Tag Archives: hands

#434643 Sensors and Machine Learning Are Giving ...

According to some scientists, humans really do have a sixth sense. There’s nothing supernatural about it: the sense of proprioception tells you about the relative positions of your limbs and the rest of your body. Close your eyes, block out all sound, and you can still use this internal “map” of your external body to locate your muscles and body parts – you have an innate sense of the distances between them, and the perception of how they’re moving, above and beyond your sense of touch.

This sense is invaluable for allowing us to coordinate our movements. In humans, the brain integrates senses including touch, heat, and the tension in muscle spindles to allow us to build up this map.

Replicating this complex sense has posed a great challenge for roboticists. We can imagine simulating the sense of sight with cameras, sound with microphones, or touch with pressure-pads. Robots with chemical sensors could be far more accurate than us in smell and taste, but building in proprioception, the robot’s sense of itself and its body, is far more difficult, and is a large part of why humanoid robots are so tricky to get right.

Simultaneous localization and mapping (SLAM) software allows robots to use their own senses to build up a picture of their surroundings and environment, but they’d need a keen sense of the position of their own bodies to interact with it. If something unexpected happens, or in dark environments where primary senses are not available, robots can struggle to keep track of their own position and orientation. For human-robot interaction, wearable robotics, and delicate applications like surgery, tiny differences can be extremely important.

Piecemeal Solutions
In the case of hard robotics, this is generally solved by using a series of strain and pressure sensors in each joint, which allow the robot to determine how its limbs are positioned. That works fine for rigid robots with a limited number of joints, but for softer, more flexible robots, this information is limited. Roboticists are faced with a dilemma: a vast, complex array of sensors for every degree of freedom in the robot’s movement, or limited skill in proprioception?

New techniques, often involving new arrays of sensory material and machine-learning algorithms to fill in the gaps, are starting to tackle this problem. Take the work of Thomas George Thuruthel and colleagues in Pisa and San Diego, who draw inspiration from the proprioception of humans. In a new paper in Science Robotics, they describe the use of soft sensors distributed through a robotic finger at random. This placement is much like the constant adaptation of sensors in humans and animals, rather than relying on feedback from a limited number of positions.

The sensors allow the soft robot to react to touch and pressure in many different locations, forming a map of itself as it contorts into complicated positions. The machine-learning algorithm serves to interpret the signals from the randomly-distributed sensors: as the finger moves around, it’s observed by a motion capture system. After training the robot’s neural network, it can associate the feedback from the sensors with the position of the finger detected in the motion-capture system, which can then be discarded. The robot observes its own motions to understand the shapes that its soft body can take, and translate them into the language of these soft sensors.

“The advantages of our approach are the ability to predict complex motions and forces that the soft robot experiences (which is difficult with traditional methods) and the fact that it can be applied to multiple types of actuators and sensors,” said Michael Tolley of the University of California San Diego. “Our method also includes redundant sensors, which improves the overall robustness of our predictions.”

The use of machine learning lets the roboticists come up with a reliable model for this complex, non-linear system of motions for the actuators, something difficult to do by directly calculating the expected motion of the soft-bot. It also resembles the human system of proprioception, built on redundant sensors that change and shift in position as we age.

In Search of a Perfect Arm
Another approach to training robots in using their bodies comes from Robert Kwiatkowski and Hod Lipson of Columbia University in New York. In their paper “Task-agnostic self-modeling machines,” also recently published in Science Robotics, they describe a new type of robotic arm.

Robotic arms and hands are getting increasingly dexterous, but training them to grasp a large array of objects and perform many different tasks can be an arduous process. It’s also an extremely valuable skill to get right: Amazon is highly interested in the perfect robot arm. Google hooked together an array of over a dozen robot arms so that they could share information about grasping new objects, in part to cut down on training time.

Individually training a robot arm to perform every individual task takes time and reduces the adaptability of your robot: either you need an ML algorithm with a huge dataset of experiences, or, even worse, you need to hard-code thousands of different motions. Kwiatkowski and Lipson attempt to overcome this by developing a robotic system that has a “strong sense of self”: a model of its own size, shape, and motions.

They do this using deep machine learning. The robot begins with no prior knowledge of its own shape or the underlying physics of its motion. It then repeats a series of a thousand random trajectories, recording the motion of its arm. Kwiatkowski and Lipson compare this to a baby in the first year of life observing the motions of its own hands and limbs, fascinated by picking up and manipulating objects.

Again, once the robot has trained itself to interpret these signals and build up a robust model of its own body, it’s ready for the next stage. Using that deep-learning algorithm, the researchers then ask the robot to design strategies to accomplish simple pick-up and place and handwriting tasks. Rather than laboriously and narrowly training itself for each individual task, limiting its abilities to a very narrow set of circumstances, the robot can now strategize how to use its arm for a much wider range of situations, with no additional task-specific training.

Damage Control
In a further experiment, the researchers replaced part of the arm with a “deformed” component, intended to simulate what might happen if the robot was damaged. The robot can then detect that something’s up and “reconfigure” itself, reconstructing its self-model by going through the training exercises once again; it was then able to perform the same tasks with only a small reduction in accuracy.

Machine learning techniques are opening up the field of robotics in ways we’ve never seen before. Combining them with our understanding of how humans and other animals are able to sense and interact with the world around us is bringing robotics closer and closer to becoming truly flexible and adaptable, and, eventually, omnipresent.

But before they can get out and shape the world, as these studies show, they will need to understand themselves.

Image Credit: jumbojan / Shutterstock.com Continue reading

Posted in Human Robots

#434324 Big Brother Nation: The Case for ...

Powerful surveillance cameras have crept into public spaces. We are filmed and photographed hundreds of times a day. To further raise the stakes, the resulting video footage is fed to new forms of artificial intelligence software that can recognize faces in real time, read license plates, even instantly detect when a particular pre-defined action or activity takes place in front of a camera.

As most modern cities have quietly become surveillance cities, the law has been slow to catch up. While we wait for robust legal frameworks to emerge, the best way to protect our civil liberties right now is to fight technology with technology. All cities should place local surveillance video into a public cloud-based data trust. Here’s how it would work.

In Public Data We Trust
To democratize surveillance, every city should implement three simple rules. First, anyone who aims a camera at public space must upload that day’s haul of raw video file (and associated camera meta-data) into a cloud-based repository. Second, this cloud-based repository must have open APIs and a publicly-accessible log file that records search histories and tracks who has accessed which video files. And third, everyone in the city should be given the same level of access rights to the stored video data—no exceptions.

This kind of public data repository is called a “data trust.” Public data trusts are not just wishful thinking. Different types of trusts are already in successful use in Estonia and Barcelona, and have been proposed as the best way to store and manage the urban data that will be generated by Alphabet’s planned Sidewalk Labs project in Toronto.

It’s true that few people relish the thought of public video footage of themselves being looked at by strangers and friends, by ex-spouses, potential employers, divorce attorneys, and future romantic prospects. In fact, when I propose this notion when I give talks about smart cities, most people recoil in horror. Some turn red in the face and jeer at my naiveté. Others merely blink quietly in consternation.

The reason we should take this giant step towards extreme transparency is to combat the secrecy that surrounds surveillance. Openness is a powerful antidote to oppression. Edward Snowden summed it up well when he said, “Surveillance is not about public safety, it’s about power. It’s about control.”

Let Us Watch Those Watching Us
If public surveillance video were put back into the hands of the people, citizens could watch their government as it watches them. Right now, government cameras are controlled by the state. Camera locations are kept secret, and only the agencies that control the cameras get to see the footage they generate.

Because of these information asymmetries, civilians have no insight into the size and shape of the modern urban surveillance infrastructure that surrounds us, nor the uses (or abuses) of the video footage it spawns. For example, there is no swift and efficient mechanism to request a copy of video footage from the cameras that dot our downtown. Nor can we ask our city’s police force to show us a map that documents local traffic camera locations.

By exposing all public surveillance videos to the public gaze, cities could give regular people tools to assess the size, shape, and density of their local surveillance infrastructure and neighborhood “digital dragnet.” Using the meta-data that’s wrapped around video footage, citizens could geo-locate individual cameras onto a digital map to generate surveillance “heat maps.” This way people could assess whether their city’s camera density was higher in certain zip codes, or in neighborhoods populated by a dominant ethnic group.

Surveillance heat maps could be used to document which government agencies were refusing to upload their video files, or which neighborhoods were not under surveillance. Given what we already know today about the correlation between camera density, income, and social status, these “dark” camera-free regions would likely be those located near government agencies and in more affluent parts of a city.

Extreme transparency would democratize surveillance. Every city’s data trust would keep a publicly-accessible log of who’s searching for what, and whom. People could use their local data trust’s search history to check whether anyone was searching for their name, face, or license plate. As a result, clandestine spying on—and stalking of—particular individuals would become difficult to hide and simpler to prove.

Protect the Vulnerable and Exonerate the Falsely Accused
Not all surveillance video automatically works against the underdog. As the bungled (and consequently no longer secret) assassination of journalist Jamal Khashoggi demonstrated, one of the unexpected upsides of surveillance cameras has been the fact that even kings become accountable for their crimes. If opened up to the public, surveillance cameras could serve as witnesses to justice.

Video evidence has the power to protect vulnerable individuals and social groups by shedding light onto messy, unreliable (and frequently conflicting) human narratives of who did what to whom, and why. With access to a data trust, a person falsely accused of a crime could prove their innocence. By searching for their own face in video footage or downloading time/date stamped footage from a particular camera, a potential suspect could document their physical absence from the scene of a crime—no lengthy police investigation or high-priced attorney needed.

Given Enough Eyeballs, All Crimes Are Shallow
Placing public surveillance video into a public trust could make cities safer and would streamline routine police work. Linus Torvalds, the developer of open-source operating system Linux, famously observed that “given enough eyeballs, all bugs are shallow.” In the case of public cameras and a common data repository, Torvald’s Law could be restated as “given enough eyeballs, all crimes are shallow.”

If thousands of citizen eyeballs were given access to a city’s public surveillance videos, local police forces could crowdsource the work of solving crimes and searching for missing persons. Unfortunately, at the present time, cities are unable to wring any social benefit from video footage of public spaces. The most formidable barrier is not government-imposed secrecy, but the fact that as cameras and computers have grown cheaper, a large and fast-growing “mom and pop” surveillance state has taken over most of the filming of public spaces.

While we fear spooky government surveillance, the reality is that we’re much more likely to be filmed by security cameras owned by shopkeepers, landlords, medical offices, hotels, homeowners, and schools. These businesses, organizations, and individuals install cameras in public areas for practical reasons—to reduce their insurance costs, to prevent lawsuits, or to combat shoplifting. In the absence of regulations governing their use, private camera owners store video footage in a wide variety of locations, for varying retention periods.

The unfortunate (and unintended) result of this informal and decentralized network of public surveillance is that video files are not easy to access, even for police officers on official business. After a crime or terrorist attack occurs, local police (or attorneys armed with a subpoena) go from door to door to manually collect video evidence. Once they have the videos in hand, their next challenge is searching for the right “codex” to crack the dozens of different file formats they encounter so they can watch and analyze the footage.

The result of these practical barriers is that as it stands today, only people with considerable legal or political clout are able to successfully gain access into a city’s privately-owned, ad-hoc collections of public surveillance videos. Not only are cities missing the opportunity to streamline routine evidence-gathering police work, they’re missing a radically transformative benefit that would become possible once video footage from thousands of different security cameras were pooled into a single repository: the ability to apply the power of citizen eyeballs to the work of improving public safety.

Why We Need Extreme Transparency
When regular people can’t access their own surveillance videos, there can be no data justice. While we wait for the law to catch up with the reality of modern urban life, citizens and city governments should use technology to address the problem that lies at the heart of surveillance: a power imbalance between those who control the cameras and those who don’t.

Cities should permit individuals and organizations to install and deploy as many public-facing cameras as they wish, but with the mandate that camera owners must place all resulting video footage into the mercilessly bright sunshine of an open data trust. This way, cloud computing, open APIs, and artificial intelligence software can help combat abuses of surveillance and give citizens insight into who’s filming us, where, and why.

Image Credit: VladFotoMag / Shutterstock.com Continue reading

Posted in Human Robots

#434260 The Most Surprising Tech Breakthroughs ...

Development across the entire information technology landscape certainly didn’t slow down this year. From CRISPR babies, to the rapid decline of the crypto markets, to a new robot on Mars, and discovery of subatomic particles that could change modern physics as we know it, there was no shortage of headline-grabbing breakthroughs and discoveries.

As 2018 comes to a close, we can pause and reflect on some of the biggest technology breakthroughs and scientific discoveries that occurred this year.

I reached out to a few Singularity University speakers and faculty across the various technology domains we cover asking what they thought the biggest breakthrough was in their area of expertise. The question posed was:

“What, in your opinion, was the biggest development in your area of focus this year? Or, what was the breakthrough you were most surprised by in 2018?”

I can share that for me, hands down, the most surprising development I came across in 2018 was learning that a publicly-traded company that was briefly valued at over $1 billion, and has over 12,000 employees and contractors spread around the world, has no physical office space and the entire business is run and operated from inside an online virtual world. This is Ready Player One stuff happening now.

For the rest, here’s what our experts had to say.

DIGITAL BIOLOGY
Dr. Tiffany Vora | Faculty Director and Vice Chair, Digital Biology and Medicine, Singularity University

“That’s easy: CRISPR babies. I knew it was technically possible, and I’ve spent two years predicting it would happen first in China. I knew it was just a matter of time but I failed to predict the lack of oversight, the dubious consent process, the paucity of publicly-available data, and the targeting of a disease that we already know how to prevent and treat and that the children were at low risk of anyway.

I’m not convinced that this counts as a technical breakthrough, since one of the girls probably isn’t immune to HIV, but it sure was a surprise.”

For more, read Dr. Vora’s summary of this recent stunning news from China regarding CRISPR-editing human embryos.

QUANTUM COMPUTING
Andrew Fursman | Co-Founder/CEO 1Qbit, Faculty, Quantum Computing, Singularity University

“There were two last-minute holiday season surprise quantum computing funding and technology breakthroughs:

First, right before the government shutdown, one priority legislative accomplishment will provide $1.2 billion in quantum computing research over the next five years. Second, there’s the rise of ions as a truly viable, scalable quantum computing architecture.”

*Read this Gizmodo profile on an exciting startup in the space to learn more about this type of quantum computing

ENERGY
Ramez Naam | Chair, Energy and Environmental Systems, Singularity University

“2018 had plenty of energy surprises. In solar, we saw unsubsidized prices in the sunny parts of the world at just over two cents per kwh, or less than half the price of new coal or gas electricity. In the US southwest and Texas, new solar is also now cheaper than new coal or gas. But even more shockingly, in Germany, which is one of the least sunny countries on earth (it gets less sunlight than Canada) the average bid for new solar in a 2018 auction was less than 5 US cents per kwh. That’s as cheap as new natural gas in the US, and far cheaper than coal, gas, or any other new electricity source in most of Europe.

In fact, it’s now cheaper in some parts of the world to build new solar or wind than to run existing coal plants. Think tank Carbon Tracker calculates that, over the next 10 years, it will become cheaper to build new wind or solar than to operate coal power in most of the world, including specifically the US, most of Europe, and—most importantly—India and the world’s dominant burner of coal, China.

Here comes the sun.”

GLOBAL GRAND CHALLENGES
Darlene Damm | Vice Chair, Faculty, Global Grand Challenges, Singularity University

“In 2018 we saw a lot of areas in the Global Grand Challenges move forward—advancements in robotic farming technology and cultured meat, low-cost 3D printed housing, more sophisticated types of online education expanding to every corner of the world, and governments creating new policies to deal with the ethics of the digital world. These were the areas we were watching and had predicted there would be change.

What most surprised me was to see young people, especially teenagers, start to harness technology in powerful ways and use it as a platform to make their voices heard and drive meaningful change in the world. In 2018 we saw teenagers speak out on a number of issues related to their well-being and launch digital movements around issues such as gun and school safety, global warming and environmental issues. We often talk about the harm technology can cause to young people, but on the flip side, it can be a very powerful tool for youth to start changing the world today and something I hope we see more of in the future.”

BUSINESS STRATEGY
Pascal Finette | Chair, Entrepreneurship and Open Innovation, Singularity University

“Without a doubt the rapid and massive adoption of AI, specifically deep learning, across industries, sectors, and organizations. What was a curiosity for most companies at the beginning of the year has quickly made its way into the boardroom and leadership meetings, and all the way down into the innovation and IT department’s agenda. You are hard-pressed to find a mid- to large-sized company today that is not experimenting or implementing AI in various aspects of its business.

On the slightly snarkier side of answering this question: The very rapid decline in interest in blockchain (and cryptocurrencies). The blockchain party was short, ferocious, and ended earlier than most would have anticipated, with a huge hangover for some. The good news—with the hot air dissipated, we can now focus on exploring the unique use cases where blockchain does indeed offer real advantages over centralized approaches.”

*Author note: snark is welcome and appreciated

ROBOTICS
Hod Lipson | Director, Creative Machines Lab, Columbia University

“The biggest surprise for me this year in robotics was learning dexterity. For decades, roboticists have been trying to understand and imitate dexterous manipulation. We humans seem to be able to manipulate objects with our fingers with incredible ease—imagine sifting through a bunch of keys in the dark, or tossing and catching a cube. And while there has been much progress in machine perception, dexterous manipulation remained elusive.

There seemed to be something almost magical in how we humans can physically manipulate the physical world around us. Decades of research in grasping and manipulation, and millions of dollars spent on robot-hand hardware development, has brought us little progress. But in late 2018, the Berkley OpenAI group demonstrated that this hurdle may finally succumb to machine learning as well. Given 200 years worth of practice, machines learned to manipulate a physical object with amazing fluidity. This might be the beginning of a new age for dexterous robotics.”

MACHINE LEARNING
Jeremy Howard | Founding Researcher, fast.ai, Founder/CEO, Enlitic, Faculty Data Science, Singularity University

“The biggest development in machine learning this year has been the development of effective natural language processing (NLP).

The New York Times published an article last month titled “Finally, a Machine That Can Finish Your Sentence,” which argued that NLP neural networks have reached a significant milestone in capability and speed of development. The “finishing your sentence” capability mentioned in the title refers to a type of neural network called a “language model,” which is literally a model that learns how to finish your sentences.

Earlier this year, two systems (one, called ELMO, is from the Allen Institute for AI, and the other, called ULMFiT, was developed by me and Sebastian Ruder) showed that such a model could be fine-tuned to dramatically improve the state-of-the-art in nearly every NLP task that researchers study. This work was further developed by OpenAI, which in turn was greatly scaled up by Google Brain, who created a system called BERT which reached human-level performance on some of NLP’s toughest challenges.

Over the next year, expect to see fine-tuned language models used for everything from understanding medical texts to building disruptive social media troll armies.”

DIGITAL MANUFACTURING
Andre Wegner | Founder/CEO Authentise, Chair, Digital Manufacturing, Singularity University

“Most surprising to me was the extent and speed at which the industry finally opened up.

While previously, only few 3D printing suppliers had APIs and knew what to do with them, 2018 saw nearly every OEM (or original equipment manufacturer) enabling data access and, even more surprisingly, shying away from proprietary standards and adopting MTConnect, as stalwarts such as 3D Systems and Stratasys have been. This means that in two to three years, data access to machines will be easy, commonplace, and free. The value will be in what is being done with that data.

Another example of this openness are the seemingly endless announcements of integrated workflows: GE’s announcement with most major software players to enable integrated solutions, EOS’s announcement with Siemens, and many more. It’s clear that all actors in the additive ecosystem have taken a step forward in terms of openness. The result is a faster pace of innovation, particularly in the software and data domains that are crucial to enabling comprehensive digital workflow to drive agile and resilient manufacturing.

I’m more optimistic we’ll achieve that now than I was at the end of 2017.”

SCIENCE AND DISCOVERY
Paul Saffo | Chair, Future Studies, Singularity University, Distinguished Visiting Scholar, Stanford Media-X Research Network

“The most important development in technology this year isn’t a technology, but rather the astonishing science surprises made possible by recent technology innovations. My short list includes the discovery of the “neptmoon”, a Neptune-scale moon circling a Jupiter-scale planet 8,000 lightyears from us; the successful deployment of the Mars InSight Lander a month ago; and the tantalizing ANITA detection (what could be a new subatomic particle which would in turn blow the standard model wide open). The highest use of invention is to support science discovery, because those discoveries in turn lead us to the future innovations that will improve the state of the world—and fire up our imaginations.”

ROBOTICS
Pablos Holman | Inventor, Hacker, Faculty, Singularity University

“Just five or ten years ago, if you’d asked any of us technologists “What is harder for robots? Eyes, or fingers?” We’d have all said eyes. Robots have extraordinary eyes now, but even in a surgical robot, the fingers are numb and don’t feel anything. Stanford robotics researchers have invented fingertips that can feel, and this will be a kingpin that allows robots to go everywhere they haven’t been yet.”

BLOCKCHAIN
Nathana Sharma | Blockchain, Policy, Law, and Ethics, Faculty, Singularity University

“2017 was the year of peak blockchain hype. 2018 has been a year of resetting expectations and technological development, even as the broader cryptocurrency markets have faced a winter. It’s now about seeing adoption and applications that people want and need to use rise. An incredible piece of news from December 2018 is that Facebook is developing a cryptocurrency for users to make payments through Whatsapp. That’s surprisingly fast mainstream adoption of this new technology, and indicates how powerful it is.”

ARTIFICIAL INTELLIGENCE
Neil Jacobstein | Chair, Artificial Intelligence and Robotics, Singularity University

“I think one of the most visible improvements in AI was illustrated by the Boston Dynamics Parkour video. This was not due to an improvement in brushless motors, accelerometers, or gears. It was due to improvements in AI algorithms and training data. To be fair, the video released was cherry-picked from numerous attempts, many of which ended with a crash. However, the fact that it could be accomplished at all in 2018 was a real win for both AI and robotics.”

NEUROSCIENCE
Divya Chander | Chair, Neuroscience, Singularity University

“2018 ushered in a new era of exponential trends in non-invasive brain modulation. Changing behavior or restoring function takes on a new meaning when invasive interfaces are no longer needed to manipulate neural circuitry. The end of 2018 saw two amazing announcements: the ability to grow neural organoids (mini-brains) in a dish from neural stem cells that started expressing electrical activity, mimicking the brain function of premature babies, and the first (known) application of CRISPR to genetically alter two fetuses grown through IVF. Although this was ostensibly to provide genetic resilience against HIV infections, imagine what would happen if we started tinkering with neural circuitry and intelligence.”

Image Credit: Yurchanka Siarhei / Shutterstock.com Continue reading

Posted in Human Robots

#433939 The Promise—and Complications—of ...

Every year, for just a few days in a major city, a small team of roboticists get to live the dream: ordering around their own personal robot butlers. In carefully-constructed replicas of a restaurant scene or a domestic setting, these robots perform any number of simple algorithmic tasks. “Get the can of beans from the shelf. Greet the visitors to the museum. Help the humans with their shopping. Serve the customers at the restaurant.”

This is Robocup @ Home, the annual tournament where teams of roboticists put their autonomous service robots to the test for practical domestic applications. The tasks seem simple and mundane, but considering the technology required reveals that they’re really not.

The Robot Butler Contest
Say you want a robot to fetch items in the supermarket. In a crowded, noisy environment, the robot must understand your commands, ask for clarification, and map out and navigate an unfamiliar environment, avoiding obstacles and people as it does so. Then it must recognize the product you requested, perhaps in a cluttered environment, perhaps in an unfamiliar orientation. It has to grasp that product appropriately—recall that there are entire multi-million-dollar competitions just dedicated to developing robots that can grasp a range of objects—and then return it to you.

It’s a job so simple that a child could do it—and so complex that teams of smart roboticists can spend weeks programming and engineering, and still end up struggling to complete simplified versions of this task. Of course, the child has the advantage of millions of years of evolutionary research and development, while the first robots that could even begin these tasks were only developed in the 1970s.

Even bearing this in mind, Robocup @ Home can feel like a place where futurist expectations come crashing into technologist reality. You dream of a smooth-voiced, sardonic JARVIS who’s already made your favorite dinner when you come home late from work; you end up shouting “remember the biscuits” at a baffled, ungainly droid in aisle five.

Caring for the Elderly
Famously, Japan is one of the most robo-enthusiastic nations in the world; they are the nation that stunned us all with ASIMO in 2000, and several studies have been conducted into the phenomenon. It’s no surprise, then, that humanoid robotics should be seriously considered as a solution to the crisis of the aging population. The Japanese government, as part of its robots strategy, has already invested $44 million in their development.

Toyota’s Human Support Robot (HSR-2) is a simple but programmable robot with a single arm; it can be remote-controlled to pick up objects and can monitor patients. HSR-2 has become the default robot for use in Robocup @ Home tournaments, at least in tasks that involve manipulating objects.

Alongside this, Toyota is working on exoskeletons to assist people in walking after strokes. It may surprise you to learn that nurses suffer back injuries more than any other occupation, at roughly three times the rate of construction workers, due to the day-to-day work of lifting patients. Toyota has a Care Assist robot/exoskeleton designed to fix precisely this problem by helping care workers with the heavy lifting.

The Home of the Future
The enthusiasm for domestic robotics is easy to understand and, in fact, many startups already sell robots marketed as domestic helpers in some form or another. In general, though, they skirt the immensely complicated task of building a fully capable humanoid robot—a task that even Google’s skunk-works department gave up on, at least until recently.

It’s plain to see why: far more research and development is needed before these domestic robots could be used reliably and at a reasonable price. Consumers with expectations inflated by years of science fiction saturation might find themselves frustrated as the robots fail to perform basic tasks.

Instead, domestic robotics efforts fall into one of two categories. There are robots specialized to perform a domestic task, like iRobot’s Roomba, which stuck to vacuuming and became the most successful domestic robot of all time by far.

The tasks need not necessarily be simple, either: the impressive but expensive automated kitchen uses the world’s most dexterous hands to cook meals, providing it can recognize the ingredients. Other robots focus on human-robot interaction, like Jibo: they essentially package the abilities of a voice assistant like Siri, Cortana, or Alexa to respond to simple questions and perform online tasks in a friendly, dynamic robot exterior.

In this way, the future of domestic automation starts to look a lot more like smart homes than a robot or domestic servant. General robotics is difficult in the same way that general artificial intelligence is difficult; competing with humans, the great all-rounders, is a challenge. Getting superhuman performance at a more specific task, however, is feasible and won’t cost the earth.

Individual startups without the financial might of a Google or an Amazon can develop specialized robots, like Seven Dreamers’ laundry robot, and hope that one day it will form part of a network of autonomous robots that each have a role to play in the household.

Domestic Bliss?
The Smart Home has been a staple of futurist expectations for a long time, to the extent that movies featuring smart homes out of control are already a cliché. But critics of the smart home idea—and of the internet of things more generally—tend to focus on the idea that, more often than not, software just adds an additional layer of things that can break (NSFW), in exchange for minimal added convenience. A toaster that can short-circuit is bad enough, but a toaster that can refuse to serve you toast because its firmware is updating is something else entirely.

That’s before you even get into the security vulnerabilities, which are all the more important when devices are installed in your home and capable of interacting with them. The idea of a smart watch that lets you keep an eye on your children might sound like something a security-conscious parent would like: a smart watch that can be hacked to track children, listen in on their surroundings, and even fool them into thinking a call is coming from their parents is the stuff of nightmares.

Key to many of these problems is the lack of standardization for security protocols, and even the products themselves. The idea of dozens of startups each developing a highly-specialized piece of robotics to perform a single domestic task sounds great in theory, until you realize the potential hazards and pitfalls of getting dozens of incompatible devices to work together on the same system.

It seems inevitable that there are yet more layers of domestic drudgery that can be automated away, decades after the first generation of time-saving domestic devices like the dishwasher and vacuum cleaner became mainstream. With projected market values into the billions and trillions of dollars, there is no shortage of industry interest in ironing out these kinks. But, for now at least, the answer to the question: “Where’s my robot butler?” is that it is gradually, painstakingly learning how to sort through groceries.

Image Credit: Nonchanon / Shutterstock.com Continue reading

Posted in Human Robots

#433911 Thanksgiving Food for Thought: The Tech ...

With the Thanksgiving holiday upon us, it’s a great time to reflect on the future of food. Over the last few years, we have seen a dramatic rise in exponential technologies transforming the food industry from seed to plate. Food is important in many ways—too little or too much of it can kill us, and it is often at the heart of family, culture, our daily routines, and our biggest celebrations. The agriculture and food industries are also two of the world’s biggest employers. Let’s take a look to see what is in store for the future.

Robotic Farms
Over the last few years, we have seen a number of new companies emerge in the robotic farming industry. This includes new types of farming equipment used in arable fields, as well as indoor robotic vertical farms. In November 2017, Hands Free Hectare became the first in the world to remotely grow an arable crop. They used autonomous tractors to sow and spray crops, small rovers to take soil samples, drones to monitor crop growth, and an unmanned combine harvester to collect the crops. Since then, they’ve also grown and harvested a field of winter wheat, and have been adding additional technologies and capabilities to their arsenal of robotic farming equipment.

Indoor vertical farming is also rapidly expanding. As Engadget reported in October 2018, a number of startups are now growing crops like leafy greens, tomatoes, flowers, and herbs. These farms can grow food in urban areas, reducing transport, water, and fertilizer costs, and often don’t need pesticides since they are indoors. IronOx, which is using robots to grow plants with navigation technology used by self-driving cars, can grow 30 times more food per acre of land using 90 percent less water than traditional farmers. Vertical farming company Plenty was recently funded by Softbank’s Vision Fund, Jeff Bezos, and others to build 300 vertical farms in China.

These startups are not only succeeding in wealthy countries. Hello Tractor, an “uberized” tractor, has worked with 250,000 smallholder farms in Africa, creating both food security and tech-infused agriculture jobs. The World Food Progam’s Innovation Accelerator (an impact partner of Singularity University) works with hundreds of startups aimed at creating zero hunger. One project is focused on supporting refugees in developing “food computers” in refugee camps—computerized devices that grow food while also adjusting to the conditions around them. As exponential trends drive down the costs of robotics, sensors, software, and energy, we should see robotic farming scaling around the world and becoming the main way farming takes place.

Cultured Meat
Exponential technologies are not only revolutionizing how we grow vegetables and grains, but also how we generate protein and meat. The new cultured meat industry is rapidly expanding, led by startups such as Memphis Meats, Mosa Meats, JUST Meat, Inc. and Finless Foods, and backed by heavyweight investors including DFJ, Bill Gates, Richard Branson, Cargill, and Tyson Foods.

Cultured meat is grown in a bioreactor using cells from an animal, a scaffold, and a culture. The process is humane and, potentially, scientists can make the meat healthier by adding vitamins, removing fat, or customizing it to an individual’s diet and health concerns. Another benefit is that cultured meats, if grown at scale, would dramatically reduce environmental destruction, pollution, and climate change caused by the livestock and fishing industries. Similar to vertical farms, cultured meat is produced using technology and can be grown anywhere, on-demand and in a decentralized way.

Similar to robotic farming equipment, bioreactors will also follow exponential trends, rapidly falling in cost. In fact, the first cultured meat hamburger (created by Singularity University faculty Member Mark Post of Mosa Meats in 2013) cost $350,000 dollars. In 2018, Fast Company reported the cost was now about $11 per burger, and the Israeli startup Future Meat Technologies predicted they will produce beef at about $2 per pound in 2020, which will be competitive with existing prices. For those who have turkey on their mind, one can read about New Harvest’s work (one of the leading think tanks and research centers for the cultured meat and cellular agriculture industry) in funding efforts to generate a nugget of cultured turkey meat.

One outstanding question is whether cultured meat is safe to eat and how it will interact with the overall food supply chain. In the US, regulators like the Food and Drug Administration (FDA) and the US Department of Agriculture (USDA) are working out their roles in this process, with the FDA overseeing the cellular process and the FDA overseeing production and labeling.

Food Processing
Tech companies are also making great headway in streamlining food processing. Norwegian company Tomra Foods was an early leader in using imaging recognition, sensors, artificial intelligence, and analytics to more efficiently sort food based on shape, composition of fat, protein, and moisture, and other food safety and quality indicators. Their technologies have improved food yield by 5-10 percent, which is significant given they own 25 percent of their market.

These advances are also not limited to large food companies. In 2016 Google reported how a small family farm in Japan built a world-class cucumber sorting device using their open-source machine learning tool TensorFlow. SU startup Impact Vision uses hyper-spectral imaging to analyze food quality, which increases revenues and reduces food waste and product recalls from contamination.

These examples point to a question many have on their mind: will we live in a future where a few large companies use advanced technologies to grow the majority of food on the planet, or will the falling costs of these technologies allow family farms, startups, and smaller players to take part in creating a decentralized system? Currently, the future could flow either way, but it is important for smaller companies to take advantage of the most cutting-edge technology in order to stay competitive.

Food Purchasing and Delivery
In the last year, we have also seen a number of new developments in technology improving access to food. Amazon Go is opening grocery stores in Seattle, San Francisco, and Chicago where customers use an app that allows them to pick up their products and pay without going through cashier lines. Sam’s Club is not far behind, with an app that also allows a customer to purchase goods in-store.

The market for food delivery is also growing. In 2017, Morgan Stanley estimated that the online food delivery market from restaurants could grow to $32 billion by 2021, from $12 billion in 2017. Companies like Zume are pioneering robot-powered pizza making and delivery. In addition to using robotics to create affordable high-end gourmet pizzas in their shop, they also have a pizza delivery truck that can assemble and cook pizzas while driving. Their system combines predictive analytics using past customer data to prepare pizzas for certain neighborhoods before the orders even come in. In early November 2018, the Wall Street Journal estimated that Zume is valued at up to $2.25 billion.

Looking Ahead
While each of these developments is promising on its own, it’s also important to note that since all these technologies are in some way digitized and connected to the internet, the various food tech players can collaborate. In theory, self-driving delivery restaurants could share data on what they are selling to their automated farm equipment, facilitating coordination of future crops. There is a tremendous opportunity to improve efficiency, lower costs, and create an abundance of healthy, sustainable food for all.

On the other hand, these technologies are also deeply disruptive. According to the Food and Agricultural Organization of the United Nations, in 2010 about one billion people, or a third of the world’s workforce, worked in the farming and agricultural industries. We need to ensure these farmers are linked to new job opportunities, as well as facilitate collaboration between existing farming companies and technologists so that the industries can continue to grow and lead rather than be displaced.

Just as importantly, each of us might think about how these changes in the food industry might impact our own ways of life and culture. Thanksgiving celebrates community and sharing of food during a time of scarcity. Technology will help create an abundance of food and less need for communities to depend on one another. What are the ways that you will create community, sharing, and culture in this new world?

Image Credit: nikkytok / Shutterstock.com Continue reading

Posted in Human Robots