Tag Archives: help
#432333 Pipe-crawling robot will help ...
A pair of autonomous robots developed by Carnegie Mellon University's Robotics Institute will soon be driving through miles of pipes at the U.S. Department of Energy's former uranium enrichment plant in Piketon, Ohio, to identify uranium deposits on pipe walls. Continue reading
#432331 $10 million XPRIZE Aims for Robot ...
Ever wished you could be in two places at the same time? The XPRIZE Foundation wants to make that a reality with a $10 million competition to build robot avatars that can be controlled from at least 100 kilometers away.
The competition was announced by XPRIZE founder Peter Diamandis at the SXSW conference in Austin last week, with an ambitious timeline of awarding the grand prize by October 2021. Teams have until October 31st to sign up, and they need to submit detailed plans to a panel of judges by the end of next January.
The prize, sponsored by Japanese airline ANA, has given contestants little guidance on how they expect them to solve the challenge other than saying their solutions need to let users see, hear, feel, and interact with the robot’s environment as well as the people in it.
XPRIZE has also not revealed details of what kind of tasks the robots will be expected to complete, though they’ve said tasks will range from “simple” to “complex,” and it should be possible for an untrained operator to use them.
That’s a hugely ambitious goal that’s likely to require teams to combine multiple emerging technologies, from humanoid robotics to virtual reality high-bandwidth communications and high-resolution haptics.
If any of the teams succeed, the technology could have myriad applications, from letting emergency responders enter areas too hazardous for humans to helping people care for relatives who live far away or even just allowing tourists to visit other parts of the world without the jet lag.
“Our ability to physically experience another geographic location, or to provide on-the-ground assistance where needed, is limited by cost and the simple availability of time,” Diamandis said in a statement.
“The ANA Avatar XPRIZE can enable creation of an audacious alternative that could bypass these limitations, allowing us to more rapidly and efficiently distribute skill and hands-on expertise to distant geographic locations where they are needed, bridging the gap between distance, time, and cultures,” he added.
Interestingly, the technology may help bypass an enduring hand break on the widespread use of robotics: autonomy. By having a human in the loop, you don’t need nearly as much artificial intelligence analyzing sensory input and making decisions.
Robotics software is doing a lot more than just high-level planning and strategizing, though. While a human moves their limbs instinctively without consciously thinking about which muscles to activate, controlling and coordinating a robot’s components requires sophisticated algorithms.
The DARPA Robotics Challenge demonstrated just how hard it was to get human-shaped robots to do tasks humans would find simple, such as opening doors, climbing steps, and even just walking. These robots were supposedly semi-autonomous, but on many tasks they were essentially tele-operated, and the results suggested autonomy isn’t the only problem.
There’s also the issue of powering these devices. You may have noticed that in a lot of the slick web videos of humanoid robots doing cool things, the machine is attached to the roof by a large cable. That’s because they suck up huge amounts of power.
Possibly the most advanced humanoid robot—Boston Dynamics’ Atlas—has a battery, but it can only run for about an hour. That might be fine for some applications, but you don’t want it running out of juice halfway through rescuing someone from a mine shaft.
When it comes to the link between the robot and its human user, some of the technology is probably not that much of a stretch. Virtual reality headsets can create immersive audio-visual environments, and a number of companies are working on advanced haptic suits that will let people “feel” virtual environments.
Motion tracking technology may be more complicated. While even consumer-grade devices can track peoples’ movements with high accuracy, you will probably need to don something more like an exoskeleton that can both pick up motion and provide mechanical resistance, so that when the robot bumps into an immovable object, the user stops dead too.
How hard all of this will be is also dependent on how the competition ultimately defines subjective terms like “feel” and “interact.” Will the user need to be able to feel a gentle breeze on the robot’s cheek or be able to paint a watercolor? Or will simply having the ability to distinguish a hard object from a soft one or shake someone’s hand be enough?
Whatever the fidelity they decide on, the approach will require huge amounts of sensory and control data to be transmitted over large distances, most likely wirelessly, in a way that’s fast and reliable enough that there’s no lag or interruptions. Fortunately 5G is launching this year, with a speed of 10 gigabits per second and very low latency, so this problem should be solved by 2021.
And it’s worth remembering there have already been some tentative attempts at building robotic avatars. Telepresence robots have solved the seeing, hearing, and some of the interacting problems, and MIT has already used virtual reality to control robots to carry out complex manipulation tasks.
South Korean company Hankook Mirae Technology has also unveiled a 13-foot-tall robotic suit straight out of a sci-fi movie that appears to have made some headway with the motion tracking problem, albeit with a human inside the robot. Toyota’s T-HR3 does the same, but with the human controlling the robot from a “Master Maneuvering System” that marries motion tracking with VR.
Combining all of these capabilities into a single machine will certainly prove challenging. But if one of the teams pulls it off, you may be able to tick off trips to the Seven Wonders of the World without ever leaving your house.
Image Credit: ANA Avatar XPRIZE Continue reading
#432236 Why Hasn’t AI Mastered Language ...
In the myth about the Tower of Babel, people conspired to build a city and tower that would reach heaven. Their creator observed, “And now nothing will be restrained from them, which they have imagined to do.” According to the myth, God thwarted this effort by creating diverse languages so that they could no longer collaborate.
In our modern times, we’re experiencing a state of unprecedented connectivity thanks to technology. However, we’re still living under the shadow of the Tower of Babel. Language remains a barrier in business and marketing. Even though technological devices can quickly and easily connect, humans from different parts of the world often can’t.
Translation agencies step in, making presentations, contracts, outsourcing instructions, and advertisements comprehensible to all intended recipients. Some agencies also offer “localization” expertise. For instance, if a company is marketing in Quebec, the advertisements need to be in Québécois French, not European French. Risk-averse companies may be reluctant to invest in these translations. Consequently, these ventures haven’t achieved full market penetration.
Global markets are waiting, but AI-powered language translation isn’t ready yet, despite recent advancements in natural language processing and sentiment analysis. AI still has difficulties processing requests in one language, without the additional complications of translation. In November 2016, Google added a neural network to its translation tool. However, some of its translations are still socially and grammatically odd. I spoke to technologists and a language professor to find out why.
“To Google’s credit, they made a pretty massive improvement that appeared almost overnight. You know, I don’t use it as much. I will say this. Language is hard,” said Michael Housman, chief data science officer at RapportBoost.AI and faculty member of Singularity University.
He explained that the ideal scenario for machine learning and artificial intelligence is something with fixed rules and a clear-cut measure of success or failure. He named chess as an obvious example, and noted machines were able to beat the best human Go player. This happened faster than anyone anticipated because of the game’s very clear rules and limited set of moves.
Housman elaborated, “Language is almost the opposite of that. There aren’t as clearly-cut and defined rules. The conversation can go in an infinite number of different directions. And then of course, you need labeled data. You need to tell the machine to do it right or wrong.”
Housman noted that it’s inherently difficult to assign these informative labels. “Two translators won’t even agree on whether it was translated properly or not,” he said. “Language is kind of the wild west, in terms of data.”
Google’s technology is now able to consider the entirety of a sentence, as opposed to merely translating individual words. Still, the glitches linger. I asked Dr. Jorge Majfud, Associate Professor of Spanish, Latin American Literature, and International Studies at Jacksonville University, to explain why consistently accurate language translation has thus far eluded AI.
He replied, “The problem is that considering the ‘entire’ sentence is still not enough. The same way the meaning of a word depends on the rest of the sentence (more in English than in Spanish), the meaning of a sentence depends on the rest of the paragraph and the rest of the text, as the meaning of a text depends on a larger context called culture, speaker intentions, etc.”
He noted that sarcasm and irony only make sense within this widened context. Similarly, idioms can be problematic for automated translations.
“Google translation is a good tool if you use it as a tool, that is, not to substitute human learning or understanding,” he said, before offering examples of mistranslations that could occur.
“Months ago, I went to buy a drill at Home Depot and I read a sign under a machine: ‘Saw machine.’ Right below it, the Spanish translation: ‘La máquina vió,’ which means, ‘The machine did see it.’ Saw, not as a noun but as a verb in the preterit form,” he explained.
Dr. Majfud warned, “We should be aware of the fragility of their ‘interpretation.’ Because to translate is basically to interpret, not just an idea but a feeling. Human feelings and ideas that only humans can understand—and sometimes not even we, humans, understand other humans.”
He noted that cultures, gender, and even age can pose barriers to this understanding and also contended that an over-reliance on technology is leading to our cultural and political decline. Dr. Majfud mentioned that Argentinean writer Julio Cortázar used to refer to dictionaries as “cemeteries.” He suggested that automatic translators could be called “zombies.”
Erik Cambria is an academic AI researcher and assistant professor at Nanyang Technological University in Singapore. He mostly focuses on natural language processing, which is at the core of AI-powered language translation. Like Dr. Majfud, he sees the complexity and associated risks. “There are so many things that we unconsciously do when we read a piece of text,” he told me. Reading comprehension requires multiple interrelated tasks, which haven’t been accounted for in past attempts to automate translation.
Cambria continued, “The biggest issue with machine translation today is that we tend to go from the syntactic form of a sentence in the input language to the syntactic form of that sentence in the target language. That’s not what we humans do. We first decode the meaning of the sentence in the input language and then we encode that meaning into the target language.”
Additionally, there are cultural risks involved with these translations. Dr. Ramesh Srinivasan, Director of UCLA’s Digital Cultures Lab, said that new technological tools sometimes reflect underlying biases.
“There tend to be two parameters that shape how we design ‘intelligent systems.’ One is the values and you might say biases of those that create the systems. And the second is the world if you will that they learn from,” he told me. “If you build AI systems that reflect the biases of their creators and of the world more largely, you get some, occasionally, spectacular failures.”
Dr. Srinivasan said translation tools should be transparent about their capabilities and limitations. He said, “You know, the idea that a single system can take languages that I believe are very diverse semantically and syntactically from one another and claim to unite them or universalize them, or essentially make them sort of a singular entity, it’s a misnomer, right?”
Mary Cochran, co-founder of Launching Labs Marketing, sees the commercial upside. She mentioned that listings in online marketplaces such as Amazon could potentially be auto-translated and optimized for buyers in other countries.
She said, “I believe that we’re just at the tip of the iceberg, so to speak, with what AI can do with marketing. And with better translation, and more globalization around the world, AI can’t help but lead to exploding markets.”
Image Credit: igor kisselev / Shutterstock.com Continue reading
#431904 ARMAR-6 helps maintenance staff in ...
This smart humanoid robot by grocery company Ocado will soon help humans with menial tasks in grocery warehouses.
#431851 Bend it like Kengoro and Kenshiro
These Japanese humanoids can replicate flexible human-like movement during physical workouts like push-ups, crunches, stretches and other whole-body exercises, to help researchers better understand how humans move during athletic sports, aid in the development of artificial limbs and whole bodies, … Continue reading