Tag Archives: google
#438925 Nanophotonics Could Be the ‘Dark ...
The race to build the first practical quantum computers looks like a two-horse contest between machines built from superconducting qubits and those that use trapped ions. But new research suggests a third contender—machines based on optical technology—could sneak up on the inside.
The most advanced quantum computers today are the ones built by Google and IBM, which rely on superconducting circuits to generate the qubits that form the basis of quantum calculations. They are now able to string together tens of qubits, and while controversial, Google claims its machines have achieved quantum supremacy—the ability to carry out a computation beyond normal computers.
Recently this approach has been challenged by a wave of companies looking to use trapped ion qubits, which are more stable and less error-prone than superconducting ones. While these devices are less developed, engineering giant Honeywell has already released a machine with 10 qubits, which it says is more powerful than a machine made of a greater number of superconducting qubits.
But despite this progress, both of these approaches have some major drawbacks. They require specialized fabrication methods, incredibly precise control mechanisms, and they need to be cooled to close to absolute zero to protect the qubits from any outside interference.
That’s why researchers at Canadian quantum computing hardware and software startup Xanadu are backing an alternative quantum computing approach based on optics, which was long discounted as impractical. In a paper published last week in Nature, they unveiled the first fully programmable and scalable optical chip that can run quantum algorithms. Not only does the system run at room temperature, but the company says it could scale to millions of qubits.
The idea isn’t exactly new. As Chris Lee notes in Ars Technica, people have been experimenting with optical approaches to quantum computing for decades, because encoding information in photons’ quantum states and manipulating those states is relatively easy. The biggest problem was that optical circuits were very large and not readily programmable, which meant you had to build a new computer for every new problem you wanted to solve.
That started to change thanks to the growing maturity of photonic integrated circuits. While early experiments with optical computing involved complex table-top arrangements of lasers, lenses, and detectors, today it’s possible to buy silicon chips not dissimilar to electronic ones that feature hundreds of tiny optical components.
In recent years, the reliability and performance of these devices has improved dramatically, and they’re now regularly used by the telecommunications industry. Some companies believe they could be the future of artificial intelligence too.
This allowed the Xanadu researchers to design a silicon chip that implements a complex optical network made up of beam splitters, waveguides, and devices called interferometers that cause light sources to interact with each other.
The chip can generate and manipulate up to eight qubits, but unlike conventional qubits, which can simultaneously be in two states, these qubits can be in any configuration of three states, which means they can carry more information.
Once the light has travelled through the network, it is then fed out to cutting-edge photon-counting detectors that provide the result. This is one of the potential limitations of the system, because currently these detectors need to be cryogenically cooled, although the rest of the chip does not.
But most importantly, the chip is easily re-programmable, which allows it to tackle a variety of problems. The computation can be controlled by adjusting the settings of these interferometers, but the researchers have also developed a software platform that hides the physical complexity from users and allows them to program it using fairly conventional code.
The company announced that its chips were available on the cloud in September of 2020, but the Nature paper is the first peer-reviewed test of their system. The researchers verified that the computations being done were genuinely quantum mechanical in nature, but they also implemented two more practical algorithms: one for simulating molecules and the other for judging how similar two graphs are, which has applications in a variety of pattern recognition problems.
In an accompanying opinion piece, Ulrik Andersen from the Technical University of Denmark says the quality of the qubits needs to be improved considerably and photon losses reduced if the technology is ever to scale to practical problems. But, he says, this breakthrough suggests optical approaches “could turn out to be the dark horse of quantum computing.”
Image Credit: Shahadat Rahman on Unsplash Continue reading
#438785 Video Friday: A Blimp For Your Cat
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.
Shiny robotic cat toy blimp!
I am pretty sure this is Google Translate getting things wrong, but the About page mentions that the blimp will “take you to your destination after appearing in the death of God.”
[ NTT DoCoMo ] via [ RobotStart ]
If you have yet to see this real-time video of Perseverance landing on Mars, drop everything and watch it.
During the press conference, someone commented that this is the first time anyone on the team who designed and built this system has ever seen it in operation, since it could only be tested at the component scale on Earth. This landing system has blown my mind since Curiosity.
Here's a better look at where Percy ended up:
[ NASA ]
The fact that Digit can just walk up and down wet, slippery, muddy hills without breaking a sweat is (still) astonishing.
[ Agility Robotics ]
SkyMul wants drones to take over the task of tying rebar, which looks like just the sort of thing we'd rather robots be doing so that we don't have to:
The tech certainly looks promising, and SkyMul says that they're looking for some additional support to bring things to the pilot stage.
[ SkyMul ]
Thanks Eohan!
Flatcat is a pet-like, playful robot that reacts to touch. Flatcat feels everything exactly: Cuddle with it, romp around with it, or just watch it do weird things of its own accord. We are sure that flatcat will amaze you, like us, and caress your soul.
I don't totally understand it, but I want it anyway.
[ Flatcat ]
Thanks Oswald!
This is how I would have a romantic dinner date if I couldn't get together in person. Herman the UR3 and an OptiTrack system let me remotely make a romantic meal!
[ Dave's Armoury ]
Here, we propose a novel design of deformable propellers inspired by dragonfly wings. The structure of these propellers includes a flexible segment similar to the nodus on a dragonfly wing. This flexible segment can bend, twist and even fold upon collision, absorbing force upon impact and protecting the propeller from damage.
[ Paper ]
Thanks Van!
In the 1970s, The CIA created the world's first miniaturized unmanned aerial vehicle, or UAV, which was intended to be a clandestine listening device. The Insectothopter was never deployed operationally, but was still revolutionary for its time.
It may never have been deployed (not that they'll admit to, anyway), but it was definitely operational and could fly controllably.
[ CIA ]
Research labs are starting to get Digits, which means we're going to get a much better idea of what its limitations are.
[ Ohio State ]
This video shows the latest achievements for LOLA walking on undetected uneven terrain. The robot is technically blind, not using any camera-based or prior information on the terrain.
[ TUM ]
We define “robotic contact juggling” to be the purposeful control of the motion of a three-dimensional smooth object as it rolls freely on a motion-controlled robot manipulator, or “hand.” While specific examples of robotic contact juggling have been studied before, in this paper we provide the first general formulation and solution method for the case of an arbitrary smooth object in single-point rolling contact on an arbitrary smooth hand.
[ Paper ]
Thanks Fan!
A couple of new cobots from ABB, designed to work safely around humans.
[ ABB ]
Thanks Fan!
It's worth watching at least a little bit of Adam Savage testing Spot's new arm, because we get to see Spot try, fail, and eventually succeed at an autonomous door-opening behavior at the 10 minute mark.
[ Tested ]
SVR discusses diversity with guest speakers Dr. Michelle Johnson from the GRASP Lab at UPenn; Dr Ariel Anders from Women in Robotics and first technical hire at Robust.ai; Alka Roy from The Responsible Innovation Project; and Kenechukwu C. Mbanesi and Kenya Andrews from Black in Robotics. The discussion here is moderated by Dr. Ken Goldberg—artist, roboticist and Director of the CITRIS People and Robots Lab—and Andra Keay from Silicon Valley Robotics.
[ SVR ]
RAS presents a Soft Robotics Debate on Bioinspired vs. Biohybrid Design.
In this debate, we will bring together experts in Bioinspiration and Biohybrid design to discuss the necessary steps to make more competent soft robots. We will try to answer whether bioinspired research should focus more on developing new bioinspired material and structures or on the integration of living and artificial structures in biohybrid designs.
[ RAS SoRo ]
IFRR presents a Colloquium on Human Robot Interaction.
Across many application domains, robots are expected to work in human environments, side by side with people. The users will vary substantially in background, training, physical and cognitive abilities, and readiness to adopt technology. Robotic products are expected to not only be intuitive, easy to use, and responsive to the needs and states of their users, but they must also be designed with these differences in mind, making human-robot interaction (HRI) a key area of research.
[ IFRR ]
Vijay Kumar, Nemirovsky Family Dean and Professor at Penn Engineering, gives an introduction to ENIAC day and David Patterson, Pardee Professor of Computer Science, Emeritus at the University of California at Berkeley, speaks about the legacy of the ENIAC and its impact on computer architecture today. This video is comprised of lectures one and two of nine total lectures in the ENIAC Day series.
There are more interesting ENIAC videos at the link below, but we'll highlight this particular one, about the women of the ENIAC, also known as the First Programmers.
[ ENIAC Day ] Continue reading
#438294 Video Friday: New Entertainment Robot ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.
Engineered Arts' latest Mesmer entertainment robot is Cleo. It sings, gesticulates, and even does impressions.
[ Engineered Arts ]
I do not know what this thing is or what it's saying but Panasonic is going to be selling them and I will pay WHATEVER. IT. COSTS.
Slightly worrisome is that Google Translate persistently thinks that part of the description involves “sleeping and flatulence.”
[ Panasonic ] via [ RobotStart ]
Spot Enterprise is here to help you safely ignore every alarm that goes off at work while you're snug at home in your jammies drinking cocoa.
That Spot needs a bath.
If you missed the launch event (with more on the arm), check it out here:
[ Boston Dynamics ]
PHASA-35, a 35m wingspan solar-electric aircraft successfully completed its maiden flight in Australia, February 2020. Designed to operate unmanned in the stratosphere, above the weather and conventional air traffic, PHASA-35 offers a persistent and affordable alternative to satellites combined with the flexibility of an aircraft, which could be used for a range of valuable applications including forest fire detection and maritime surveillance.
[ BAE Systems ]
As part of the Army Research Lab’s (ARL) Robotics Collaborative Technology Alliance (RCTA), we are developing new planning and control algorithms for quadrupedal robots. The goal of our project is to equip the robot LLAMA, developed by NASA JPL, with the skills it needs to move at operational tempo over difficult terrain to keep up with a human squad. This requires innovative perception, planning, and control techniques to make the robot both precise in execution for navigating technical obstacles and robust enough to reject disturbances and recover from unknown errors.
[ IHMC ]
Watch what happens to this drone when it tries to install a bird diverter on a high voltage power line:
[ GRVC ]
Soldiers navigate a wide variety of terrains to successfully complete their missions. As human/agent teaming and artificial intelligence advance, the same flexibility will be required of robots to maneuver across diverse terrain and become effective combat teammates.
[ Army ]
The goal of the GRIFFIN project is to create something similar to sort of robotic bird, which almost certainly won't look like this concept rendering.
While I think this research is great, at what point is it in fact easier to just, you know, train an actual bird?
[ GRIFFIN ]
Paul Newman narrates this video from two decades ago, which is a pretty neat trick.
[ Oxford Robotics Institute ]
The first step towards a LEGO-based robotic McMuffin creator is cracking and separating eggs.
[ Astonishing Studios ] via [ BB ]
Some interesting soft robotics projects at the University of Southern Denmark.
[ SDU ]
Chong Liu introduces Creature_02, his final presentation for Hod Lipson's Robotics Studio course at Columbia.
[ Chong Liu ]
The world needs more robot blimps.
[ Lab INIT Robots ]
Finishing its duty early, the KR CYBERTECH nano uses this time to play basketball.
[ Kuka ]
senseFly has a new aerial surveying drone that they call “affordable,” although they don't say what the price is.
[ senseFly ]
In summer 2020 participated several science teams of the ETH Zurich at the “Art Safiental” in the mountains of Graubunden. After the scientists packed their hiking gear and their robots, their only mission was “over hill and dale to the summit”. How difficult will it be to reach the summit with a legged robot and an exosceletton? What's the relation of synesthetic dance and robotic? How will the hikers react to these projects?
[ Rienerschnitzel Films ]
Thanks Robert!
Karen Liu: How robots perceive the physical world. A specialist in computer animation expounds upon her rapidly evolving specialty, known as physics-based simulation, and how it is helping robots become more physically aware of the world around them.
[ Stanford ]
This week's UPenn GRASP On Robotics seminar is by Maria Chiara Carrozza from Scuola Superiore Sant’Anna, on “Biorobotics for Personal Assistance – Translational Research and Opportunities for Human-Centered Developments.”
The seminar will focus on the opportunities and challenges offered by the digital transformation of healthcare which was accelerated in the COVID-19 Pandemia. In this framework rehabilitation and social robotics can play a fundamental role as enabling technologies for providing innovative therapies and services to patients even at home or in remote environments.
[ UPenn ] Continue reading
#437978 How Mirroring the Architecture of the ...
While AI can carry out some impressive feats when trained on millions of data points, the human brain can often learn from a tiny number of examples. New research shows that borrowing architectural principles from the brain can help AI get closer to our visual prowess.
The prevailing wisdom in deep learning research is that the more data you throw at an algorithm, the better it will learn. And in the era of Big Data, that’s easier than ever, particularly for the large data-centric tech companies carrying out a lot of the cutting-edge AI research.
Today’s largest deep learning models, like OpenAI’s GPT-3 and Google’s BERT, are trained on billions of data points, and even more modest models require large amounts of data. Collecting these datasets and investing the computational resources to crunch through them is a major bottleneck, particularly for less well-resourced academic labs.
It also means today’s AI is far less flexible than natural intelligence. While a human only needs to see a handful of examples of an animal, a tool, or some other category of object to be able pick it out again, most AI need to be trained on many examples of an object in order to be able to recognize it.
There is an active sub-discipline of AI research aimed at what is known as “one-shot” or “few-shot” learning, where algorithms are designed to be able to learn from very few examples. But these approaches are still largely experimental, and they can’t come close to matching the fastest learner we know—the human brain.
This prompted a pair of neuroscientists to see if they could design an AI that could learn from few data points by borrowing principles from how we think the brain solves this problem. In a paper in Frontiers in Computational Neuroscience, they explained that the approach significantly boosts AI’s ability to learn new visual concepts from few examples.
“Our model provides a biologically plausible way for artificial neural networks to learn new visual concepts from a small number of examples,” Maximilian Riesenhuber, from Georgetown University Medical Center, said in a press release. “We can get computers to learn much better from few examples by leveraging prior learning in a way that we think mirrors what the brain is doing.”
Several decades of neuroscience research suggest that the brain’s ability to learn so quickly depends on its ability to use prior knowledge to understand new concepts based on little data. When it comes to visual understanding, this can rely on similarities of shape, structure, or color, but the brain can also leverage abstract visual concepts thought to be encoded in a brain region called the anterior temporal lobe (ATL).
“It is like saying that a platypus looks a bit like a duck, a beaver, and a sea otter,” said paper co-author Joshua Rule, from the University of California Berkeley.
The researchers decided to try and recreate this capability by using similar high-level concepts learned by an AI to help it quickly learn previously unseen categories of images.
Deep learning algorithms work by getting layers of artificial neurons to learn increasingly complex features of an image or other data type, which are then used to categorize new data. For instance, early layers will look for simple features like edges, while later ones might look for more complex ones like noses, faces, or even more high-level characteristics.
First they trained the AI on 2.5 million images across 2,000 different categories from the popular ImageNet dataset. They then extracted features from various layers of the network, including the very last layer before the output layer. They refer to these as “conceptual features” because they are the highest-level features learned, and most similar to the abstract concepts that might be encoded in the ATL.
They then used these different sets of features to train the AI to learn new concepts based on 2, 4, 8, 16, 32, 64, and 128 examples. They found that the AI that used the conceptual features yielded much better performance than ones trained using lower-level features on lower numbers of examples, but the gap shrunk as they were fed more training examples.
While the researchers admit the challenge they set their AI was relatively simple and only covers one aspect of the complex process of visual reasoning, they said that using a biologically plausible approach to solving the few-shot problem opens up promising new avenues in both neuroscience and AI.
“Our findings not only suggest techniques that could help computers learn more quickly and efficiently, they can also lead to improved neuroscience experiments aimed at understanding how people learn so quickly, which is not yet well understood,” Riesenhuber said.
As the researchers note, the human visual system is still the gold standard when it comes to understanding the world around us. Borrowing from its design principles might turn out to be a profitable direction for future research.
Image Credit: Gerd Altmann from Pixabay Continue reading