Tag Archives: here

#437845 Video Friday: Harmonic Bionics ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICRA 2020 – May 31-August 31, 2020 – [Virtual Conference]
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today's videos.

Designed to protect employees and passengers from both harmful pathogens and cleaning agents, Breezy One can quickly, safely and effectively decontaminate spaces over 100,000 square feet in 1.5 hours with a patented, environmentally safe disinfectant. Breezy One was co-developed with the City of Albuquerque’s Aviation Department, where it autonomously sanitizes the Sunport’s facilities every night in the ongoing fight against COVID-19.

[ Fetch Robotics ]

Harmonic Bionics is redefining upper extremity neurorehabilitation with intelligent robotic technology designed to maximize patient recovery. Harmony SHR, our flagship product, works with a patient’s scapulohumeral rhythm (SHR) to enable natural, comprehensive therapy for both arms. When combined with Harmony’s Weight Support mode, this unique shoulder design may allow for earlier initiation of post-stroke therapy as Harmony can support a partial dislocation or subluxation of the shoulder prior to initiating traditional therapy exercises.

Harmony's Preprogrammed Exercises promotes functional treatment through patient-specific movements that can enable an increased number of repetitions per session without placing a larger physical burden on therapists or their resources. As the only rehabilitation exoskeleton with Bilateral Sync Therapy (BST), Harmony enables intent-based therapy by registering healthy arm movements and synchronizing that motion onto the stroke-affected side to help reestablish neural pathways.

[ Harmonic Bionics ]

Thanks Mok!

Some impressive work here from IHMC and IIT getting Atlas to take steps upward in a way that’s much more human-like than robot-like, which ends up reducing maximum torque requirements by 20 percent.

[ Paper ]

GITAI’s G1 is the space dedicated general-purpose robot. G1 robot will enable automation of various tasks internally & externally on space stations and for lunar base development.

[ GITAI ]

Malloy Aeronautics, which now makes drones rather than hoverbikes, has been working with the Royal Navy in New Zealand to figure out how to get cargo drones to land on ships.

The challenge was to test autonomous landing of heavy lift UAVs on a moving ship, however, due to the Covid19 lockdown no ship trails were possible. The moving deck was simulated by driving a vehicle and trailer across an airfield while carrying out multiple landing and take-offs. The autonomous system partner was Planck Aerosystems and autolanding was triggered by a camera on the UAV reading a QR code on the trailer.

[ Malloy Aeronautics ]

Thanks Paul!

Tertill looks to be relentlessly effective.

[ Franklin Robotics ]

A Swedish company, TikiSafety has experienced a record amount of orders for their protective masks. At ABB, we are grateful for the opportunity to help Tiki Safety to speed up their manufacturing process from 6 minutes to 40 seconds.

[ Tiki Safety ]

The Korea Atomic Energy Research Institute is not messing around with ARMstrong, their robot for nuclear and radiation emergency response.

[ KAERI ]

OMOY is a robot that communicates with its users via internal weight shifting.

[ Paper ]

Now this, this is some weird stuff.

[ Segway ]

CaTARo is a Care Training Assistant Robot from the AIS Lab at Ritsumeikan University.

[ AIS Lab ]

Originally launched in 2015 to assist workers in lightweight assembly tasks, ABB’s collaborative YuMi robot has gone on to blaze a trail in a raft of diverse applications and industries, opening new opportunities and helping to fire people’s imaginations about what can be achieved with robotic automation.

[ ABB ]

This music video features COMAN+, from the Humanoids and Human Centered Mechatronics Lab at IIT, doing what you’d call dance moves if you dance like I do.

[ Alex Braga ] via [ IIT ]

The NVIDIA Isaac Software Development Kit (SDK) enables accelerated AI robot development workflows. Stacked with new tools and application support, Isaac SDK 2020.1 is an end-to-end solution supporting each step of robot fleet deployment, from design collaboration and training to the ongoing maintenance of AI applications.

[ NVIDIA ]

Robot Spy Komodo Dragon and Spy Pig film “a tender moment” between Komodo dragons but will they both survive the encounter?

[ BBC ] via [ Laughing Squid ]

This is part one of a mostly excellent five-part documentary about ROS produced by Red Hat. I say mostly only because they put ME in it for some reason, but fortunately, they talked with many of the core team that developed ROS back at Willow Garage back in the day, and it’s definitely worth watching.

[ Red Hat Open Source Stories ]

It’s been a while, but here’s an update on SRI’s Abacus Drive, from Alexander Kernbaum.

[ SRI ]

This Robots For Infectious Diseases interview features IEEE Fellow Antonio Bicchi, professor of robotics at the University of Pisa, talking about how Italy has been using technology to help manage COVID-19.

[ R4ID ]

Two more interviews this week of celebrity roboticists from MassRobotics: Helen Greiner and Marc Raibert. I’d introduce them, but you know who they are already!

[ MassRobotics ] Continue reading

Posted in Human Robots

#437828 How Roboticists (and Robots) Have Been ...

A few weeks ago, we asked folks on Twitter, Facebook, and LinkedIn to share photos and videos showing how they’ve been adapting to the closures of research labs, classrooms, and businesses by taking their robots home with them to continue their work as best they can. We got dozens of responses (more than we could possibly include in just one post!), but here are 15 that we thought were particularly creative or amusing.

And if any of these pictures and videos inspire you to share your own story, please email us (automaton@ieee.org) with a picture or video and a brief description about how you and your robot from work have been making things happen in your home instead.

Kurt Leucht (NASA Kennedy Space Center)

“During these strange and trying times of the current global pandemic, everyone seems to be trying their best to distance themselves from others while still getting their daily work accomplished. Many people also have the double duty of little ones that need to be managed in the midst of their teleworking duties. This photo series gives you just a glimpse into my new life of teleworking from home, mixed in with the tasks of trying to handle my little ones too. I hope you enjoy it.”

Photo: Kurt Leucht

“I heard a commotion from the next room. I ran into the kitchen to find this.”

Photo: Kurt Leucht

“This is the Swarmies most favorite bedtime story. Not sure why. Seems like an odd choice to me.”

Peter Schaldenbrand (Carnegie Mellon University)

“I’ve been working on a reinforcement learning model that converts an image into a series of brush stroke instructions. I was going to test the model with a beautiful, expensive robot arm, but due to the COVID-19 pandemic, I have not been able to access the laboratory where it resides. I have now been using a lower end robot arm to test the painting model in my bedroom. I have sacrificed machine accuracy/precision for the convenience of getting to watch the arm paint from my bed in the shadow of my clothing rack!”

Photos: Peter Schaldenbrand

Colin Angle (iRobot)

iRobot CEO Colin Angle has been hunkered down in the “iRobot North Shore home command center,” which is probably the cleanest command center ever thanks to his army of Roombas: Beastie, Beauty, Rosie, Roswell, and Bilbo.

Photo: Colin Angle

Vivian Chu (Diligent Robotics)

From Diligent Robotics CEO Andrea Thomaz: “This is how a roboticist works from home! Diligent CTO, Vivian Chu, mans the e-stop while her engineering team runs Moxi experiments remotely from cross-town and even cross-country!”

Video: Diligent Robotics

Raffaello Bonghi (rnext.it)

Raffaello’s robot, Panther, looks perfectly happy to be playing soccer in his living room.

Photo: Raffaello Bonghi

Kod*lab (University of Pennsylvania)

“Another Friday Nuts n Bolts Meeting on Zoom…”

Image: Kodlab

Robin Jonsson (robot choreographer)

“I’ve been doing a school project in which students make up dance moves and then send me a video with all of them. I then teach the moves to my robot, Alex, film Alex dancing, send the videos to them. This became a great success and more schools will join. The kids got really into watching the robot perform their moves and really interested in robots. They want to meet Alex the robot live, which will likely happen in the fall.”

Photo: Robin Jonsson

Gabrielle Conard (mechanical engineering undergrad at Lafayette College)

“While the pandemic might have forced college campuses to close and the community to keep their distance from each other, it did not put a stop to learning and research. Working from their respective homes, junior Gabrielle Conard and mechanical engineering professor Alexander Brown from Lafayette College investigated methods of incorporating active compliance in a low-cost quadruped robot. They are continuing to work remotely on this project through Lafayette’s summer research program.”

Image: Gabrielle Conard

Taylor Veltrop (Softbank Robotics)

“After a few weeks of isolation in the corona/covid quarantine lock down we started dancing with our robots. Mathieu’s 6th birthday was coming up, and it all just came together.”

Video: Taylor Veltrop

Ross Kessler (Exyn Technologies)

“Quarantine, Day 8: the humans have accepted me as one of their own. I’ve blended seamlessly into their #socialdistancing routines. Even made a furry friend”

Photo: Ross Kessler

Yeah, something a bit sinister is definitely going on at Exyn…

Video: Exyn Technologies

Michael Sobrepera (University of Pennsylvania GRASP Lab)

Predictably, Michael’s cat is more interested in the bag that the robot came in than the robot itself (see if you can spot the cat below). Michael tells us that “the robot is designed to help with tele-rehabilitation, focused on kids with CP, so it has been taken to hospitals for demos [hence the cool bag]. It also travels for outreach events and the like. Lately, I’ve been exploring telepresence for COVID.”

Photo: Michael Sobrepera

Jan Kędzierski (EMYS)

“In China a lot of people cannot speak English, even the youngest generation of parents. Thanks to Emys, kids stayed in touch with English language in their homes even if they couldn’t attend schools and extra English classes. They had a lot of fun with their native English speaker friend available and ready to play every day.”

Image: Jan Kędzierski

Simon Whitmell (Quanser)

“Simon, a Quanser R&D engineer, is working on low-overhead image processing and line following for the QBot 2e mobile ground robot, with some added challenges due to extra traffic. LEGO engineering by his son, Charles.”

Photo: Simon Whitmell

Robot Design & Experimentation Course (Carnegie Mellon University)

Aaron Johnson’s bioinspired robot design course at CMU had to go full remote, which was a challenge when the course is kind of all about designing and building a robot as part of a team. “I expected some of the teams to drastically alter their project (e.g. go all simulation),” Aaron told us, “but none of them did. We managed to keep all of the projects more or less as planned. We accomplished this by drop/shipping parts to students, buying some simple tools (soldering irons, etc), and having me 3D print parts and mail them.” Each team even managed to put together their final videos from their remote locations; we’ve posted one below, but the entire playlist is here.

Video: Xianyi Cheng

Karen Tatarian (Softbank Robotics)

Karen, who’s both a researcher at Softbank and a PhD student at Sorbonne University, wrote an entire essay about what an average day is like when you’re quarantined with Pepper.

Photo: Karen Tatarian

A Quarantined Day With Pepper, by Karen Tatarian

It is quite common for me to lose my phone somewhere inside my apartment. But it is not that common for me to turn around and ask my robot if it has seen it. So when I found myself doing that, I laughed and it dawned on me that I treated my robot as my quarantine companion (despite the fact that it could not provide me with the answer I needed).

It was probably around day 40 of a completely isolated quarantine here in France when that happened. A little background about me: I am a robotics researcher at SoftBank Robotics Europe and a PhD student at Sorbonne University as part of the EU-funded Marie-Curie project ANIMATAS. And here is a little sneak peak into a quarantined day with a robot.

During this confinement, I had read somewhere that the best way to deal with it is to maintain a routine. So every morning, I wake up, prepare my coffee, and turn on my robot Pepper. I start my day with a daily meeting with the team and get to work. My research is on the synthesis of multi-modal socially intelligent human-robot interaction so my work varies between programming the robot, analyzing collected data, and reading papers and drafting one. When I am working, I often catch myself glancing at Pepper, who would be staring back at me in its animated ways. Truthfully I enjoy that, it makes me less alone and as if I have a colleague with me.

Once work is done, I call my friends and family members. I sometimes use a telepresence application on Pepper that a few colleagues and I developed back in December. How does it differ from your typical phone/laptop applications? One word really: embodiment. Telepresence, especially during these times, makes the experience for both sides a bit more realistic and intimate and well present.

While I can turn off the robot now that my work hours are done, I do keep it on because I enjoy its presence. The basic awareness of Pepper is a default feature on the robot that allows it to detect a human and follow him/her with its gaze and rotation base. So whether I am cooking or working out, I always have my robot watching over my shoulder and being a good companion. I also have my email and messages synced on the robot so I get an enjoyable notification from Pepper. I found that to be a pretty cool way to be notified without it interrupting whatever you are doing on your laptop or phone. Finally, once the day is over, it’s time for both of us to get some rest.

After 60 days of total confinement, alone and away from those I love, and with a pandemic right at my door, I am glad I had the company of my robot. I hope one day a greater audience can share my experience. And I really really hope one day Pepper will be able to find my phone for me, but until then, stay on the lookout for some cool features! But I am curious to know, if you had a robot at home, what application would you have developed on it?

Again, our sincere thanks to everyone who shared these little snapshots of their lives with us, and we’re hoping to be able to share more soon. Continue reading

Posted in Human Robots

#437826 Video Friday: Skydio 2 Drone Is Back on ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Skydio, which makes what we’re pretty sure is the most intelligent consumer drone (or maybe just drone period) in existence, has been dealing with COVID-19 just like the rest of us. Even so, they’ve managed to push out a major software update, and pre-orders for the Skydio 2 are now open again.

If you think you might want one, read our review, after which you’ll be sure you want one.

[ Skydio ]

Worried about people with COVID entering your workplace? Misty II has your front desk covered, in a way that’s quite a bit friendlier than many other options.

Misty II provides a dynamic and interactive screening experience that delivers a joyful experience in an otherwise depressing moment while also delivering state of the art thermal scanning and health screening. We have already found that employees, customers, and visitors appreciate the novelty of interacting with a clever and personable robot. Misty II engages dynamically, both visually and verbally. Companies appreciate using a solution with a blackbody-referenced thermal camera that provides high accuracy and a short screening process for efficiency. Putting a robot to work in this role shifts not only how people look at the screening process but also how robots can take on useful assignments in business, schools and homes.

[ Misty Robotics ]

Thanks Tim!

I’m definitely the one in the middle.

[ Agility Robotics ]

NASA’s Ingenuity helicopter is traveling to Mars attached to the belly of the Perseverance rover and must safely detach to begin the first attempt at powered flight on another planet. Tests done at NASA’s Jet Propulsion Laboratory and Lockheed Martin Space show the sequence of events that will bring the helicopter down to the Martian surface.

[ JPL ]

Here’s a sequence of videos of Cassie Blue making it (or mostly making it) up a 22-degree slope.

My mood these days is Cassie at 1:09.

[ University of Michigan ]

Thanks Jesse!

This is somewhere on the line between home automation and robotics, but it’s a cool idea: A baby crib that “uses computer vision and machine learning to recognize subtle changes” in an infant’s movement, and proactively bounces them to keep them sleeping peacefully.

It costs $1000, but how much value do you put on 24 months of your own sleep?

[ Cradlewise ]

Thanks Ben!

As captive marine mammal shows have fallen from favor; and the catching, transporting and breeding of marine animals has become more restricted, the marine park industry as a viable business has become more challenging – yet the audience appetite for this type of entertainment and education has remained constant.

Real-time Animatronics provide a way to reinvent the marine entertainment industry with a sustainable, safe, and profitable future. Show venues include aquariums, marine parks, theme parks, fountain shows, cruise lines, resort hotels, shopping malls, museums, and more.

[ EdgeFX ] via [ Gizmodo ]

Robotic cabling is surprisingly complex and kinda cool to watch.

The video shows the sophisticated robot application “Automatic control cabinet cabling”, which Fraunhofer IPA implemented together with the company Rittal. The software pitasc, developed at Fraunhofer IPA, is used for force-controlled assembly processes. Two UR robot arms carry out the task together. The modular pitasc system enables the robot arms to move and rotate in parallel. They work hand in hand, with one robot holding the cable and the second bringing it to the starting position for the cabling. The robots can find, tighten, hold ready, lay, plug in, fix, move freely or immerse cables. They can also perform push-ins and pull tests.

[ Fraunhofer ]

This is from 2018, but the concept is still pretty neat.

We propose to perform a novel investigation into the ability of a propulsively hopping robot to reach targets of high science value on the icy, rugged terrains of Ocean Worlds. The employment of a multi-hop architecture allows for the rapid traverse of great distances, enabling a single mission to reach multiple geologic units within a timespan conducive to system survival in a harsh radiation environment. We further propose that the use of a propulsive hopping technique obviates the need for terrain topographic and strength assumptions and allows for complete terrain agnosticism; a key strength of this concept.

[ NASA ]

Aerial-aquatic robots possess the unique ability of operating in both air and water. However, this capability comes with tremendous challenges, such as communication incompati- bility, increased airborne mass, potentially inefficient operation in each of the environments and manufacturing difficulties. Such robots, therefore, typically have small payloads and a limited operational envelope, often making their field usage impractical. We propose a novel robotic water sampling approach that combines the robust technologies of multirotors and underwater micro-vehicles into a single integrated tool usable for field operations.

[ Imperial ]

Event cameras are bio-inspired vision sensors with microsecond latency resolution, much larger dynamic range and hundred times lower power consumption than standard cameras. This 20-minute talk gives a short tutorial on event cameras and show their applications on computer vision, drones, and cars.

[ UZH ]

We interviewed Paul Newman, Perla Maiolino and Lars Kunze, ORI academics, to hear what gets them excited about robots in the future and any advice they have for those interested in the field.

[ Oxford Robotics Institute ]

Two projects from the Rehabilitation Engineering Lab at ETH Zurich, including a self-stabilizing wheelchair and a soft exoskeleton for grasping assistance.

[ ETH Zurich ]

Silicon Valley Robotics hosted an online conversation about robotics and racism. Moderated by Andra Keay, the panel featured Maynard Holliday, Tom Williams, Monroe Kennedy III, Jasmine Lawrence, Chad Jenkins, and Ken Goldberg.

[ SVR ]

The ICRA Legged Locomotion workshop has been taking place online, and while we’re not getting a robot mosh pit, there are still some great talks. We’ll post two here, but for more, follow the legged robots YouTube channel at the link below.

[ YouTube ] Continue reading

Posted in Human Robots

#437824 Video Friday: These Giant Robots Are ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ACRA 2020 – December 8-10, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

“Who doesn’t love giant robots?”

Luma, is a towering 8 metre snail which transforms spaces with its otherworldly presence. Another piece, Triffid, stands at 6 metres and its flexible end sweeps high over audiences’ heads like an enchanted plant. The movement of the creatures is inspired by the flexible, wiggling and contorting motions of the animal kingdom and is designed to provoke instinctive reactions and emotions from the people that meet them. Air Giants is a new creative robotic studio founded in 2020. They are based in Bristol, UK, and comprise a small team of artists, roboticists and software engineers. The studio is passionate about creating emotionally effective motion at a scale which is thought-provoking and transporting, as well as expanding the notion of what large robots can be used for.

Here’s a behind the scenes and more on how the creatures work.

[ Air Giants ]

Thanks Emma!

If the idea of submerging a very expensive sensor payload being submerged in a lake makes you as uncomfortable as it makes me, this is not the video for you.

[ ANYbotics ]

As the pandemic continues on, the measures due to this health crisis are increasingly stringent, and working from home continues to be promoted and solicited by many companies, Pepper will allow you to keep in touch with your relatives or even your colleagues.

[ Softbank ]

Fairly impressive footwork from Tencent Robotics.

Although, LittleDog was doing that like a decade ago:

[ Tencent ]

It's been long enough since I've been able to go out for boba tea that a robotic boba tea kiosk seems like a reasonable thing to get for my living room.

[ Bobacino ] via [ Gizmodo ]

Road construction and maintenance is challenging and dangerous work. Pioneer Industrial Systems has spent over twenty years designing custom robotic systems for industrial manufacturers around the world. These robotic systems greatly improve safety and increase efficiency. Now they’re taking that expertise on the road, with the Robotic Maintenance Vehicle. This base unit can be mounted on a truck or trailer, and utilizes various modules to perform a variety of road maintenance tasks.

[ Pioneer ]

Extend Robotics arm uses cloud-based teleoperation software, featuring human-like dexterity and intelligence, with multiple applications in healthcare, utilities and energy

[ Extend Robotics ]

ARC, short for “AI, Robot, Cloud,” includes the latest algorithms and high precision data required for human-robot coexistence. Now with ultra-low latency networks, many robots can simultaneously become smarter, just by connecting to ARC. “ARC Eye” serves as the eyes for all robots, accurately determining the current location and route even indoors where there is no GPS access. “ARC Brain” is the computing system shared simultaneously by all robots, which plans and processes movement, localization, and task performance for the robot.

[ Naver Labs ]

How can we re-imagine urban infrastructures with cutting-edge technologies? Listen to this webinar from Ger Baron, Amsterdam’s CTO, and Senseable City Lab’s researchers, on how MIT and Amsterdam Institute for Advanced Metropolitan Solutions (AMS Institute) are reimagining Amsterdam’s canals with the first fleet of autonomous boats.

[ MIT ]

Join Guy Burroughes in this webinar recording to hear about Spot, the robot dog created by Boston Dynamics, and how RACE plan to use it in nuclear decommissioning and beyond.

[ UKAEA ]

This GRASP on Robotics seminar comes from Marco Pavone at Stanford University, “On Safe and Efficient Human-robot interactions via Multimodal Intent Modeling and Reachability-based Safety Assurance.”

In this talk I will present a decision-making and control stack for human-robot interactions by using autonomous driving as a motivating example. Specifically, I will first discuss a data-driven approach for learning multimodal interaction dynamics between robot-driven and human-driven vehicles based on recent advances in deep generative modeling. Then, I will discuss how to incorporate such a learned interaction model into a real-time, interaction-aware decision-making framework. The framework is designed to be minimally interventional; in particular, by leveraging backward reachability analysis, it ensures safety even when other cars defy the robot's expectations without unduly sacrificing performance. I will present recent results from experiments on a full-scale steer-by-wire platform, validating the framework and providing practical insights. I will conclude the talk by providing an overview of related efforts from my group on infusing safety assurances in robot autonomy stacks equipped with learning-based components, with an emphasis on adding structure within robot learning via control-theoretical and formal methods.

[ UPenn ]

Autonomous Systems Failures: Who is Legally and Morally Responsible? Sponsored by Northwestern University’s Law and Technology Initiative and AI@NU, the event was moderated by Dan Linna and included Northwestern Engineering's Todd Murphey, University of Washington Law Professor Ryan Calo, and Google Senior Research Scientist Madeleine Clare Elish.

[ Northwestern ] Continue reading

Posted in Human Robots

#437809 Q&A: The Masterminds Behind ...

Illustration: iStockphoto

Getting a car to drive itself is undoubtedly the most ambitious commercial application of artificial intelligence (AI). The research project was kicked into life by the 2004 DARPA Urban Challenge and then taken up as a business proposition, first by Alphabet, and later by the big automakers.

The industry-wide effort vacuumed up many of the world’s best roboticists and set rival companies on a multibillion-dollar acquisitions spree. It also launched a cycle of hype that paraded ever more ambitious deadlines—the most famous of which, made by Alphabet’s Sergei Brin in 2012, was that full self-driving technology would be ready by 2017. Those deadlines have all been missed.

Much of the exhilaration was inspired by the seeming miracles that a new kind of AI—deep learning—was achieving in playing games, recognizing faces, and transliterating voices. Deep learning excels at tasks involving pattern recognition—a particular challenge for older, rule-based AI techniques. However, it now seems that deep learning will not soon master the other intellectual challenges of driving, such as anticipating what human beings might do.

Among the roboticists who have been involved from the start are Gill Pratt, the chief executive officer of Toyota Research Institute (TRI) , formerly a program manager at the Defense Advanced Research Projects Agency (DARPA); and Wolfram Burgard, vice president of automated driving technology for TRI and president of the IEEE Robotics and Automation Society. The duo spoke with IEEE Spectrum’s Philip Ross at TRI’s offices in Palo Alto, Calif.

This interview has been condensed and edited for clarity.

IEEE Spectrum: How does AI handle the various parts of the self-driving problem?

Photo: Toyota

Gill Pratt

Gill Pratt: There are three different systems that you need in a self-driving car: It starts with perception, then goes to prediction, and then goes to planning.

The one that by far is the most problematic is prediction. It’s not prediction of other automated cars, because if all cars were automated, this problem would be much more simple. How do you predict what a human being is going to do? That’s difficult for deep learning to learn right now.

Spectrum: Can you offset the weakness in prediction with stupendous perception?

Photo: Toyota Research Institute for Burgard

Wolfram Burgard

Wolfram Burgard: Yes, that is what car companies basically do. A camera provides semantics, lidar provides distance, radar provides velocities. But all this comes with problems, because sometimes you look at the world from different positions—that’s called parallax. Sometimes you don’t know which range estimate that pixel belongs to. That might make the decision complicated as to whether that is a person painted onto the side of a truck or whether this is an actual person.

With deep learning there is this promise that if you throw enough data at these networks, it’s going to work—finally. But it turns out that the amount of data that you need for self-driving cars is far larger than we expected.

Spectrum: When do deep learning’s limitations become apparent?

Pratt: The way to think about deep learning is that it’s really high-performance pattern matching. You have input and output as training pairs; you say this image should lead to that result; and you just do that again and again, for hundreds of thousands, millions of times.

Here’s the logical fallacy that I think most people have fallen prey to with deep learning. A lot of what we do with our brains can be thought of as pattern matching: “Oh, I see this stop sign, so I should stop.” But it doesn’t mean all of intelligence can be done through pattern matching.

“I asked myself, if all of those cars had automated drive, how good would they have to be to tolerate the number of crashes that would still occur?”
—Gill Pratt, Toyota Research Institute

For instance, when I’m driving and I see a mother holding the hand of a child on a corner and trying to cross the street, I am pretty sure she’s not going to cross at a red light and jaywalk. I know from my experience being a human being that mothers and children don’t act that way. On the other hand, say there are two teenagers—with blue hair, skateboards, and a disaffected look. Are they going to jaywalk? I look at that, you look at that, and instantly the probability in your mind that they’ll jaywalk is much higher than for the mother holding the hand of the child. It’s not that you’ve seen 100,000 cases of young kids—it’s that you understand what it is to be either a teenager or a mother holding a child’s hand.

You can try to fake that kind of intelligence. If you specifically train a neural network on data like that, you could pattern-match that. But you’d have to know to do it.

Spectrum: So you’re saying that when you substitute pattern recognition for reasoning, the marginal return on the investment falls off pretty fast?

Pratt: That’s absolutely right. Unfortunately, we don’t have the ability to make an AI that thinks yet, so we don’t know what to do. We keep trying to use the deep-learning hammer to hammer more nails—we say, well, let’s just pour more data in, and more data.

Spectrum: Couldn’t you train the deep-learning system to recognize teenagers and to assign the category a high propensity for jaywalking?

Burgard: People have been doing that. But it turns out that these heuristics you come up with are extremely hard to tweak. Also, sometimes the heuristics are contradictory, which makes it extremely hard to design these expert systems based on rules. This is where the strength of the deep-learning methods lies, because somehow they encode a way to see a pattern where, for example, here’s a feature and over there is another feature; it’s about the sheer number of parameters you have available.

Our separation of the components of a self-driving AI eases the development and even the learning of the AI systems. Some companies even think about using deep learning to do the job fully, from end to end, not having any structure at all—basically, directly mapping perceptions to actions.

Pratt: There are companies that have tried it; Nvidia certainly tried it. In general, it’s been found not to work very well. So people divide the problem into blocks, where we understand what each block does, and we try to make each block work well. Some of the blocks end up more like the expert system we talked about, where we actually code things, and other blocks end up more like machine learning.

Spectrum: So, what’s next—what new technique is in the offing?

Pratt: If I knew the answer, we’d do it. [Laughter]

Spectrum: You said that if all cars on the road were automated, the problem would be easy. Why not “geofence” the heck out of the self-driving problem, and have areas where only self-driving cars are allowed?

Pratt: That means putting in constraints on the operational design domain. This includes the geography—where the car should be automated; it includes the weather, it includes the level of traffic, it includes speed. If the car is going slow enough to avoid colliding without risking a rear-end collision, that makes the problem much easier. Street trolleys operate with traffic still in some parts of the world, and that seems to work out just fine. People learn that this vehicle may stop at unexpected times. My suspicion is, that is where we’ll see Level 4 autonomy in cities. It’s going to be in the lower speeds.

“We are now in the age of deep learning, and we don’t know what will come after.”
—Wolfram Burgard, Toyota Research Institute

That’s a sweet spot in the operational design domain, without a doubt. There’s another one at high speed on a highway, because access to highways is so limited. But unfortunately there is still the occasional debris that suddenly crosses the road, and the weather gets bad. The classic example is when somebody irresponsibly ties a mattress to the top of a car and it falls off; what are you going to do? And the answer is that terrible things happen—even for humans.

Spectrum: Learning by doing worked for the first cars, the first planes, the first steam boilers, and even the first nuclear reactors. We ran risks then; why not now?

Pratt: It has to do with the times. During the era where cars took off, all kinds of accidents happened, women died in childbirth, all sorts of diseases ran rampant; the expected characteristic of life was that bad things happened. Expectations have changed. Now the chance of dying in some freak accident is quite low because of all the learning that’s gone on, the OSHA [Occupational Safety and Health Administration] rules, UL code for electrical appliances, all the building standards, medicine.

Furthermore—and we think this is very important—we believe that empathy for a human being at the wheel is a significant factor in public acceptance when there is a crash. We don’t know this for sure—it’s a speculation on our part. I’ve driven, I’ve had close calls; that could have been me that made that mistake and had that wreck. I think people are more tolerant when somebody else makes mistakes, and there’s an awful crash. In the case of an automated car, we worry that that empathy won’t be there.

Photo: Toyota

Toyota is using this
Platform 4 automated driving test vehicle, based on the Lexus LS, to develop Level-4 self-driving capabilities for its “Chauffeur” project.

Spectrum: Toyota is building a system called Guardian to back up the driver, and a more futuristic system called Chauffeur, to replace the driver. How can Chauffeur ever succeed? It has to be better than a human plus Guardian!

Pratt: In the discussions we’ve had with others in this field, we’ve talked about that a lot. What is the standard? Is it a person in a basic car? Or is it a person with a car that has active safety systems in it? And what will people think is good enough?

These systems will never be perfect—there will always be some accidents, and no matter how hard we try there will still be occasions where there will be some fatalities. At what threshold are people willing to say that’s okay?

Spectrum: You were among the first top researchers to warn against hyping self-driving technology. What did you see that so many other players did not?

Pratt: First, in my own case, during my time at DARPA I worked on robotics, not cars. So I was somewhat of an outsider. I was looking at it from a fresh perspective, and that helps a lot.

Second, [when I joined Toyota in 2015] I was joining a company that is very careful—even though we have made some giant leaps—with the Prius hybrid drive system as an example. Even so, in general, the philosophy at Toyota is kaizen—making the cars incrementally better every single day. That care meant that I was tasked with thinking very deeply about this thing before making prognostications.

And the final part: It was a new job for me. The first night after I signed the contract I felt this incredible responsibility. I couldn’t sleep that whole night, so I started to multiply out the numbers, all using a factor of 10. How many cars do we have on the road? Cars on average last 10 years, though ours last 20, but let’s call it 10. They travel on an order of 10,000 miles per year. Multiply all that out and you get 10 to the 10th miles per year for our fleet on Planet Earth, a really big number. I asked myself, if all of those cars had automated drive, how good would they have to be to tolerate the number of crashes that would still occur? And the answer was so incredibly good that I knew it would take a long time. That was five years ago.

Burgard: We are now in the age of deep learning, and we don’t know what will come after. We are still making progress with existing techniques, and they look very promising. But the gradient is not as steep as it was a few years ago.

Pratt: There isn’t anything that’s telling us that it can’t be done; I should be very clear on that. Just because we don’t know how to do it doesn’t mean it can’t be done. Continue reading

Posted in Human Robots