Tag Archives: grasp

#436256 Alphabet Is Developing a Robot to Take ...

Robots excel at carrying out specialized tasks in controlled environments, but put them in your average office and they’d be lost. Alphabet wants to change that by developing what they call the Everyday Robot, which could learn to help us out with our daily chores.

For a long time most robots were painstakingly hand-coded to carry out their functions, but since the deep learning revolution earlier this decade there’s been a growing effort to imbue them with AI that lets them learn new tasks through experience.

That’s led to some impressive breakthroughs, like a robotic hand nimble enough to solve a Rubik’s cube and a robotic arm that can accurately toss bananas across a room.

And it turns out Alphabet’s early-stage research and development division, Alphabet X, has also secretly been using similar machine learning techniques to develop robots adaptable enough to carry out a range of tasks in cluttered and unpredictable human environments like homes and offices.

The robots they’ve built combine a wheeled base with a single arm and a head full of sensors (including LIDAR) for 3D scanning, borrowed from Alphabet’s self-driving car division, Waymo.

At the minute, though, they’re largely restricted to sorting trash for recycling, project leader Hans Peter Brondmo writes in a blog post. While that might sound mundane, identifying different kinds of trash, grasping it, and moving it to the correct bin is still a difficult thing for a robot to do consistently. Some of the robots also have to navigate around the office to sort trash at various recycling stations.

Alphabet says even its human staff were getting it wrong 20 percent of the time, but after several months of training the robots have managed to get that down to 3.5 percent.

Every day, 30 robots toil away in what’s been dubbed the “playpen” sorting trash, and then every night thousands of virtual robots continue to practice in a simulation. This experience is then used to update the robots’ control algorithms each night. All the robots also share their experiences with the others through a process called collaborative learning.

The process isn’t flawless, though. Simonite notes that while the robots exhibit some uncannily smart behaviors, like stirring piles of rubbish to make it easier to grab specific items, they also frequently miss or fumble the objects they’re trying to grasp.

Nonetheless, the project’s leaders are happy with their progress so far. And the hope is that creating robots that are able to learn from little more than experience in complex environments like an office should be a first step towards general-purpose robots that can pick up a variety of useful skills to assist humans.

Taking that next step will be the major test of the project. So far there’s been limited evidence that experience gained by robots in one task can be transferred to learning another. That’s something the group hopes to demonstrate next year.

And it seems there may be more robot news coming out of Alphabet X soon. The group has several other robotics “moonshots” in the pipeline, built on technology and talent transferred over in 2016 from the remains of a broadly unsuccessful splurge on robotics startups by former Google executive Andy Rubin.

Whether this robotics renaissance at Alphabet will finally help robots break into our homes and offices remains to be seen, but with the resources they have at hand, they just may be able to make it happen.

Image Credit: Everyday Robot, Alphabet X Continue reading

Posted in Human Robots

#436220 How Boston Dynamics Is Redefining Robot ...

Gif: Bob O’Connor/IEEE Spectrum

With their jaw-dropping agility and animal-like reflexes, Boston Dynamics’ bioinspired robots have always seemed to have no equal. But that preeminence hasn’t stopped the company from pushing its technology to new heights, sometimes literally. Its latest crop of legged machines can trudge up and down hills, clamber over obstacles, and even leap into the air like a gymnast. There’s no denying their appeal: Every time Boston Dynamics uploads a new video to YouTube, it quickly racks up millions of views. These are probably the first robots you could call Internet stars.

Spot

Photo: Bob O’Connor

84 cm HEIGHT

25 kg WEIGHT

5.76 km/h SPEED

SENSING: Stereo cameras, inertial measurement unit, position/force sensors

ACTUATION: 12 DC motors

POWER: Battery (90 minutes per charge)

Boston Dynamics, once owned by Google’s parent company, Alphabet, and now by the Japanese conglomerate SoftBank, has long been secretive about its designs. Few publications have been granted access to its Waltham, Mass., headquarters, near Boston. But one morning this past August, IEEE Spectrum got in. We were given permission to do a unique kind of photo shoot that day. We set out to capture the company’s robots in action—running, climbing, jumping—by using high-speed cameras coupled with powerful strobes. The results you see on this page: freeze-frames of pure robotic agility.

We also used the photos to create interactive views, which you can explore online on our Robots Guide. These interactives let you spin the robots 360 degrees, or make them walk and jump on your screen.

Boston Dynamics has amassed a minizoo of robotic beasts over the years, with names like BigDog, SandFlea, and WildCat. When we visited, we focused on the two most advanced machines the company has ever built: Spot, a nimble quadruped, and Atlas, an adult-size humanoid.

Spot can navigate almost any kind of terrain while sensing its environment. Boston Dynamics recently made it available for lease, with plans to manufacture something like a thousand units per year. It envisions Spot, or even packs of them, inspecting industrial sites, carrying out hazmat missions, and delivering packages. And its YouTube fame has not gone unnoticed: Even entertainment is a possibility, with Cirque du Soleil auditioning Spot as a potential new troupe member.

“It’s really a milestone for us going from robots that work in the lab to these that are hardened for work out in the field,” Boston Dynamics CEO Marc Raibert says in an interview.

Atlas

Photo: Bob O’Connor

150 cm HEIGHT

80 kg WEIGHT

5.4 km/h SPEED

SENSING: Lidar and stereo vision

ACTUATION: 28 hydraulic actuators

POWER: Battery

Our other photographic subject, Atlas, is Boston Dynamics’ biggest celebrity. This 150-centimeter-tall (4-foot-11-inch-tall) humanoid is capable of impressive athletic feats. Its actuators are driven by a compact yet powerful hydraulic system that the company engineered from scratch. The unique system gives the 80-kilogram (176-pound) robot the explosive strength needed to perform acrobatic leaps and flips that don’t seem possible for such a large humanoid to do. Atlas has inspired a string of parody videos on YouTube and more than a few jokes about a robot takeover.

While Boston Dynamics excels at making robots, it has yet to prove that it can sell them. Ever since its founding in 1992 as a spin-off from MIT, the company has been an R&D-centric operation, with most of its early funding coming from U.S. military programs. The emphasis on commercialization seems to have intensified after the acquisition by SoftBank, in 2017. SoftBank’s founder and CEO, Masayoshi Son, is known to love robots—and profits.

The launch of Spot is a significant step for Boston Dynamics as it seeks to “productize” its creations. Still, Raibert says his long-term goals have remained the same: He wants to build machines that interact with the world dynamically, just as animals and humans do. Has anything changed at all? Yes, one thing, he adds with a grin. In his early career as a roboticist, he used to write papers and count his citations. Now he counts YouTube views.

In the Spotlight

Photo: Bob O’Connor

Boston Dynamics designed Spot as a versatile mobile machine suitable for a variety of applications. The company has not announced how much Spot will cost, saying only that it is being made available to select customers, which will be able to lease the robot. A payload bay lets you add up to 14 kilograms of extra hardware to the robot’s back. One of the accessories that Boston Dynamics plans to offer is a 6-degrees-of-freedom arm, which will allow Spot to grasp objects and open doors.

Super Senses

Photo: Bob O’Connor

Spot’s hardware is almost entirely custom-designed. It includes powerful processing boards for control as well as sensor modules for perception. The ­sensors are located on the front, rear, and sides of the robot’s body. Each module consists of a pair of stereo cameras, a wide-angle camera, and a texture projector, which enhances 3D sensing in low light. The sensors allow the robot to use the navigation method known as SLAM, or simultaneous localization and mapping, to get around autonomously.

Stepping Up

Photo: Bob O’Connor

In addition to its autonomous behaviors, Spot can also be steered by a remote operator with a game-style controller. But even when in manual mode, the robot still exhibits a high degree of autonomy. If there’s an obstacle ahead, Spot will go around it. If there are stairs, Spot will climb them. The robot goes into these operating modes and then performs the related actions completely on its own, without any input from the operator. To go down a flight of stairs, Spot walks backward, an approach Boston Dynamics says provides greater stability.

Funky Feet

Gif: Bob O’Connor/IEEE Spectrum

Spot’s legs are powered by 12 custom DC motors, each geared down to provide high torque. The robot can walk forward, sideways, and backward, and trot at a top speed of 1.6 meters per second. It can also turn in place. Other gaits include crawling and pacing. In one wildly popular YouTube video, Spot shows off its fancy footwork by dancing to the pop hit “Uptown Funk.”

Robot Blood

Photo: Bob O’Connor

Atlas is powered by a hydraulic system consisting of 28 actuators. These actuators are basically cylinders filled with pressurized fluid that can drive a piston with great force. Their high performance is due in part to custom servo valves that are significantly smaller and lighter than the aerospace models that Boston Dynamics had been using in earlier designs. Though not visible from the outside, the innards of an Atlas are filled with these hydraulic actuators as well as the lines of fluid that connect them. When one of those lines ruptures, Atlas bleeds the hydraulic fluid, which happens to be red.

Next Generation

Gif: Bob O’Connor/IEEE Spectrum

The current version of Atlas is a thorough upgrade of the original model, which was built for the DARPA Robotics Challenge in 2015. The newest robot is lighter and more agile. Boston Dynamics used industrial-grade 3D printers to make key structural parts, giving the robot greater strength-to-weight ratio than earlier designs. The next-gen Atlas can also do something that its predecessor, famously, could not: It can get up after a fall.

Walk This Way

Photo: Bob O’Connor

To control Atlas, an operator provides general steering via a manual controller while the robot uses its stereo cameras and lidar to adjust to changes in the environment. Atlas can also perform certain tasks autonomously. For example, if you add special bar-code-type tags to cardboard boxes, Atlas can pick them up and stack them or place them on shelves.

Biologically Inspired

Photos: Bob O’Connor

Atlas’s control software doesn’t explicitly tell the robot how to move its joints, but rather it employs mathematical models of the underlying physics of the robot’s body and how it interacts with the environment. Atlas relies on its whole body to balance and move. When jumping over an obstacle or doing acrobatic stunts, the robot uses not only its legs but also its upper body, swinging its arms to propel itself just as an athlete would.

This article appears in the December 2019 print issue as “By Leaps and Bounds.” Continue reading

Posted in Human Robots

#436151 Natural Language Processing Dates Back ...

This is part one of a six-part series on the history of natural language processing.

We’re in the middle of a boom time for natural language processing (NLP), the field of computer science that focuses on linguistic interactions between humans and machines. Thanks to advances in machine learning over the past decade, we’ve seen vast improvements in speech recognition and machine translation software. Language generators are now good enough to write coherent news articles, and virtual agents like Siri and Alexa are becoming part of our daily lives.

Most trace the origins of this field back to the beginning of the computer age, when Alan Turing, writing in 1950, imagined a smart machine that could interact fluently with a human via typed text on a screen. For this reason, machine-generated language is mostly understood as a digital phenomenon—and a central goal of artificial intelligence (AI) research.

This six-part series will challenge that common understanding of NLP. In fact, attempts to design formal rules and machines that can analyze, process, and generate language go back hundreds of years.

Attempts to design formal rules and machines that can analyze, process, and generate language go back hundreds of years.

While specific technologies have changed over time, the basic idea of treating language as a material that can be artificially manipulated by rule-based systems has been pursued by many people in many cultures and for many different reasons. These historical experiments reveal the promise and perils of attempting to simulate human language in non-human ways—and they hold lessons for today’s practitioners of cutting-edge NLP techniques.

The story begins in medieval Spain. In the late 1200s, a Jewish mystic by the name of Abraham Abulafia sat down at a table in his small house in Barcelona, picked up a quill, dipped it in ink, and began combining the letters of the Hebrew alphabet in strange and seemingly random ways. Aleph with Bet, Bet with Gimmel, Gimmel with Aleph and Bet, and so on.

Abulafia called this practice “the science of the combination of letters.” He wasn’t actually combining letters at random; instead he was carefully following a secret set of rules that he had devised while studying an ancient Kabbalistic text called the Sefer Yetsirah. This book describes how God created “all that is formed and all that is spoken” by combining Hebrew letters according to sacred formulas. In one section, God exhausts all possible two-letter combinations of the 22 Hebrew letters.

By studying the Sefer Yetsirah, Abulafia gained the insight that linguistic symbols can be manipulated with formal rules in order to create new, interesting, insightful sentences. To this end, he spent months generating thousands of combinations of the 22 letters of the Hebrew alphabet and eventually emerged with a series of books that he claimed were endowed with prophetic wisdom.

For Abulafia, generating language according to divine rules offered insight into the sacred and the unknown, or as he put it, allowed him to “grasp things which by human tradition or by thyself thou would not be able to know.”

Combining letters to generate language allows thou to “grasp things which by human tradition or by thyself thou would not be able to know.”
—Abraham Abulafia, mystic

But other Jewish scholars considered this rudimentary language generation a dangerous act that bordered on the profane. The Talmud tells stories of rabbis who, by the magical act of permuting language according to the formulas set out in the Sefer Yetsirah, created artificial creatures called golems. In these tales, rabbis manipulated the letters of the Hebrew alphabet to replicate God’s act of creation, using the sacred formulas to imbue inanimate objects with life.

In some of these myths, the rabbis used this skill for practical reasons, to make animals to eat when hungry or servants to help them with domestic duties. But many of these golem stories end badly. In one particularly well-known fable, Judah Loew ben Bezalel, the 16th century rabbi of Prague, used the sacred practice of letter combinatorics to conjure a golem to protect the Jewish community from antisemitic attacks, only to see the golem turn violently on him instead.

This “science of the combination of letters” was a rudimentary form of natural language processing, as it involved combining letters of the Hebrew alphabet according to specific rules. For Kabbalists, it was a double-edged sword: a way to access new forms of knowledge and wisdom, but also an inherently dangerous practice that could bring about unintended consequences.

This tension reappears throughout the long history of language processing, and still echoes in discussions about the most cutting-edge NLP technology of our digital era.

This is the first installment of a six-part series on the history of natural language processing. Come back next Monday for part two, “In the 17th Century, Leibniz Dreamed of a Machine That Could Calculate Ideas​.”

You can also check out our prior series on the untold history of AI. Continue reading

Posted in Human Robots

#436140 Let’s Build Robots That Are as Smart ...

Illustration: Nicholas Little

Let’s face it: Robots are dumb. At best they are idiot savants, capable of doing one thing really well. In general, even those robots require specialized environments in which to do their one thing really well. This is why autonomous cars or robots for home health care are so difficult to build. They’ll need to react to an uncountable number of situations, and they’ll need a generalized understanding of the world in order to navigate them all.

Babies as young as two months already understand that an unsupported object will fall, while five-month-old babies know materials like sand and water will pour from a container rather than plop out as a single chunk. Robots lack these understandings, which hinders them as they try to navigate the world without a prescribed task and movement.

But we could see robots with a generalized understanding of the world (and the processing power required to wield it) thanks to the video-game industry. Researchers are bringing physics engines—the software that provides real-time physical interactions in complex video-game worlds—to robotics. The goal is to develop robots’ understanding in order to learn about the world in the same way babies do.

Giving robots a baby’s sense of physics helps them navigate the real world and can even save on computing power, according to Lochlainn Wilson, the CEO of SE4, a Japanese company building robots that could operate on Mars. SE4 plans to avoid the problems of latency caused by distance from Earth to Mars by building robots that can operate independently for a few hours before receiving more instructions from Earth.

Wilson says that his company uses simple physics engines such as PhysX to help build more-independent robots. He adds that if you can tie a physics engine to a coprocessor on the robot, the real-time basic physics intuitions won’t take compute cycles away from the robot’s primary processor, which will often be focused on a more complicated task.

Wilson’s firm occasionally still turns to a traditional graphics engine, such as Unity or the Unreal Engine, to handle the demands of a robot’s movement. In certain cases, however, such as a robot accounting for friction or understanding force, you really need a robust physics engine, Wilson says, not a graphics engine that simply simulates a virtual environment. For his projects, he often turns to the open-source Bullet Physics engine built by Erwin Coumans, who is now an employee at Google.

Bullet is a popular physics-engine option, but it isn’t the only one out there. Nvidia Corp., for example, has realized that its gaming and physics engines are well-placed to handle the computing demands required by robots. In a lab in Seattle, Nvidia is working with teams from the University of Washington to build kitchen robots, fully articulated robot hands and more, all equipped with Nvidia’s tech.

When I visited the lab, I watched a robot arm move boxes of food from counters to cabinets. That’s fairly straightforward, but that same robot arm could avoid my body if I got in its way, and it could adapt if I moved a box of food or dropped it onto the floor.

The robot could also understand that less pressure is needed to grasp something like a cardboard box of Cheez-It crackers versus something more durable like an aluminum can of tomato soup.

Nvidia’s silicon has already helped advance the fields of artificial intelligence and computer vision by making it possible to process multiple decisions in parallel. It’s possible that the company’s new focus on virtual worlds will help advance the field of robotics and teach robots to think like babies.

This article appears in the November 2019 print issue as “Robots as Smart as Babies.” Continue reading

Posted in Human Robots

#436065 From Mainframes to PCs: What Robot ...

This is a guest post. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.

Autonomous robots are coming around slowly. We already got autonomous vacuum cleaners, autonomous lawn mowers, toys that bleep and blink, and (maybe) soon autonomous cars. Yet, generation after generation, we keep waiting for the robots that we all know from movies and TV shows. Instead, businesses seem to get farther and farther away from the robots that are able to do a large variety of tasks using general-purpose, human anatomy-inspired hardware.

Although these are the droids we have been looking for, anything that came close, such as Willow Garage’s PR2 or Rethink Robotics’ Baxter has bitten the dust. With building a robotic company being particularly hard, compounding business risk with technological risk, the trend goes from selling robots to selling actual services like mowing your lawn, provide taxi rides, fulfilling retail orders, or picking strawberries by the pound. Unfortunately for fans of R2-D2 and C-3PO, these kind of business models emphasize specialized, room- or fridge-sized hardware that is optimized for one very specific task, but does not contribute to a general-purpose robotic platform.

We have actually seen something very similar in the personal computer (PC) industry. In the 1950s, even though computers could be as big as an entire room and were only available to a selected few, the public already had a good idea of what computers would look like. A long list of fictional computers started to populate mainstream entertainment during that time. In a 1962 New York Times article titled “Pocket Computer to Replace Shopping List,” visionary scientist John Mauchly stated that “there is no reason to suppose the average boy or girl cannot be master of a personal computer.”

In 1968, Douglas Engelbart gave us the “mother of all demos,” browsing hypertext on a graphical screen and a mouse, and other ideas that have become standard only decades later. Now that we have finally seen all of this, it might be helpful to examine what actually enabled the computing revolution to learn where robotics is really at and what we need to do next.

The parallels between computers and robots

In the 1970s, mainframes were about to be replaced by the emerging class of mini-computers, fridge-sized devices that cost less than US $25,000 ($165,000 in 2019 dollars). These computers did not use punch-cards, but could be programmed in Fortran and BASIC, dramatically expanding the ease with which potential applications could be created. Yet it was still unclear whether mini-computers could ever replace big mainframes in applications that require fast and efficient processing of large amounts of data, let alone enter every living room. This is very similar to the robotics industry right now, where large-scale factory robots (mainframes) that have existed since the 1960s are seeing competition from a growing industry of collaborative robots that can safely work next to humans and can easily be installed and programmed (minicomputers). As in the ’70s, applications for these devices that reach system prices comparable to that of a luxury car are quite limited, and it is hard to see how they could ever become a consumer product.

Yet, as in the computer industry, successful architectures are quickly being cloned, driving prices down, and entirely new approaches on how to construct or program robotic arms are sprouting left and right. Arm makers are joined by manufacturers of autonomous carts, robotic grippers, and sensors. These components can be combined, paving the way for standard general purpose platforms that follow the model of the IBM PC, which built a capable, open architecture relying as much on commodity parts as possible.

General purpose robotic systems have not been successful for similar reasons that general purpose, also known as “personal,” computers took decades to emerge. Mainframes were custom-built for each application, while typewriters got smarter and smarter, not really leaving room for general purpose computers in between. Indeed, given the cost of hardware and the relatively little abilities of today’s autonomous robots, it is almost always smarter to build a special purpose machine than trying to make a collaborative mobile manipulator smart.

A current example is e-commerce grocery fulfillment. The current trend is to reserve underutilized parts of a brick-and-mortar store for a micro-fulfillment center that stores goods in little crates with an automated retrieval system and a (human) picker. A number of startups like Alert Innovation, Fabric, Ocado Technology, TakeOff Technologies, and Tompkins Robotics, to just name a few, have raised hundreds of millions of venture capital recently to build mainframe equivalents of robotic fulfillment centers. This is in contrast with a robotic picker, which would drive through the aisles to restock and pick from shelves. Such a robotic store clerk would come much closer to our vision of a general purpose robot, but would require many copies of itself that crowd the aisles to churn out hundreds of orders per hour as a microwarehouse could. Although eventually more efficient, the margins in retail are already low and make it unlikely that this industry will produce the technological jump that we need to get friendly C-3POs manning the aisles.

Startups have raised hundreds of millions of venture capital recently to build mainframe equivalents of robotic fulfillment centers. This is in contrast with a robotic picker, which would drive through the aisles to restock and pick from shelves, and would come much closer to our vision of a general purpose robot.

Mainframes were also attacked from the bottom. Fascination with the new digital technology has led to a hobbyist movement to create microcomputers that were sold via mail order or at RadioShack. Initially, a large number of small businesses was selling tens, at most hundreds, of devices, usually as a kit and with wooden enclosures. This trend culminated into the “1977 Trinity” in the form of the Apple II, the Commodore PET, and the Tandy TRS-80, complete computers that were sold for prices around $2500 (TRS) to $5000 (Apple) in today’s dollars. The main application of these computers was their programmability (in BASIC), which would enable consumers to “learn to chart your biorhythms, balance your checking account, or even control your home environment,” according to an original Apple advertisement. Similarly, there exists a myriad of gadgets that explore different aspects of robotics such as mobility, manipulation, and entertainment.

As in the fledgling personal computing industry, the advertised functionality was at best a model of the real deal. A now-famous milestone in entertainment robotics was the original Sony’s Aibo, a robotic dog that was advertised to have many properties that a real dog has such as develop its own personality, play with a toy, and interact with its owner. Released in 1999, and re-launched in 2018, the platform has a solid following among hobbyists and academics who like its programmability, but probably only very few users who accept the device as a pet stand-in.

There also exist countless “build-your-own-robotic-arm” kits. One of the more successful examples is the uArm, which sells for around $800, and is advertised to perform pick and place, assembly, 3D printing, laser engraving, and many other things that sound like high value applications. Using compelling videos of the robot actually doing these things in a constrained environment has led to two successful crowd-funding campaigns, and have established the robot as a successful educational tool.

Finally, there exist platforms that allow hobbyist programmers to explore mobility to construct robots that patrol your house, deliver items, or provide their users with telepresence abilities. An example of that is the Misty II. Much like with the original Apple II, there remains a disconnect between the price of the hardware and the fidelity of the applications that were available.

For computers, this disconnect began to disappear with the invention of the first electronic spreadsheet software VisiCalc that spun out of Harvard in 1979 and prompted many people to buy an entire microcomputer just to run the program. VisiCalc was soon joined by WordStar, a word processing application, that sold for close to $2000 in today’s dollars. WordStar, too, would entice many people to buy the entire hardware just to use the software. The two programs are early examples of what became known as “killer application.”

With factory automation being mature, and robots with the price tag of a minicomputer being capable of driving around and autonomously carrying out many manipulation tasks, the robotics industry is somewhere where the PC industry was between 1973—the release of the Xerox Alto, the first computer with a graphical user interface, mouse, and special software—and 1979—when microcomputers in the under $5000 category began to take off.

Killer apps for robots
So what would it take for robotics to continue to advance like computers did? The market itself already has done a good job distilling what the possible killer apps are. VCs and customers alike push companies who have set out with lofty goals to reduce their offering to a simple value proposition. As a result, companies that started at opposite ends often converge to mirror images of each other that offer very similar autonomous carts, (bin) picking, palletizing, depalletizing, or sorting solutions. Each of these companies usually serves a single application to a single vertical—for example bin-picking clothes, transporting warehouse goods, or picking strawberries by the pound. They are trying to prove that their specific technology works without spreading themselves too thin.

Very few of these companies have really taken off. One example is Kiva Systems, which turned into the logistic robotics division of Amazon. Kiva and others are structured around sound value propositions that are grounded in well-known user needs. As these solutions are very specialized, however, it is unlikely that they result into any economies of scale of the same magnitude that early computer users who bought both a spreadsheet and a word processor application for their expensive minicomputer could enjoy. What would make these robotic solutions more interesting is when functionality becomes stackable. Instead of just being able to do bin picking, palletizing, and transportation with the same hardware, these three skills could be combined to model entire processes.

A skill that is yet little addressed by startups and is historically owned by the mainframe equivalent of robotics is assembly of simple mechatronic devices. The ability to assemble mechatronic parts is equivalent to other tasks such as changing a light bulb, changing the batteries in a remote control, or tending machines like a lever-based espresso machine. These tasks would involve the autonomous execution of complete workflows possible using a single machine, eventually leading to an explosion of industrial productivity across all sectors. For example, picking up an item from a bin, arranging it on the robot, moving it elsewhere, and placing it into a shelf or a machine is a process that equally applies to a manufacturing environment, a retail store, or someone’s kitchen.

Image: Robotic Materials Inc.

Autonomous, vision and force-based assembly of the
Siemens robot learning challenge.

Even though many of the above applications are becoming possible, it is still very hard to get a platform off the ground without added components that provide “killer app” value of their own. Interesting examples are Rethink Robotics or the Robot Operating System (ROS). Rethink Robotics’ Baxter and Sawyer robots pioneered a great user experience (like the 1973 Xerox Alto, really the first PC), but its applications were difficult to extend beyond simple pick-and-place and palletizing and depalletizing items.

ROS pioneered interprocess communication software that was adapted to robotic needs (multiple computers, different programming languages) and the idea of software modularity in robotics, but—in the absence of a common hardware platform—hasn’t yet delivered a single application, e.g. for navigation, path planning, or grasping, that performs beyond research-grade demonstration level and won’t get discarded once developers turn to production systems. At the same time, an increasing number of robotic devices, such as robot arms or 3D perception systems that offer intelligent functionality, provide other ways to wire them together that do not require an intermediary computer, while keeping close control over the real-time aspects of their hardware.

Image: Robotic Materials Inc.

Robotic Materials GPR-1 combines a MIR-100 autonomous cart with an UR-5 collaborative robotic arm, an onRobot force/torque sensor and Robotic Materials’ SmartHand to perform out-of-the-box mobile assembly, bin picking, palletizing, and depalletizing tasks.

At my company, Robotic Materials Inc., we have made strides to identify a few applications such as bin picking and assembly, making them configurable with a single click by combining machine learning and optimization with an intuitive user interface. Here, users can define object classes and how to grasp them using a web browser, which then appear as first-class objects in a robot-specific graphical programming language. We have also done this for assembly, allowing users to stack perception-based picking and force-based assembly primitives by simply dragging and dropping appropriate commands together.

While such an approach might answer the question of a killer app for robots priced in the “minicomputer” range, it is unclear how killer app-type value can be generated with robots in the less-than-$5000 category. A possible answer is two-fold: First, with low-cost arms, mobility platforms, and entertainment devices continuously improving, a confluence of technology readiness and user innovation, like with the Apple II and VisiCalc, will eventually happen. For example, there is not much innovation needed to turn Misty into a home security system; the uArm into a low-cost bin-picking system; or an Aibo-like device into a therapeutic system for the elderly or children with autism.

Second, robots and their components have to become dramatically cheaper. Indeed, computers have seen an exponential reduction in price accompanied by an exponential increase in computational power, thanks in great part to Moore’s Law. This development has helped robotics too, allowing us to reach breakthroughs in mobility and manipulation due to the ability to process massive amounts of image and depth data in real-time, and we can expect it to continue to do so.

Is there a Moore’s Law for robots?
One might ask, however, how a similar dynamics might be possible for robots as a whole, including all their motors and gears, and what a “Moore’s Law” would look like for the robotics industry. Here, it helps to remember that the perpetuation of Moore’s Law is not the reason, but the result of the PC revolution. Indeed, the first killer apps for bookkeeping, editing, and gaming were so good that they unleashed tremendous consumer demand, beating the benchmark on what was thought to be physically possible over and over again. (I vividly remember 56 kbps to be the absolute maximum data rate for copper phone lines until DSL appeared.)

That these economies of scale are also applicable to mechatronics is impressively demonstrated by the car industry. A good example is the 2020 Prius Prime, a highly computerized plug-in hybrid, that is available for one third of the cost of my company’s GPR-1 mobile manipulator while being orders of magnitude more complex, sporting an electrical motor, a combustion engine, and a myriad of sensors and computers. It is therefore very well conceivable to produce a mobile manipulator that retails at one tenth of the cost of a modern car, once robotics enjoy similar mass-market appeal. Given that these robots are part of the equation, actively lowering cost of production, this might happen as fast as never before in the history of industrialization.

It is therefore very well conceivable to produce a mobile manipulator that retails at one tenth of the cost of a modern car, once robotics enjoy similar mass-market appeal.

There is one more driver that might make robots exponentially more capable: the cloud. Once a general purpose robot has learned or was programmed with a new skill, it could share it with every other robot. At some point, a grocer who buys a robot could assume that it already knows how to recognize and handle 99 percent of the retail items in the store. Likewise, a manufacturer can assume that the robot can handle and assemble every item available from McMaster-Carr and Misumi. Finally, families could expect a robot to know every kitchen item that Ikea and Pottery Barn is selling. Sounds like a labor intense problem, but probably more manageable than collecting footage for Google’s Street View using cars, tricycles, and snowmobiles, among other vehicles.

Strategies for robot startups
While we are waiting for these two trends—better and better applications and hardware with decreasing cost—to converge, we as a community have to keep exploring what the canonical robotic applications beyond mobility, bin picking, palletizing, depalletizing, and assembly are. We must also continue to solve the fundamental challenges that stand in the way of making these solutions truly general and robust.

For both questions, it might help to look at the strategies that have been critical in the development of the personal computer, which might equally well apply to robotics:

Start with a solution to a problem your customers have. Unfortunately, their problem is almost never that they need your sensor, widget, or piece of code, but something that already costs them money or negatively affects them in some other way. Example: There are many more people who had a problem calculating their taxes (and wanted to buy VisiCalc) than writing their own solution in BASIC.

Build as little of your own hardware as necessary. Your business model should be stronger than the margin you can make on the hardware. Why taking the risk? Example: Why build your own typewriter if you can write the best typewriting application that makes it worth buying a computer just for that?

If your goal is a platform, make sure it comes with a killer application, which alone justifies the platform cost. Example: Microcomputer companies came and went until the “1977 Trinity” intersected with the killer apps spreadsheet and word processors. Corollary: You can also get lucky.

Use an open architecture, which creates an ecosystem where others compete on creating better components and peripherals, while allowing others to integrate your solution into their vertical and stack it with other devices. Example: Both the Apple II and the IBM PC were completely open architectures, enabling many clones, thereby growing the user and developer base.

It’s worthwhile pursuing this. With most business processes already being digitized, general purpose robots will allow us to fill in gaps in mobility and manipulation, increasing productivity at levels only limited by the amount of resources and energy that are available, possibly creating a utopia in which creativity becomes the ultimate currency. Maybe we’ll even get R2-D2.

Nikolaus Correll is an associate professor of computer science at the University of Colorado at Boulder where he works on mobile manipulation and other robotics applications. He’s co-founder and CTO of Robotic Materials Inc., which is supported by the National Science Foundation and the National Institute of Standards and Technology via their Small Business Innovative Research (SBIR) programs. Continue reading

Posted in Human Robots