Tag Archives: head
#437577 A Swarm of Cyborg Cockroaches That Lives ...
Digital Nature Group at the University of Tsukuba in Japan is working towards a “post ubiquitous computing era consisting of seamless combination of computational resources and non-computational resources.” By “non-computational resources,” they mean leveraging the natural world, which for better or worse includes insects.
At small scales, the capabilities of insects far exceed the capabilities of robots. I get that. And I get that turning cockroaches into an army of insect cyborgs could be useful in a variety of ways. But what makes me fundamentally uncomfortable is the idea that “in the future, they’ll appear out of nowhere without us recognizing it, fulfilling their tasks and then hiding.” In other words, you’ll have cyborg cockroaches hiding all over your house, all the time.
Warning: This article contains video of cockroaches being modified with cybernetic implants that some people may find upsetting.
Remote controlling cockroaches isn’t a new idea, and it’s a fairly simple one. By stimulating the left or right antenna nerves of the cockroach, you can make it think that it’s running into something, and get it to turn in the opposite direction. Add wireless connectivity, some fiducial markers, an overhead camera system, and a bunch of cyborg cockroaches, and you have a resilient swarm that can collaborate on tasks. The researchers suggest that the swarm could be used as a display (by making each cockroach into a pixel), to transport objects, or to draw things. There’s also some mention of “input or haptic interfaces or an audio device,” which frankly sounds horrible.
The reason to use cockroaches is that you can take advantage of their impressive ruggedness, efficiency, high power to weight ratio, and mobility. They can also feed themselves, meaning that whenever you don’t need the swarm to perform some task for you, you can deactivate the control system and let them scurry off to find crumbs in dark places.
There are many other swarm robotic platforms that can perform what you’re seeing these cyborg roaches do, but according to the researchers, the reason to use cockroaches is that you can take advantage of their impressive ruggedness, efficiency, high power to weight ratio, and mobility. They’re a lot messier (yay biology!), but they can also feed themselves, meaning that whenever you don’t need the swarm to perform some task for you, you can deactivate the control system and let them scurry off to find crumbs in dark places. And when you need them again, turn the control system on and experience the nightmare of your cyborg cockroach swarm reassembling itself from all over your house.
While we’re on the subject of cockroach hacking, we would be doing you a disservice if we didn’t share some of project leader Yuga Tsukuda’s other projects. Here’s a cockroach-powered clock, about which the researchers note that “it is difficult to control the cockroaches when trying to control them by electrical stimulation because they move spontaneously. However, by cutting off the head and removing the brain, they do not move spontaneously and the control by the computer becomes easy.” So, zombie cockroaches. Good then.
And if that’s not enough for you, how about this:
The researchers describe this project as an “attempt to use cockroaches for makeup by sticking them on the face.” They stick electrodes into the cockroaches to make them wiggle their legs when electrical stimulation is applied. And the peacock feathers? They “make the cockroach movement bigger, and create a cosmic mystery.” Continue reading
#437466 How Future AI Could Recognize a Kangaroo ...
AI is continuously taking on new challenges, from detecting deepfakes (which, incidentally, are also made using AI) to winning at poker to giving synthetic biology experiments a boost. These impressive feats result partly from the huge datasets the systems are trained on. That training is costly and time-consuming, and it yields AIs that can really only do one thing well.
For example, to train an AI to differentiate between a picture of a dog and one of a cat, it’s fed thousands—if not millions—of labeled images of dogs and cats. A child, on the other hand, can see a dog or cat just once or twice and remember which is which. How can we make AIs learn more like children do?
A team at the University of Waterloo in Ontario has an answer: change the way AIs are trained.
Here’s the thing about the datasets normally used to train AI—besides being huge, they’re highly specific. A picture of a dog can only be a picture of a dog, right? But what about a really small dog with a long-ish tail? That sort of dog, while still being a dog, looks more like a cat than, say, a fully-grown Golden Retriever.
It’s this concept that the Waterloo team’s methodology is based on. They described their work in a paper published on the pre-print (or non-peer-reviewed) server arXiv last month. Teaching an AI system to identify a new class of objects using just one example is what they call “one-shot learning.” But they take it a step further, focusing on “less than one shot learning,” or LO-shot learning for short.
LO-shot learning consists of a system learning to classify various categories based on a number of examples that’s smaller than the number of categories. That’s not the most straightforward concept to wrap your head around, so let’s go back to the dogs and cats example. Say you want to teach an AI to identify dogs, cats, and kangaroos. How could that possibly be done without several clear examples of each animal?
The key, the Waterloo team says, is in what they call soft labels. Unlike hard labels, which label a data point as belonging to one specific class, soft labels tease out the relationship or degree of similarity between that data point and multiple classes. In the case of an AI trained on only dogs and cats, a third class of objects, say, kangaroos, might be described as 60 percent like a dog and 40 percent like a cat (I know—kangaroos probably aren’t the best animal to have thrown in as a third category).
“Soft labels can be used to represent training sets using fewer prototypes than there are classes, achieving large increases in sample efficiency over regular (hard-label) prototypes,” the paper says. Translation? Tell an AI a kangaroo is some fraction cat and some fraction dog—both of which it’s seen and knows well—and it’ll be able to identify a kangaroo without ever having seen one.
If the soft labels are nuanced enough, you could theoretically teach an AI to identify a large number of categories based on a much smaller number of training examples.
The paper’s authors use a simple machine learning algorithm called k-nearest neighbors (kNN) to explore this idea more in depth. The algorithm operates under the assumption that similar things are most likely to exist near each other; if you go to a dog park, there will be lots of dogs but no cats or kangaroos. Go to the Australian grasslands and there’ll be kangaroos but no cats or dogs. And so on.
To train a kNN algorithm to differentiate between categories, you choose specific features to represent each category (i.e. for animals you could use weight or size as a feature). With one feature on the x-axis and the other on the y-axis, the algorithm creates a graph where data points that are similar to each other are clustered near each other. A line down the center divides the categories, and it’s pretty straightforward for the algorithm to discern which side of the line new data points should fall on.
The Waterloo team kept it simple and used plots of color on a 2D graph. Using the colors and their locations on the graphs, the team created synthetic data sets and accompanying soft labels. One of the more simplistic graphs is pictured below, along with soft labels in the form of pie charts.
Image Credit: Ilia Sucholutsky & Matthias Schonlau
When the team had the algorithm plot the boundary lines of the different colors based on these soft labels, it was able to split the plot up into more colors than the number of data points it was given in the soft labels.
While the results are encouraging, the team acknowledges that they’re just the first step, and there’s much more exploration of this concept yet to be done. The kNN algorithm is one of the least complex models out there; what might happen when LO-shot learning is applied to a far more complex algorithm? Also, to apply it, you still need to distill a larger dataset down into soft labels.
One idea the team is already working on is having other algorithms generate the soft labels for the algorithm that’s going to be trained using LO-shot; manually designing soft labels won’t always be as easy as splitting up some pie charts into different colors.
LO-shot’s potential for reducing the amount of training data needed to yield working AI systems is promising. Besides reducing the cost and the time required to train new models, the method could also make AI more accessible to industries, companies, or individuals who don’t have access to large datasets—an important step for democratization of AI.
Image Credit: pen_ash from Pixabay Continue reading
#437345 Moore’s Law Lives: Intel Says Chips ...
If you weren’t already convinced the digital world is taking over, you probably are now.
To keep the economy on life support as people stay home to stem the viral tide, we’ve been forced to digitize interactions at scale (for better and worse). Work, school, events, shopping, food, politics. The companies at the center of the digital universe are now powerhouses of the modern era—worth trillions and nearly impossible to avoid in daily life.
Six decades ago, this world didn’t exist.
A humble microchip in the early 1960s would have boasted a handful of transistors. Now, your laptop or smartphone runs on a chip with billions of transistors. As first described by Moore’s Law, this is possible because the number of transistors on a chip doubled with extreme predictability every two years for decades.
But now progress is faltering as the size of transistors approaches physical limits, and the money and time it takes to squeeze a few more onto a chip are growing. There’ve been many predictions that Moore’s Law is, finally, ending. But, perhaps also predictably, the company whose founder coined Moore’s Law begs to differ.
In a keynote presentation at this year’s Hot Chips conference, Intel’s chief architect, Raja Koduri, laid out a roadmap to increase transistor density—that is, the number of transistors you can fit on a chip—by a factor of 50.
“We firmly believe there is a lot more transistor density to come,” Koduri said. “The vision will play out over time—maybe a decade or more—but it will play out.”
Why the optimism?
Calling the end of Moore’s Law is a bit of a tradition. As Peter Lee, vice president at Microsoft Research, quipped to The Economist a few years ago, “The number of people predicting the death of Moore’s Law doubles every two years.” To date, prophets of doom have been premature, and though the pace is slowing, the industry continues to dodge death with creative engineering.
Koduri believes the trend will continue this decade and outlined the upcoming chip innovations Intel thinks can drive more gains in computing power.
Keeping It Traditional
First, engineers can further shrink today’s transistors. Fin field effect transistors (or FinFET) first hit the scene in the 2010s and have since pushed chip features past 14 and 10 nanometers (or nodes, as such size checkpoints are called). Korduri said FinFET will again triple chip density before it’s exhausted.
The Next Generation
FinFET will hand the torch off to nanowire transistors (also known as gate-all-around transistors).
Here’s how they’ll work. A transistor is made up of three basic components: the source, where current is introduced, the gate and channel, where current selectively flows, and the drain. The gate is like a light switch. It controls how much current flows through the channel. A transistor is “on” when the gate allows current to flow, and it’s off when no current flows. The smaller transistors get, the harder it is to control that current.
FinFET maintained fine control of current by surrounding the channel with a gate on three sides. Nanowire designs kick that up a notch by surrounding the channel with a gate on four sides (hence, gate-all-around). They’ve been in the works for years and are expected around 2025. Koduri said first-generation nanowire transistors will be followed by stacked nanowire transistors, and together, they’ll quadruple transistor density.
Building Up
Growing transistor density won’t only be about shrinking transistors, but also going 3D.
This is akin to how skyscrapers increase a city’s population density by adding more usable space on the same patch of land. Along those lines, Intel recently launched its Foveros chip design. Instead of laying a chip’s various “neighborhoods” next to each other in a 2D silicon sprawl, they’ve stacked them on top of each other like a layer cake. Chip stacking isn’t entirely new, but it’s advancing and being applied to general purpose CPUs, like the chips in your phone and laptop.
Koduri said 3D chip stacking will quadruple transistor density.
A Self-Fulfilling Prophecy
The technologies Koduri outlines are an evolution of the same general technology in use today. That is, we don’t need quantum computing or nanotube transistors to augment or replace silicon chips yet. Rather, as it’s done many times over the years, the chip industry will get creative with the design of its core product to realize gains for another decade.
Last year, veteran chip engineer Jim Keller, who at the time was Intel’s head of silicon engineering but has since left the company, told MIT Technology Review there are over a 100 variables driving Moore’s Law (including 3D architectures and new transistor designs). From the standpoint of pure performance, it’s also about how efficiently software uses all those transistors. Keller suggested that with some clever software tweaks “we could get chips that are a hundred times faster in 10 years.”
But whether Intel’s vision pans out as planned is far from certain.
Intel’s faced challenges recently, taking five years instead of two to move its chips from 14 nanometers to 10 nanometers. After a delay of six months for its 7-nanometer chips, it’s now a year behind schedule and lagging other makers who already offer 7-nanometer chips. This is a key point. Yes, chipmakers continue making progress, but it’s getting harder, more expensive, and timelines are stretching.
The question isn’t if Intel and competitors can cram more transistors onto a chip—which, Intel rival TSMC agrees is clearly possible—it’s how long will it take and at what cost?
That said, demand for more computing power isn’t going anywhere.
Amazon, Microsoft, Alphabet, Apple, and Facebook now make up a whopping 20 percent of the stock market’s total value. By that metric, tech is the most dominant industry in at least 70 years. And new technologies—from artificial intelligence and virtual reality to a proliferation of Internet of Things devices and self-driving cars—will demand better chips.
There’s ample motivation to push computing to its bitter limits and beyond. As is often said, Moore’s Law is a self-fulfilling prophecy, and likely whatever comes after it will be too.
Image credit: Laura Ockel / Unsplash Continue reading