what questions we ask of them.
Image Credit: Ocean Biology Processing Group at NASA’s Goddard Space Flight Center Continue reading
#433301 ‘Happiness Tech’ Is On the Rise. Is ...
We often get so fixated on technological progress that we forget it’s merely one component of the entirety of human progress. Technological advancement does not necessarily correlate with increases in human mental well-being.
While cleaner energy, access to education, and higher employment rates can improve quality of life, they do not guarantee happiness and inner peace. Amid what appears to be an increasing abundance of resources and ongoing human progress, we are experiencing a mental health epidemic, with high anxiety and depression rates. This is especially true in the developed world, where we have access to luxuries our ancestors couldn’t even dream of—all the world’s information contained in a device we hold in the palm of our hands, for example.
But as you may have realized through your own experience, technology can make us feel worse instead of better. Social media can become a tool for comparison and a source of debilitating status anxiety. Increased access to goods and services, along with the rise of consumerism, can lead people to choose “stuff” over true sources of meaning and get trapped in a hedonistic treadmill of materialism. Tools like artificial intelligence and big data could lead to violation of our privacy and autonomy. The digital world can take us away from the beauty of the present moment.
Understanding Happiness
How we use technology can significantly impact our happiness. In this context, “happiness” refers to a general sense of well-being, gratitude, and inner peace. Even with such a simple definition, it is a state of mind many people will admit they lack.
Eastern philosophies have told us for thousands of years that the problem of human suffering begins with our thoughts and perceptions of the circumstances we are in, as opposed to beginning with the circumstances themselves. As Derren Brown brilliantly points out in Happy: Why More or Less Everything Is Absolutely Fine, “The problem with the modern conception of happiness is that it is seen as some kind of commodity. There is this fantasy that simply by believing in yourself and setting goals you can have anything. But that simply isn’t how life works. The ancients had a much better view of it. They offered an approach of not trying to control things you can’t control, and of lessening your desires and your expectations so you achieve a harmony between what you desire and what you have.”
A core part of feeling more happy is about re-wiring our minds to adjust our expectations, exercise gratitude, escape negative narratives, and live in the present moment.
But can technology help us do that?
Applications for Mental Well-Being
Many doers are asking themselves how they can leverage digital tools to contribute to human happiness.
Meditation and mindfulness are examples of practices we can use to escape the often overwhelming burden of our thoughts and ground our minds into the present. They have become increasingly democratized with the rise of meditation mobile apps, such as Headspace, Gaia, and Calm, that allow millions of people globally to use their phones to learn from experts at a very low cost.
These companies have also partnered with hospitals, airlines, athletic teams, and others that could benefit from increased access to mindfulness and meditation. The popularity of these apps continues to rise as more people recognize their necessity. The combination of mass technology and ancient wisdom is one that can lead to a transformation of the collective consciousness.
Sometimes merely reflecting on the sources of joy in our lives and practicing gratitude can contribute to better well-being. Apps such as Happier encourage users to reflect upon and share pleasant everyday moments in their daily lives. Such exercises are based on the understanding that being happy is a “skill” one can build though practice and through scientifically-proven activities, such as writing down a nice thought and sharing your positivity with the world. Many other tools such as Track Your Happiness and Happstr allow users to track their happiness, which often serves as a valuable source of data to researchers.
There is also a growing body of knowledge that tells us we can achieve happiness by helping others. This “helper’s high” is a result of our brains producing endorphins after having a positive impact on the lives of others. In many shapes and forms, technology has made it easier now more than ever to help other people no matter where they are located. From charitable donations to the rise of social impact organizations, there is an abundance of projects that leverage technology to positively impact individual lives. Platforms like GoVolunteer connect nonprofits with individuals from a variety of skill sets who are looking to gift their abilities to those in need. Kiva allows for fundraising loans that can change lives. These are just a handful of examples of a much wider positive paradigm shift.
The Future of Technology for Well-Being
There is no denying that increasingly powerful and immersive technology can be used to better or worsen the human condition. Today’s leaders will not only have to focus on their ability to use technology to solve a problem or generate greater revenue; they will have to ask themselves if their tech solutions are beneficial or detrimental to human well-being. They will also have to remember that more powerful technology does not always translate to happier users. It is also crucial that future generations be equipped with the values required to use increasingly powerful tools responsibly and ethically.
In the Education 2030 report, the Millennium Project envisions a world wherein portable intelligent devices combined with integrated systems for lifelong learning contribute to better well-being. In this vision, “continuous evaluation of individual learning processes designed to prevent people from growing unstable and/or becoming mentally ill, along with programs aimed at eliminating prejudice and hate, could bring about a more beautiful, loving world.”
There is exciting potential for technology to be leveraged to contribute to human happiness at a massive scale. Yet, technology shouldn’t consume every aspect of our lives, since a life worth living is often about balance. Sometimes, even if just for a few moments, what would make us feel happier is we disconnected from technology to begin with.
Image Credit: 13_Phunkod / Shutterstock.com Continue reading