Tag Archives: Handle
#436065 From Mainframes to PCs: What Robot ...
This is a guest post. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.
Autonomous robots are coming around slowly. We already got autonomous vacuum cleaners, autonomous lawn mowers, toys that bleep and blink, and (maybe) soon autonomous cars. Yet, generation after generation, we keep waiting for the robots that we all know from movies and TV shows. Instead, businesses seem to get farther and farther away from the robots that are able to do a large variety of tasks using general-purpose, human anatomy-inspired hardware.
Although these are the droids we have been looking for, anything that came close, such as Willow Garage’s PR2 or Rethink Robotics’ Baxter has bitten the dust. With building a robotic company being particularly hard, compounding business risk with technological risk, the trend goes from selling robots to selling actual services like mowing your lawn, provide taxi rides, fulfilling retail orders, or picking strawberries by the pound. Unfortunately for fans of R2-D2 and C-3PO, these kind of business models emphasize specialized, room- or fridge-sized hardware that is optimized for one very specific task, but does not contribute to a general-purpose robotic platform.
We have actually seen something very similar in the personal computer (PC) industry. In the 1950s, even though computers could be as big as an entire room and were only available to a selected few, the public already had a good idea of what computers would look like. A long list of fictional computers started to populate mainstream entertainment during that time. In a 1962 New York Times article titled “Pocket Computer to Replace Shopping List,” visionary scientist John Mauchly stated that “there is no reason to suppose the average boy or girl cannot be master of a personal computer.”
In 1968, Douglas Engelbart gave us the “mother of all demos,” browsing hypertext on a graphical screen and a mouse, and other ideas that have become standard only decades later. Now that we have finally seen all of this, it might be helpful to examine what actually enabled the computing revolution to learn where robotics is really at and what we need to do next.
The parallels between computers and robots
In the 1970s, mainframes were about to be replaced by the emerging class of mini-computers, fridge-sized devices that cost less than US $25,000 ($165,000 in 2019 dollars). These computers did not use punch-cards, but could be programmed in Fortran and BASIC, dramatically expanding the ease with which potential applications could be created. Yet it was still unclear whether mini-computers could ever replace big mainframes in applications that require fast and efficient processing of large amounts of data, let alone enter every living room. This is very similar to the robotics industry right now, where large-scale factory robots (mainframes) that have existed since the 1960s are seeing competition from a growing industry of collaborative robots that can safely work next to humans and can easily be installed and programmed (minicomputers). As in the ’70s, applications for these devices that reach system prices comparable to that of a luxury car are quite limited, and it is hard to see how they could ever become a consumer product.
Yet, as in the computer industry, successful architectures are quickly being cloned, driving prices down, and entirely new approaches on how to construct or program robotic arms are sprouting left and right. Arm makers are joined by manufacturers of autonomous carts, robotic grippers, and sensors. These components can be combined, paving the way for standard general purpose platforms that follow the model of the IBM PC, which built a capable, open architecture relying as much on commodity parts as possible.
General purpose robotic systems have not been successful for similar reasons that general purpose, also known as “personal,” computers took decades to emerge. Mainframes were custom-built for each application, while typewriters got smarter and smarter, not really leaving room for general purpose computers in between. Indeed, given the cost of hardware and the relatively little abilities of today’s autonomous robots, it is almost always smarter to build a special purpose machine than trying to make a collaborative mobile manipulator smart.
A current example is e-commerce grocery fulfillment. The current trend is to reserve underutilized parts of a brick-and-mortar store for a micro-fulfillment center that stores goods in little crates with an automated retrieval system and a (human) picker. A number of startups like Alert Innovation, Fabric, Ocado Technology, TakeOff Technologies, and Tompkins Robotics, to just name a few, have raised hundreds of millions of venture capital recently to build mainframe equivalents of robotic fulfillment centers. This is in contrast with a robotic picker, which would drive through the aisles to restock and pick from shelves. Such a robotic store clerk would come much closer to our vision of a general purpose robot, but would require many copies of itself that crowd the aisles to churn out hundreds of orders per hour as a microwarehouse could. Although eventually more efficient, the margins in retail are already low and make it unlikely that this industry will produce the technological jump that we need to get friendly C-3POs manning the aisles.
Startups have raised hundreds of millions of venture capital recently to build mainframe equivalents of robotic fulfillment centers. This is in contrast with a robotic picker, which would drive through the aisles to restock and pick from shelves, and would come much closer to our vision of a general purpose robot.
Mainframes were also attacked from the bottom. Fascination with the new digital technology has led to a hobbyist movement to create microcomputers that were sold via mail order or at RadioShack. Initially, a large number of small businesses was selling tens, at most hundreds, of devices, usually as a kit and with wooden enclosures. This trend culminated into the “1977 Trinity” in the form of the Apple II, the Commodore PET, and the Tandy TRS-80, complete computers that were sold for prices around $2500 (TRS) to $5000 (Apple) in today’s dollars. The main application of these computers was their programmability (in BASIC), which would enable consumers to “learn to chart your biorhythms, balance your checking account, or even control your home environment,” according to an original Apple advertisement. Similarly, there exists a myriad of gadgets that explore different aspects of robotics such as mobility, manipulation, and entertainment.
As in the fledgling personal computing industry, the advertised functionality was at best a model of the real deal. A now-famous milestone in entertainment robotics was the original Sony’s Aibo, a robotic dog that was advertised to have many properties that a real dog has such as develop its own personality, play with a toy, and interact with its owner. Released in 1999, and re-launched in 2018, the platform has a solid following among hobbyists and academics who like its programmability, but probably only very few users who accept the device as a pet stand-in.
There also exist countless “build-your-own-robotic-arm” kits. One of the more successful examples is the uArm, which sells for around $800, and is advertised to perform pick and place, assembly, 3D printing, laser engraving, and many other things that sound like high value applications. Using compelling videos of the robot actually doing these things in a constrained environment has led to two successful crowd-funding campaigns, and have established the robot as a successful educational tool.
Finally, there exist platforms that allow hobbyist programmers to explore mobility to construct robots that patrol your house, deliver items, or provide their users with telepresence abilities. An example of that is the Misty II. Much like with the original Apple II, there remains a disconnect between the price of the hardware and the fidelity of the applications that were available.
For computers, this disconnect began to disappear with the invention of the first electronic spreadsheet software VisiCalc that spun out of Harvard in 1979 and prompted many people to buy an entire microcomputer just to run the program. VisiCalc was soon joined by WordStar, a word processing application, that sold for close to $2000 in today’s dollars. WordStar, too, would entice many people to buy the entire hardware just to use the software. The two programs are early examples of what became known as “killer application.”
With factory automation being mature, and robots with the price tag of a minicomputer being capable of driving around and autonomously carrying out many manipulation tasks, the robotics industry is somewhere where the PC industry was between 1973—the release of the Xerox Alto, the first computer with a graphical user interface, mouse, and special software—and 1979—when microcomputers in the under $5000 category began to take off.
Killer apps for robots
So what would it take for robotics to continue to advance like computers did? The market itself already has done a good job distilling what the possible killer apps are. VCs and customers alike push companies who have set out with lofty goals to reduce their offering to a simple value proposition. As a result, companies that started at opposite ends often converge to mirror images of each other that offer very similar autonomous carts, (bin) picking, palletizing, depalletizing, or sorting solutions. Each of these companies usually serves a single application to a single vertical—for example bin-picking clothes, transporting warehouse goods, or picking strawberries by the pound. They are trying to prove that their specific technology works without spreading themselves too thin.
Very few of these companies have really taken off. One example is Kiva Systems, which turned into the logistic robotics division of Amazon. Kiva and others are structured around sound value propositions that are grounded in well-known user needs. As these solutions are very specialized, however, it is unlikely that they result into any economies of scale of the same magnitude that early computer users who bought both a spreadsheet and a word processor application for their expensive minicomputer could enjoy. What would make these robotic solutions more interesting is when functionality becomes stackable. Instead of just being able to do bin picking, palletizing, and transportation with the same hardware, these three skills could be combined to model entire processes.
A skill that is yet little addressed by startups and is historically owned by the mainframe equivalent of robotics is assembly of simple mechatronic devices. The ability to assemble mechatronic parts is equivalent to other tasks such as changing a light bulb, changing the batteries in a remote control, or tending machines like a lever-based espresso machine. These tasks would involve the autonomous execution of complete workflows possible using a single machine, eventually leading to an explosion of industrial productivity across all sectors. For example, picking up an item from a bin, arranging it on the robot, moving it elsewhere, and placing it into a shelf or a machine is a process that equally applies to a manufacturing environment, a retail store, or someone’s kitchen.
Image: Robotic Materials Inc.
Autonomous, vision and force-based assembly of the
Siemens robot learning challenge.
Even though many of the above applications are becoming possible, it is still very hard to get a platform off the ground without added components that provide “killer app” value of their own. Interesting examples are Rethink Robotics or the Robot Operating System (ROS). Rethink Robotics’ Baxter and Sawyer robots pioneered a great user experience (like the 1973 Xerox Alto, really the first PC), but its applications were difficult to extend beyond simple pick-and-place and palletizing and depalletizing items.
ROS pioneered interprocess communication software that was adapted to robotic needs (multiple computers, different programming languages) and the idea of software modularity in robotics, but—in the absence of a common hardware platform—hasn’t yet delivered a single application, e.g. for navigation, path planning, or grasping, that performs beyond research-grade demonstration level and won’t get discarded once developers turn to production systems. At the same time, an increasing number of robotic devices, such as robot arms or 3D perception systems that offer intelligent functionality, provide other ways to wire them together that do not require an intermediary computer, while keeping close control over the real-time aspects of their hardware.
Image: Robotic Materials Inc.
Robotic Materials GPR-1 combines a MIR-100 autonomous cart with an UR-5 collaborative robotic arm, an onRobot force/torque sensor and Robotic Materials’ SmartHand to perform out-of-the-box mobile assembly, bin picking, palletizing, and depalletizing tasks.
At my company, Robotic Materials Inc., we have made strides to identify a few applications such as bin picking and assembly, making them configurable with a single click by combining machine learning and optimization with an intuitive user interface. Here, users can define object classes and how to grasp them using a web browser, which then appear as first-class objects in a robot-specific graphical programming language. We have also done this for assembly, allowing users to stack perception-based picking and force-based assembly primitives by simply dragging and dropping appropriate commands together.
While such an approach might answer the question of a killer app for robots priced in the “minicomputer” range, it is unclear how killer app-type value can be generated with robots in the less-than-$5000 category. A possible answer is two-fold: First, with low-cost arms, mobility platforms, and entertainment devices continuously improving, a confluence of technology readiness and user innovation, like with the Apple II and VisiCalc, will eventually happen. For example, there is not much innovation needed to turn Misty into a home security system; the uArm into a low-cost bin-picking system; or an Aibo-like device into a therapeutic system for the elderly or children with autism.
Second, robots and their components have to become dramatically cheaper. Indeed, computers have seen an exponential reduction in price accompanied by an exponential increase in computational power, thanks in great part to Moore’s Law. This development has helped robotics too, allowing us to reach breakthroughs in mobility and manipulation due to the ability to process massive amounts of image and depth data in real-time, and we can expect it to continue to do so.
Is there a Moore’s Law for robots?
One might ask, however, how a similar dynamics might be possible for robots as a whole, including all their motors and gears, and what a “Moore’s Law” would look like for the robotics industry. Here, it helps to remember that the perpetuation of Moore’s Law is not the reason, but the result of the PC revolution. Indeed, the first killer apps for bookkeeping, editing, and gaming were so good that they unleashed tremendous consumer demand, beating the benchmark on what was thought to be physically possible over and over again. (I vividly remember 56 kbps to be the absolute maximum data rate for copper phone lines until DSL appeared.)
That these economies of scale are also applicable to mechatronics is impressively demonstrated by the car industry. A good example is the 2020 Prius Prime, a highly computerized plug-in hybrid, that is available for one third of the cost of my company’s GPR-1 mobile manipulator while being orders of magnitude more complex, sporting an electrical motor, a combustion engine, and a myriad of sensors and computers. It is therefore very well conceivable to produce a mobile manipulator that retails at one tenth of the cost of a modern car, once robotics enjoy similar mass-market appeal. Given that these robots are part of the equation, actively lowering cost of production, this might happen as fast as never before in the history of industrialization.
It is therefore very well conceivable to produce a mobile manipulator that retails at one tenth of the cost of a modern car, once robotics enjoy similar mass-market appeal.
There is one more driver that might make robots exponentially more capable: the cloud. Once a general purpose robot has learned or was programmed with a new skill, it could share it with every other robot. At some point, a grocer who buys a robot could assume that it already knows how to recognize and handle 99 percent of the retail items in the store. Likewise, a manufacturer can assume that the robot can handle and assemble every item available from McMaster-Carr and Misumi. Finally, families could expect a robot to know every kitchen item that Ikea and Pottery Barn is selling. Sounds like a labor intense problem, but probably more manageable than collecting footage for Google’s Street View using cars, tricycles, and snowmobiles, among other vehicles.
Strategies for robot startups
While we are waiting for these two trends—better and better applications and hardware with decreasing cost—to converge, we as a community have to keep exploring what the canonical robotic applications beyond mobility, bin picking, palletizing, depalletizing, and assembly are. We must also continue to solve the fundamental challenges that stand in the way of making these solutions truly general and robust.
For both questions, it might help to look at the strategies that have been critical in the development of the personal computer, which might equally well apply to robotics:
Start with a solution to a problem your customers have. Unfortunately, their problem is almost never that they need your sensor, widget, or piece of code, but something that already costs them money or negatively affects them in some other way. Example: There are many more people who had a problem calculating their taxes (and wanted to buy VisiCalc) than writing their own solution in BASIC.
Build as little of your own hardware as necessary. Your business model should be stronger than the margin you can make on the hardware. Why taking the risk? Example: Why build your own typewriter if you can write the best typewriting application that makes it worth buying a computer just for that?
If your goal is a platform, make sure it comes with a killer application, which alone justifies the platform cost. Example: Microcomputer companies came and went until the “1977 Trinity” intersected with the killer apps spreadsheet and word processors. Corollary: You can also get lucky.
Use an open architecture, which creates an ecosystem where others compete on creating better components and peripherals, while allowing others to integrate your solution into their vertical and stack it with other devices. Example: Both the Apple II and the IBM PC were completely open architectures, enabling many clones, thereby growing the user and developer base.
It’s worthwhile pursuing this. With most business processes already being digitized, general purpose robots will allow us to fill in gaps in mobility and manipulation, increasing productivity at levels only limited by the amount of resources and energy that are available, possibly creating a utopia in which creativity becomes the ultimate currency. Maybe we’ll even get R2-D2.
Nikolaus Correll is an associate professor of computer science at the University of Colorado at Boulder where he works on mobile manipulation and other robotics applications. He’s co-founder and CTO of Robotic Materials Inc., which is supported by the National Science Foundation and the National Institute of Standards and Technology via their Small Business Innovative Research (SBIR) programs. Continue reading →
#435806 Boston Dynamics’ Spot Robot Dog ...
Boston Dynamics is announcing this morning that Spot, its versatile quadruped robot, is now for sale. The machine’s animal-like behavior regularly electrifies crowds at tech conferences, and like other Boston Dynamics’ robots, Spot is a YouTube sensation whose videos amass millions of views.
Now anyone interested in buying a Spot—or a pack of them—can go to the company’s website and submit an order form. But don’t pull out your credit card just yet. Spot may cost as much as a luxury car, and it is not really available to consumers. The initial sale, described as an “early adopter program,” is targeting businesses. Boston Dynamics wants to find customers in select industries and help them deploy Spots in real-world scenarios.
“What we’re doing is the productization of Spot,” Boston Dynamics CEO Marc Raibert tells IEEE Spectrum. “It’s really a milestone for us going from robots that work in the lab to these that are hardened for work out in the field.”
Boston Dynamics has always been a secretive company, but last month, in preparation for launching Spot (formerly SpotMini), it allowed our photographers into its headquarters in Waltham, Mass., for a special shoot. In that session, we captured Spot and also Atlas—the company’s highly dynamic humanoid—in action, walking, climbing, and jumping.
You can see Spot’s photo interactives on our Robots Guide. (The Atlas interactives will appear in coming weeks.)
Gif: Bob O’Connor/Robots.ieee.org
And if you’re in the market for a robot dog, here’s everything we know about Boston Dynamics’ plans for Spot.
Who can buy a Spot?
If you’re interested in one, you should go to Boston Dynamics’ website and take a look at the information the company requires from potential buyers. Again, the focus is on businesses. Boston Dynamics says it wants to get Spots out to initial customers that “either have a compelling use case or a development team that we believe can do something really interesting with the robot,” says VP of business development Michael Perry. “Just because of the scarcity of the robots that we have, we’re going to have to be selective about which partners we start working together with.”
What can Spot do?
As you’ve probably seen on the YouTube videos, Spot can walk, trot, avoid obstacles, climb stairs, and much more. The robot’s hardware is almost completely custom, with powerful compute boards for control, and five sensor modules located on every side of Spot’s body, allowing it to survey the space around itself from any direction. The legs are powered by 12 custom motors with a reduction, with a top speed of 1.6 meters per second. The robot can operate for 90 minutes on a charge. In addition to the basic configuration, you can integrate up to 14 kilograms of extra hardware to a payload interface. Among the payload packages Boston Dynamics plans to offer are a 6 degrees-of-freedom arm, a version of which can be seen in some of the YouTube videos, and a ring of cameras called SpotCam that could be used to create Street View–type images inside buildings.
Image: Boston Dynamics
How do you control Spot?
Learning to drive the robot using its gaming-style controller “takes 15 seconds,” says CEO Marc Raibert. He explains that while teleoperating Spot, you may not realize that the robot is doing a lot of the work. “You don’t really see what that is like until you’re operating the joystick and you go over a box and you don’t have to do anything,” he says. “You’re practically just thinking about what you want to do and the robot takes care of everything.” The control methods have evolved significantly since the company’s first quadruped robots, machines like BigDog and LS3. “The control in those days was much more monolithic, and now we have what we call a sequential composition controller,” Raibert says, “which lets the system have control of the dynamics in a much broader variety of situations.” That means that every time one of Spot’s feet touches or doesn’t touch the ground, this different state of the body affects the basic physical behavior of the robot, and the controller adjusts accordingly. “Our controller is designed to understand what that state is and have different controls depending upon the case,” he says.
How much does Spot cost?
Boston Dynamics would not give us specific details about pricing, saying only that potential customers should contact them for a quote and that there is going to be a leasing option. It’s understandable: As with any expensive and complex product, prices can vary on a case by case basis and depend on factors such as configuration, availability, level of support, and so forth. When we pressed the company for at least an approximate base price, Perry answered: “Our general guidance is that the total cost of the early adopter program lease will be less than the price of a car—but how nice a car will depend on the number of Spots leased and how long the customer will be leasing the robot.”
Can Spot do mapping and SLAM out of the box?
The robot’s perception system includes cameras and 3D sensors (there is no lidar), used to avoid obstacles and sense the terrain so it can climb stairs and walk over rubble. It’s also used to create 3D maps. According to Boston Dynamics, the first software release will offer just teleoperation. But a second release, to be available in the next few weeks, will enable more autonomous behaviors. For example, it will be able to do mapping and autonomous navigation—similar to what the company demonstrated in a video last year, showing how you can drive the robot through an environment, create a 3D point cloud of the environment, and then set waypoints within that map for Spot to go out and execute that mission. For customers that have their own autonomy stack and are interested in using those on Spot, Boston Dynamics made it “as plug and play as possible in terms of how third-party software integrates into Spot’s system,” Perry says. This is done mainly via an API.
How does Spot’s API works?
Boston Dynamics built an API so that customers can create application-level products with Spot without having to deal with low-level control processes. “Rather than going and building joint-level kinematic access to the robot,” Perry explains, “we created a high-level API and SDK that allows people who are used to Web app development or development of missions for drones to use that same scope, and they’ll be able to build applications for Spot.”
What applications should we see first?
Boston Dynamics envisions Spot as a platform: a versatile mobile robot that companies can use to build applications based on their needs. What types of applications? The company says the best way to find out is to put Spot in the hands of as many users as possible and let them develop the applications. Some possibilities include performing remote data collection and light manipulation in construction sites; monitoring sensors and infrastructure at oil and gas sites; and carrying out dangerous missions such as bomb disposal and hazmat inspections. There are also other promising areas such as security, package delivery, and even entertainment. “We have some initial guesses about which markets could benefit most from this technology, and we’ve been engaging with customers doing proof-of-concept trials,” Perry says. “But at the end of the day, that value story is really going to be determined by people going out and exploring and pushing the limits of the robot.”
Photo: Bob O'Connor
How many Spots have been produced?
Last June, Boston Dynamics said it was planning to build about a hundred Spots by the end of the year, eventually ramping up production to a thousand units per year by the middle of this year. The company admits that it is not quite there yet. It has built close to a hundred beta units, which it has used to test and refine the final design. This version is now being mass manufactured, but the company is still “in the early tens of robots,” Perry says.
How did Boston Dynamics test Spot?
The company has tested the robots during proof-of-concept trials with customers, and at least one is already using Spot to survey construction sites. The company has also done reliability tests at its facility in Waltham, Mass. “We drive around, not quite day and night, but hundreds of miles a week, so that we can collect reliability data and find bugs,” Raibert says.
What about competitors?
In recent years, there’s been a proliferation of quadruped robots that will compete in the same space as Spot. The most prominent of these is ANYmal, from ANYbotics, a Swiss company that spun out of ETH Zurich. Other quadrupeds include Vision from Ghost Robotics, used by one of the teams in the DARPA Subterranean Challenge; and Laikago and Aliengo from Unitree Robotics, a Chinese startup. Raibert views the competition as a positive thing. “We’re excited to see all these companies out there helping validate the space,” he says. “I think we’re more in competition with finding the right need [that robots can satisfy] than we are with the other people building the robots at this point.”
Why is Boston Dynamics selling Spot now?
Boston Dynamics has long been an R&D-centric firm, with most of its early funding coming from military programs, but it says commercializing robots has always been a goal. Productizing its machines probably accelerated when the company was acquired by Google’s parent company, Alphabet, which had an ambitious (and now apparently very dead) robotics program. The commercial focus likely continued after Alphabet sold Boston Dynamics to SoftBank, whose famed CEO, Masayoshi Son, is known for his love of robots—and profits.
Which should I buy, Spot or Aibo?
Don’t laugh. We’ve gotten emails from individuals interested in purchasing a Spot for personal use after seeing our stories on the robot. Alas, Spot is not a bigger, fancier Aibo pet robot. It’s an expensive, industrial-grade machine that requires development and maintenance. If you’re maybe Jeff Bezos you could probably convince Boston Dynamics to sell you one, but otherwise the company will prioritize businesses.
What’s next for Boston Dynamics?
On the commercial side of things, other than Spot, Boston Dynamics is interested in the logistics space. Earlier this year it announced the acquisition of Kinema Systems, a startup that had developed vision sensors and deep-learning software to enable industrial robot arms to locate and move boxes. There’s also Handle, the mobile robot on whegs (wheels + legs), that can pick up and move packages. Boston Dynamics is hiring both in Waltham, Mass., and Mountain View, Calif., where Kinema was located.
Okay, can I watch a cool video now?
During our visit to Boston Dynamics’ headquarters last month, we saw Atlas and Spot performing some cool new tricks that we unfortunately are not allowed to tell you about. We hope that, although the company is putting a lot of energy and resources into its commercial programs, Boston Dynamics will still find plenty of time to improve its robots, build new ones, and of course, keep making videos. [Update: The company has just released a new Spot video, which we’ve embedded at the top of the post.][Update 2: We should have known. Boston Dynamics sure knows how to create buzz for itself: It has just released a second video, this time of Atlas doing some of those tricks we saw during our visit and couldn’t tell you about. Enjoy!]
[ Boston Dynamics ] Continue reading →
#435791 To Fly Solo, Racing Drones Have a Need ...
Drone racing’s ultimate vision of quadcopters weaving nimbly through obstacle courses has attracted far less excitement and investment than self-driving cars aimed at reshaping ground transportation. But the U.S. military and defense industry are betting on autonomous drone racing as the next frontier for developing AI so that it can handle high-speed navigation within tight spaces without human intervention.
The autonomous drone challenge requires split-second decision-making with six degrees of freedom instead of a car’s mere two degrees of road freedom. One research team developing the AI necessary for controlling autonomous racing drones is the Robotics and Perception Group at the University of Zurich in Switzerland. In late May, the Swiss researchers were among nine teams revealed to be competing in the two-year AlphaPilot open innovation challenge sponsored by U.S. aerospace company Lockheed Martin. The winning team will walk away with up to $2.25 million for beating other autonomous racing drones and a professional human drone pilot in head-to-head competitions.
“I think it is important to first point out that having an autonomous drone to finish a racing track at high speeds or even beating a human pilot does not imply that we can have autonomous drones [capable of] navigating in real-world, complex, unstructured, unknown environments such as disaster zones, collapsed buildings, caves, tunnels or narrow pipes, forests, military scenarios, and so on,” says Davide Scaramuzza, a professor of robotics and perception at the University of Zurich and ETH Zurich. “However, the robust and computationally efficient state estimation algorithms, control, and planning algorithms developed for autonomous drone racing would represent a starting point.”
The nine teams that made the cut—from a pool of 424 AlphaPilot applicants—will compete in four 2019 racing events organized under the Drone Racing League’s Artificial Intelligence Robotic Racing Circuit, says Keith Lynn, program manager for AlphaPilot at Lockheed Martin. To ensure an apples-to-apples comparison of each team’s AI secret sauce, each AlphaPilot team will upload its AI code into identical, specially-built drones that have the NVIDIA Xavier GPU at the core of the onboard computing hardware.
“Lockheed Martin is offering mentorship to the nine AlphaPilot teams to support their AI tech development and innovations,” says Lynn. The company “will be hosting a week-long Developers Summit at MIT in July, dedicated to workshopping and improving AlphaPilot teams’ code,” he added. He notes that each team will retain the intellectual property rights to its AI code.
The AlphaPilot challenge takes inspiration from older autonomous drone racing events hosted by academic researchers, Scaramuzza says. He credits Hyungpil Moon, a professor of robotics and mechanical engineering at Sungkyunkwan University in South Korea, for having organized the annual autonomous drone racing competition at the International Conference on Intelligent Robots and Systems since 2016.
It’s no easy task to create and train AI that can perform high-speed flight through complex environments by relying on visual navigation. One big challenge comes from how drones can accelerate sharply, take sharp turns, fly sideways, do zig-zag patterns and even perform back flips. That means camera images can suddenly appear tilted or even upside down during drone flight. Motion blur may occur when a drone flies very close to structures at high speeds and camera pixels collect light from multiple directions. Both cameras and visual software can also struggle to compensate for sudden changes between light and dark parts of an environment.
To lend AI a helping hand, Scaramuzza’s group recently published a drone racing dataset that includes realistic training data taken from a drone flown by a professional pilot in both indoor and outdoor spaces. The data, which includes complicated aerial maneuvers such as back flips, flight sequences that cover hundreds of meters, and flight speeds of up to 83 kilometers per hour, was presented at the 2019 IEEE International Conference on Robotics and Automation.
The drone racing dataset also includes data captured by the group’s special bioinspired event cameras that can detect changes in motion on a per-pixel basis within microseconds. By comparison, ordinary cameras need milliseconds (each millisecond being 1,000 microseconds) to compare motion changes in each image frame. The event cameras have already proven capable of helping drones nimbly dodge soccer balls thrown at them by the Swiss lab’s researchers.
The Swiss group’s work on the racing drone dataset received funding in part from the U.S. Defense Advanced Research Projects Agency (DARPA), which acts as the U.S. military’s special R&D arm for more futuristic projects. Specifically, the funding came from DARPA’s Fast Lightweight Autonomy program that envisions small autonomous drones capable of flying at high speeds through cluttered environments without GPS guidance or communication with human pilots.
Such speedy drones could serve as military scouts checking out dangerous buildings or alleys. They could also someday help search-and-rescue teams find people trapped in semi-collapsed buildings or lost in the woods. Being able to fly at high speed without crashing into things also makes a drone more efficient at all sorts of tasks by making the most of limited battery life, Scaramuzza says. After all, most drone battery life gets used up by the need to hover in flight and doesn’t get drained much by flying faster.
Even if AI manages to conquer the drone racing obstacle courses, that would be the end of the beginning of the technology’s development. What would still be required? Scaramuzza specifically singled out the need to handle low-visibility conditions involving smoke, dust, fog, rain, snow, fire, hail, as some of the biggest challenges for vision-based algorithms and AI in complex real-life environments.
“I think we should develop and release datasets containing smoke, dust, fog, rain, fire, etc. if we want to allow using autonomous robots to complement human rescuers in saving people lives after an earthquake or natural disaster in the future,” Scaramuzza says. Continue reading →
#435784 Amazon Uses 800 Robots to Run This ...
At Amazon’s re:MARS conference in Las Vegas today, who else but Amazon is introducing two new robots designed to make its fulfillment centers even more fulfilling. Xanthus (named after a mythological horse that could very briefly talk but let’s not read too much into that) is a completely redesigned drive unit, one of the robotic mobile bases that carries piles of stuff around for humans to pick from. It has a thinner profile, a third of the parts, costs half as much, and can wear different modules on top to perform a much wider variety of tasks than its predecessor.
Pegasus (named after a mythological horse that could fly but let’s not read too much into that either) is also a mobile robot, but much smaller than Xanthus, designed to help the company quickly and accurately sort individual packages. For Amazon, it’s a completely new large-scale robotic system involving tightly coordinated fleets of robots tossing boxes down chutes, and it’s just as fun to watch as it sounds.
Amazon has 800 Pegasus units already deployed at a sorting facility in the United States, adding to their newly updated total of 200,000 robotic drive units worldwide.
If the Pegasus system looks familiar, it’s because other warehouse automation companies have had something that’s at least superficially very similar up and running for years.
Photo: Amazon
Pegasus is one of Amazon’s new warehouse robots, equipped with a conveyor belt on top and used in the company’s sorting facilities.
But the most interesting announcement that Amazon made, kind of low key and right at the end of their re:MARS talk, is that they’re working on ways of making some of their mobile robots actually collaborative, leveraging some of the technology that they acquired from Boulder, Colo.-based warehouse robotics startup Canvas Technology earlier this year:
“With our recent acquisition of Canvas, we expect to be able to combine this drive platform with AI and autonomous mobility capabilities, and for the first time, allow our robots to move outside of our robotic drive fields, and interact collaboratively with our associates to do a number of mobility tasks,” said Brad Porter, VP of robotics at Amazon.
At the moment, Amazon’s robots are physically separated from humans except for one highly structured station where the human only interacts with the robot in one or two very specific ways. We were told a few months ago that Amazon would like to have mobile robots that are able to move things through the areas of fulfillment centers that have people in them, but that they’re (quite rightly) worried about the safety aspects of having robots and humans work around each other. Other companies are already doing this on a smaller scale, and it means developing a reliable safety system that can handle randomly moving humans, environmental changes, and all kinds of other stuff. It’s much more difficult than having a nice, clean, roped-off area to work in where a wayward human would be an exception rather than just another part of the job.
Photo: Canvas Technology
A robot created by Canvas Technology, a Boulder, Colo.-based warehouse robotics startup acquired by Amazon earlier this year.
It now seems like Canvas has provided the secret sauce that Amazon needed to start implementing this level of autonomy. As for what it’s going to look like, our best guess is that Amazon is going to have to do a little bit more than slap some extra sensors onto Xanthus or Pegasus, if for no other reason than the robots will almost certainly need more ground clearance to let them operate away from the reliably flat floors that they’re accustomed to. We’re expecting to see them performing many of the tasks that companies like Fetch Robotics and OTTO Motors are doing already—moving everything from small boxes to large pallets to keep humans from having to waste time walking.
Of course, this all feeds back into what drives Amazon more than anything else: efficiency. And for better or worse, humans are not uniquely good at moving things from place to place, so it’s no surprise that Amazon wants to automate that, too. The good news is that, at least for now, Amazon still needs humans to babysit all those robots.
[ Amazon ] Continue reading →
#435779 This Robot Ostrich Can Ride Around on ...
Proponents of legged robots say that they make sense because legs are often required to go where humans go. Proponents of wheeled robots say, “Yeah, that’s great but watch how fast and efficient my robot is, compared to yours.” Some robots try and take advantage of wheels and legs with hybrid designs like whegs or wheeled feet, but a simpler and more versatile solution is to do what humans do, and just take advantage of wheels when you need them.
We’ve seen a few experiments with this. The University of Michigan managed to convince Cassie to ride a Segway, with mostly positive (but occasionally quite negative) results. A Segway, and hoverboard-like systems, can provide wheeled mobility for legged robots over flat terrain, but they can’t handle things like stairs, which is kind of the whole point of having a robot with legs anyway.
Image: UC Berkeley
From left, a Segway, a hovercraft, and hovershoes, with complexity in terms of user control increasing from left to right.
At UC Berkeley’s Hybrid Robotics Lab, led by Koushil Sreenath, researchers have taken things a step further. They are teaching their Cassie bipedal robot (called Cassie Cal) to wheel around on a pair of hovershoes. Hovershoes are like hoverboards that have been chopped in half, resulting in a pair of motorized single-wheel skates. You balance on the skates, and control them by leaning forwards and backwards and left and right, which causes each skate to accelerate or decelerate in an attempt to keep itself upright. It’s not easy to get these things to work, even for a human, but by adding a sensor package to Cassie the UC Berkeley researchers have managed to get it to zip around campus fully autonomously.
Remember, Cassie is operating autonomously here—it’s performing vSLAM (with an Intel RealSense) and doing all of its own computation onboard in real time. Watching it jolt across that cracked sidewalk is particularly impressive, especially considering that it only has pitch control over its ankles and can’t roll its feet to maintain maximum contact with the hovershoes. But you can see the advantage that this particular platform offers to a robot like Cassie, including the ability to handle stairs. Stairs in one direction, anyway.
It’s a testament to the robustness of UC Berkeley’s controller that they were willing to let the robot operate untethered and outside, and it sounds like they’re thinking long-term about how legged robots on wheels would be real-world useful:
Our feedback control and autonomous system allow for swift movement through urban environments to aid in everything from food delivery to security and surveillance to search and rescue missions. This work can also help with transportation in large factories and warehouses.
For more details, we spoke with the UC Berkeley students (Shuxiao Chen, Jonathan Rogers, and Bike Zhang) via email.
IEEE Spectrum: How representative of Cassie’s real-world performance is what we see in the video? What happens when things go wrong?
Cassie’s real-world performance is similar to what we see in the video. Cassie can ride the hovershoes successfully all around the campus. Our current controller allows Cassie to robustly ride the hovershoes and rejects various perturbations. At present, one of the failure modes is when the hovershoe rolls to the side—this happens when it goes sideways down a step or encounters a large obstacle on one side of it, causing it to roll over. Under these circumstances, Cassie doesn’t have sufficient control authority (due to the thin narrow feet) to get the hovershoe back on its wheel.
The Hybrid Robotics Lab has been working on robots that walk over challenging terrain—how do wheeled platforms like hovershoes fit in with that?
Surprisingly, this research is related to our prior work on walking on discrete terrain. While locomotion using legs is efficient when traveling over rough and discrete terrain, wheeled locomotion is more efficient when traveling over flat continuous terrain. Enabling legged robots to ride on various micro-mobility platforms will offer multimodal locomotion capabilities, improving the efficiency of locomotion over various terrains.
Our current research furthers the locomotion ability for bipedal robots over continuous terrains by using a wheeled platform. In the long run, we would like to develop multi-modal locomotion strategies based on our current and prior work to allow legged robots to robustly and efficiently locomote in our daily life.
Photo: UC Berkeley
In their experiments, the UC Berkeley researchers say Cassie proved quite capable of riding the hovershoes over rough and uneven terrain, including going down stairs.
How long did it take to train Cassie to use the hovershoes? Are there any hovershoe skills that Cassie is better at than an average human?
We spent about eight months to develop our whole system, including a controller, a path planner, and a vision system. This involved developing mathematical models of Cassie and the hovershoes, setting up a dynamical simulation, figuring out how to interface and communicate with various sensors and Cassie, and doing several experiments to slowly improve performance. In contrast, a human with a good sense of balance needs a few hours to learn to use the hovershoes. A human who has never used skates or skis will probably need a longer time.
A human can easily turn in place on the hovershoes, while Cassie cannot do this motion currently due to our algorithm requiring a non-zero forward speed in order to turn. However, Cassie is much better at riding the hovershoes over rough and uneven terrain including riding the hovershoes down some stairs!
What would it take to make Cassie faster or more agile on the hovershoes?
While Cassie can currently move at a decent pace on the hovershoes and navigate obstacles, Cassie’s ability to avoid obstacles at rapid speeds is constrained by the sensing, the controller, and the onboard computation. To enable Cassie to dynamically weave around obstacles at high speeds exhibiting agile motions, we need to make progress on different fronts.
We need planners that take into account the entire dynamics of the Cassie-Hovershoe system and rapidly generate dynamically-feasible trajectories; we need controllers that tightly coordinate all the degrees-of-freedom of Cassie to dynamically move while balancing on the hovershoes; we need sensors that are robust to motion-blur artifacts caused due to fast turns; and we need onboard computation that can execute our algorithms at real-time speeds.
What are you working on next?
We are working on enabling more aggressive movements for Cassie on the hovershoes by fully exploiting Cassie’s dynamics. We are working on approaches that enable us to easily go beyond hovershoes to other challenging micro-mobility platforms. We are working on enabling Cassie to step onto and off from wheeled platforms such as hovershoes. We would like to create a future of multi-modal locomotion strategies for legged robots to enable them to efficiently help people in our daily life.
“Feedback Control for Autonomous Riding of Hovershoes by a Cassie Bipedal Robot,” by Shuxiao Chen, Jonathan Rogers, Bike Zhang, and Koushil Sreenath from the Hybrid Robotics Lab at UC Berkeley, has been submitted to IEEE Robotics and Automation Letters with option to be presented at the 2019 IEEE RAS International Conference on Humanoid Robots. Continue reading →