Tag Archives: hand
#436258 For Centuries, People Dreamed of a ...
This is part six of a six-part series on the history of natural language processing.
In February of this year, OpenAI, one of the foremost artificial intelligence labs in the world, announced that a team of researchers had built a powerful new text generator called the Generative Pre-Trained Transformer 2, or GPT-2 for short. The researchers used a reinforcement learning algorithm to train their system on a broad set of natural language processing (NLP) capabilities, including reading comprehension, machine translation, and the ability to generate long strings of coherent text.
But as is often the case with NLP technology, the tool held both great promise and great peril. Researchers and policy makers at the lab were concerned that their system, if widely released, could be exploited by bad actors and misappropriated for “malicious purposes.”
The people of OpenAI, which defines its mission as “discovering and enacting the path to safe artificial general intelligence,” were concerned that GPT-2 could be used to flood the Internet with fake text, thereby degrading an already fragile information ecosystem. For this reason, OpenAI decided that it would not release the full version of GPT-2 to the public or other researchers.
GPT-2 is an example of a technique in NLP called language modeling, whereby the computational system internalizes a statistical blueprint of a text so it’s able to mimic it. Just like the predictive text on your phone—which selects words based on words you’ve used before—GPT-2 can look at a string of text and then predict what the next word is likely to be based on the probabilities inherent in that text.
GPT-2 can be seen as a descendant of the statistical language modeling that the Russian mathematician A. A. Markov developed in the early 20th century (covered in part three of this series).
GPT-2 used cutting-edge machine learning algorithms to do linguistic analysis with over 1.5 million parameters.
What’s different with GPT-2, though, is the scale of the textual data modeled by the system. Whereas Markov analyzed a string of 20,000 letters to create a rudimentary model that could predict the likelihood of the next letter of a text being a consonant or a vowel, GPT-2 used 8 million articles scraped from Reddit to predict what the next word might be within that entire dataset.
And whereas Markov manually trained his model by counting only two parameters—vowels and consonants—GPT-2 used cutting-edge machine learning algorithms to do linguistic analysis with over 1.5 million parameters, burning through huge amounts of computational power in the process.
The results were impressive. In their blog post, OpenAI reported that GPT-2 could generate synthetic text in response to prompts, mimicking whatever style of text it was shown. If you prompt the system with a line of William Blake’s poetry, it can generate a line back in the Romantic poet’s style. If you prompt the system with a cake recipe, you get a newly invented recipe in response.
Perhaps the most compelling feature of GPT-2 is that it can answer questions accurately. For example, when OpenAI researchers asked the system, “Who wrote the book The Origin of Species?”—it responded: “Charles Darwin.” While only able to respond accurately some of the time, the feature does seem to be a limited realization of Gottfried Leibniz’s dream of a language-generating machine that could answer any and all human questions (described in part two of this series).
After observing the power of the new system in practice, OpenAI elected not to release the fully trained model. In the lead up to its release in February, there had been heightened awareness about “deepfakes”—synthetic images and videos, generated via machine learning techniques, in which people do and say things they haven’t really done and said. Researchers at OpenAI worried that GPT-2 could be used to essentially create deepfake text, making it harder for people to trust textual information online.
Responses to this decision varied. On one hand, OpenAI’s caution prompted an overblown reaction in the media, with articles about the “dangerous” technology feeding into the Frankenstein narrative that often surrounds developments in AI.
Others took issue with OpenAI’s self-promotion, with some even suggesting that OpenAI purposefully exaggerated GPT-2s power in order to create hype—while contravening a norm in the AI research community, where labs routinely share data, code, and pre-trained models. As machine learning researcher Zachary Lipton tweeted, “Perhaps what's *most remarkable* about the @OpenAI controversy is how *unremarkable* the technology is. Despite their outsize attention & budget, the research itself is perfectly ordinary—right in the main branch of deep learning NLP research.”
OpenAI stood by its decision to release only a limited version of GPT-2, but has since released larger models for other researchers and the public to experiment with. As yet, there has been no reported case of a widely distributed fake news article generated by the system. But there have been a number of interesting spin-off projects, including GPT-2 poetry and a webpage where you can prompt the system with questions yourself.
Mimicking humans on Reddit, the bots have long conversations about a variety of topics, including conspiracy theories and
Star Wars movies.
There’s even a Reddit group populated entirely with text produced by GPT-2-powered bots. Mimicking humans on Reddit, the bots have long conversations about a variety of topics, including conspiracy theories and Star Wars movies.
This bot-powered conversation may signify the new condition of life online, where language is increasingly created by a combination of human and non-human agents, and where maintaining the distinction between human and non-human, despite our best efforts, is increasingly difficult.
The idea of using rules, mechanisms, and algorithms to generate language has inspired people in many different cultures throughout history. But it’s in the online world that this powerful form of wordcraft may really find its natural milieu—in an environment where the identity of speakers becomes more ambiguous, and perhaps, less relevant. It remains to be seen what the consequences will be for language, communication, and our sense of human identity, which is so bound up with our ability to speak in natural language.
This is the sixth installment of a six-part series on the history of natural language processing. Last week’s post explained how an innocent Microsoft chatbot turned instantly racist on Twitter.
You can also check out our prior series on the untold history of AI. Continue reading
#436256 Alphabet Is Developing a Robot to Take ...
Robots excel at carrying out specialized tasks in controlled environments, but put them in your average office and they’d be lost. Alphabet wants to change that by developing what they call the Everyday Robot, which could learn to help us out with our daily chores.
For a long time most robots were painstakingly hand-coded to carry out their functions, but since the deep learning revolution earlier this decade there’s been a growing effort to imbue them with AI that lets them learn new tasks through experience.
That’s led to some impressive breakthroughs, like a robotic hand nimble enough to solve a Rubik’s cube and a robotic arm that can accurately toss bananas across a room.
And it turns out Alphabet’s early-stage research and development division, Alphabet X, has also secretly been using similar machine learning techniques to develop robots adaptable enough to carry out a range of tasks in cluttered and unpredictable human environments like homes and offices.
The robots they’ve built combine a wheeled base with a single arm and a head full of sensors (including LIDAR) for 3D scanning, borrowed from Alphabet’s self-driving car division, Waymo.
At the minute, though, they’re largely restricted to sorting trash for recycling, project leader Hans Peter Brondmo writes in a blog post. While that might sound mundane, identifying different kinds of trash, grasping it, and moving it to the correct bin is still a difficult thing for a robot to do consistently. Some of the robots also have to navigate around the office to sort trash at various recycling stations.
Alphabet says even its human staff were getting it wrong 20 percent of the time, but after several months of training the robots have managed to get that down to 3.5 percent.
Every day, 30 robots toil away in what’s been dubbed the “playpen” sorting trash, and then every night thousands of virtual robots continue to practice in a simulation. This experience is then used to update the robots’ control algorithms each night. All the robots also share their experiences with the others through a process called collaborative learning.
The process isn’t flawless, though. Simonite notes that while the robots exhibit some uncannily smart behaviors, like stirring piles of rubbish to make it easier to grab specific items, they also frequently miss or fumble the objects they’re trying to grasp.
Nonetheless, the project’s leaders are happy with their progress so far. And the hope is that creating robots that are able to learn from little more than experience in complex environments like an office should be a first step towards general-purpose robots that can pick up a variety of useful skills to assist humans.
Taking that next step will be the major test of the project. So far there’s been limited evidence that experience gained by robots in one task can be transferred to learning another. That’s something the group hopes to demonstrate next year.
And it seems there may be more robot news coming out of Alphabet X soon. The group has several other robotics “moonshots” in the pipeline, built on technology and talent transferred over in 2016 from the remains of a broadly unsuccessful splurge on robotics startups by former Google executive Andy Rubin.
Whether this robotics renaissance at Alphabet will finally help robots break into our homes and offices remains to be seen, but with the resources they have at hand, they just may be able to make it happen.
Image Credit: Everyday Robot, Alphabet X Continue reading
#436218 An AI Debated Its Own Potential for Good ...
Artificial intelligence is going to overhaul the way we live and work. But will the changes it brings be for the better? As the technology slowly develops (let’s remember that right now, we’re still very much in the narrow AI space and nowhere near an artificial general intelligence), whether it will end up doing us more harm than good is a question at the top of everyone’s mind.
What kind of response might we get if we posed this question to an AI itself?
Last week at the Cambridge Union in England, IBM did just that. Its Project Debater (an AI that narrowly lost a debate to human debating champion Harish Natarajan in February) gave the opening arguments in a debate about the promise and peril of artificial intelligence.
Critical thinking, linking different lines of thought, and anticipating counter-arguments are all valuable debating skills that humans can practice and refine. While these skills are tougher for an AI to get good at since they often require deeper contextual understanding, AI does have a major edge over humans in absorbing and analyzing information. In the February debate, Project Debater used IBM’s cloud computing infrastructure to read hundreds of millions of documents and extract relevant details to construct an argument.
This time around, Debater looked through 1,100 arguments for or against AI. The arguments were submitted to IBM by the public during the week prior to the debate, through a website set up for that purpose. Of the 1,100 submissions, the AI classified 570 as anti-AI, or of the opinion that the technology will bring more harm to humanity than good. 511 arguments were found to be pro-AI, and the rest were irrelevant to the topic at hand.
Debater grouped the arguments into five themes; the technology’s ability to take over dangerous or monotonous jobs was a pro-AI theme, and on the flip side was its potential to perpetuate the biases of its creators. “AI companies still have too little expertise on how to properly assess datasets and filter out bias,” the tall black box that houses Project Debater said. “AI will take human bias and will fixate it for generations.”
After Project Debater kicked off the debate by giving opening arguments for both sides, two teams of people took over, elaborating on its points and coming up with their own counter-arguments.
In the end, an audience poll voted in favor of the pro-AI side, but just barely; 51.2 percent of voters felt convinced that AI can help us more than it can hurt us.
The software’s natural language processing was able to identify racist, obscene, or otherwise inappropriate comments and weed them out as being irrelevant to the debate. But it also repeated the same arguments multiple times, and mixed up a statement about bias as being pro-AI rather than anti-AI.
IBM has been working on Project Debater for over six years, and though it aims to iron out small glitches like these, the system’s goal isn’t to ultimately outwit and defeat humans. On the contrary, the AI is meant to support our decision-making by taking in and processing huge amounts of information in a nuanced way, more quickly than we ever could.
IBM engineer Noam Slonim envisions Project Debater’s tech being used, for example, by a government seeking citizens’ feedback about a new policy. “This technology can help to establish an interesting and effective communication channel between the decision maker and the people that are going to be impacted by the decision,” he said.
As for the question of whether AI will do more good or harm, perhaps Sylvie Delacroix put it best. A professor of law and ethics at the University of Birmingham who argued on the pro-AI side of the debate, she pointed out that the impact AI will have depends on the way we design it, saying “AI is only as good as the data it has been fed.”
She’s right; rather than asking what sort of impact AI will have on humanity, we should start by asking what sort of impact we want it to have. The people working on AI—not AIs themselves—are ultimately responsible for how much good or harm will be done.
Image Credit: IBM Project Debater at Cambridge Union Society, photo courtesy of IBM Research Continue reading
#436200 AI and the Future of Work: The Economic ...
This week at MIT, academics and industry officials compared notes, studies, and predictions about AI and the future of work. During the discussions, an insurance company executive shared details about one AI program that rolled out at his firm earlier this year. A chatbot the company introduced, the executive said, now handles 150,000 calls per month.
Later in the day, a panelist—David Fanning, founder of PBS’s Frontline—remarked that this statistic is emblematic of broader fears he saw when reporting a new Frontline documentary about AI. “People are scared,” Fanning said of the public’s AI anxiety.
Fanning was part of a daylong symposium about AI’s economic consequences—good, bad, and otherwise—convened by MIT’s Task Force on the Work of the Future.
“Dig into every industry, and you’ll find AI changing the nature of work,” said Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL). She cited recent McKinsey research that found 45 percent of the work people are paid to do today can be automated with currently available technologies. Those activities, McKinsey found, represent some US $2 trillion in wages.
However, the threat of automation—whether by AI or other technologies—isn’t as new as technologists on America’s coasts seem to believe, said panelist Fred Goff, CEO of Jobcase, Inc.
“If you live in Detroit or Toledo, where I come from, technology has been displacing jobs for the last half-century,” Goff said. “I don’t think that most people in this country have the increased anxiety that the coasts do, because they’ve been living this.”
Goff added that the challenge AI poses for the workforce is not, as he put it, “getting coal miners to code.” Rather, he said, as AI automates some jobs, it will also open opportunities for “reskilling” that may have nothing to do with AI or automation. He touted trade schools—teaching skills like welding, plumbing, and electrical work—and certification programs for sales industry software packages like Salesforce.
On the other hand, a documentarian who reported another recent program on AI—Krishna Andavolu, senior correspondent for Vice Media—said “reskilling” may not be an easy answer.
“People in rooms like this … don’t realize that a lot of people don’t want to work that much,” Andavolu said. “They’re not driven by passion for their career, they’re driven by passion for life. We’re telling a lot of these workers that they need to reskill. But to a lot of people that sounds like, ‘I’ve got to work twice as hard for what I have now.’ That sounds scary. We underestimate that at our peril.”
Part of the problem with “reskilling,” Andavolu said, is that some high-growth industries involve caregiving for seniors and in medical facilities—roles which are traditionally considered “feminized” careers. Destigmatizing these jobs, and increasing the pay to match the salaries of displaced jobs like long-haul truck drivers, is another challenge.
Daron Acemoglu, MIT Institute Professor of Economics, faulted the comparably slim funding of academic research into AI.
“There is nothing preordained about the progress of technology,” he said. Computers, the Internet, antibiotics, and sensors all grew out of government and academic research programs. What he called the “blue-sky thinking” of non-corporate AI research can also develop applications that are not purely focused on maximizing profits.
American companies, Acemoglu said, get tax breaks for capital R&D—but not for developing new technologies for their employees. “We turn around and [tell companies], ‘Use your technologies to empower workers,’” he said. “But why should they do that? Hiring workers is expensive in many ways. And we’re subsidizing capital.”
Said Sarita Gupta, director of the Ford Foundation’s Future of Work(ers) Program, “Low and middle income workers have for over 30 years been experiencing stagnant and declining pay, shrinking benefits, and less power on the job. Now technology is brilliant at enabling scale. But the question we sit with is—how do we make sure that we’re not scaling these longstanding problems?”
Andrew McAfee, co-director of MIT’s Initiative on the Digital Economy, said AI may not reduce the number of jobs available in the workplace today. But the quality of those jobs is another story. He cited the Dutch economist Jan Tinbergen who decades ago said that “Inequality is a race between technology and education.”
McAfee said, ultimately, the time to solve the economic problems AI poses for workers in the United States is when the U.S. economy is doing well—like right now.
“We do have the wind at our backs,” said Elisabeth Reynolds, executive director of MIT’s Task Force on the Work of the Future.
“We have some breathing room right now,” McAfee agreed. “Economic growth has been pretty good. Unemployment is pretty low. Interest rates are very, very low. We might not have that war chest in the future.” Continue reading