Tag Archives: going
#431385 Here’s How to Get to Conscious ...
“We cannot be conscious of what we are not conscious of.” – Julian Jaynes, The Origin of Consciousness in the Breakdown of the Bicameral Mind
Unlike the director leads you to believe, the protagonist of Ex Machina, Andrew Garland’s 2015 masterpiece, isn’t Caleb, a young programmer tasked with evaluating machine consciousness. Rather, it’s his target Ava, a breathtaking humanoid AI with a seemingly child-like naïveté and an enigmatic mind.
Like most cerebral movies, Ex Machina leaves the conclusion up to the viewer: was Ava actually conscious? In doing so, it also cleverly avoids a thorny question that has challenged most AI-centric movies to date: what is consciousness, and can machines have it?
Hollywood producers aren’t the only people stumped. As machine intelligence barrels forward at breakneck speed—not only exceeding human performance on games such as DOTA and Go, but doing so without the need for human expertise—the question has once more entered the scientific mainstream.
Are machines on the verge of consciousness?
This week, in a review published in the prestigious journal Science, cognitive scientists Drs. Stanislas Dehaene, Hakwan Lau and Sid Kouider of the Collège de France, University of California, Los Angeles and PSL Research University, respectively, argue: not yet, but there is a clear path forward.
The reason? Consciousness is “resolutely computational,” the authors say, in that it results from specific types of information processing, made possible by the hardware of the brain.
There is no magic juice, no extra spark—in fact, an experiential component (“what is it like to be conscious?”) isn’t even necessary to implement consciousness.
If consciousness results purely from the computations within our three-pound organ, then endowing machines with a similar quality is just a matter of translating biology to code.
Much like the way current powerful machine learning techniques heavily borrow from neurobiology, the authors write, we may be able to achieve artificial consciousness by studying the structures in our own brains that generate consciousness and implementing those insights as computer algorithms.
From Brain to Bot
Without doubt, the field of AI has greatly benefited from insights into our own minds, both in form and function.
For example, deep neural networks, the architecture of algorithms that underlie AlphaGo’s breathtaking sweep against its human competitors, are loosely based on the multi-layered biological neural networks that our brain cells self-organize into.
Reinforcement learning, a type of “training” that teaches AIs to learn from millions of examples, has roots in a centuries-old technique familiar to anyone with a dog: if it moves toward the right response (or result), give a reward; otherwise ask it to try again.
In this sense, translating the architecture of human consciousness to machines seems like a no-brainer towards artificial consciousness. There’s just one big problem.
“Nobody in AI is working on building conscious machines because we just have nothing to go on. We just don’t have a clue about what to do,” said Dr. Stuart Russell, the author of Artificial Intelligence: A Modern Approach in a 2015 interview with Science.
Multilayered consciousness
The hard part, long before we can consider coding machine consciousness, is figuring out what consciousness actually is.
To Dehaene and colleagues, consciousness is a multilayered construct with two “dimensions:” C1, the information readily in mind, and C2, the ability to obtain and monitor information about oneself. Both are essential to consciousness, but one can exist without the other.
Say you’re driving a car and the low fuel light comes on. Here, the perception of the fuel-tank light is C1—a mental representation that we can play with: we notice it, act upon it (refill the gas tank) and recall and speak about it at a later date (“I ran out of gas in the boonies!”).
“The first meaning we want to separate (from consciousness) is the notion of global availability,” explains Dehaene in an interview with Science. When you’re conscious of a word, your whole brain is aware of it, in a sense that you can use the information across modalities, he adds.
But C1 is not just a “mental sketchpad.” It represents an entire architecture that allows the brain to draw multiple modalities of information from our senses or from memories of related events, for example.
Unlike subconscious processing, which often relies on specific “modules” competent at a defined set of tasks, C1 is a global workspace that allows the brain to integrate information, decide on an action, and follow through until the end.
Like The Hunger Games, what we call “conscious” is whatever representation, at one point in time, wins the competition to access this mental workspace. The winners are shared among different brain computation circuits and are kept in the spotlight for the duration of decision-making to guide behavior.
Because of these features, C1 consciousness is highly stable and global—all related brain circuits are triggered, the authors explain.
For a complex machine such as an intelligent car, C1 is a first step towards addressing an impending problem, such as a low fuel light. In this example, the light itself is a type of subconscious signal: when it flashes, all of the other processes in the machine remain uninformed, and the car—even if equipped with state-of-the-art visual processing networks—passes by gas stations without hesitation.
With C1 in place, the fuel tank would alert the car computer (allowing the light to enter the car’s “conscious mind”), which in turn checks the built-in GPS to search for the next gas station.
“We think in a machine this would translate into a system that takes information out of whatever processing module it’s encapsulated in, and make it available to any of the other processing modules so they can use the information,” says Dehaene. “It’s a first sense of consciousness.”
Meta-cognition
In a way, C1 reflects the mind’s capacity to access outside information. C2 goes introspective.
The authors define the second facet of consciousness, C2, as “meta-cognition:” reflecting on whether you know or perceive something, or whether you just made an error (“I think I may have filled my tank at the last gas station, but I forgot to keep a receipt to make sure”). This dimension reflects the link between consciousness and sense of self.
C2 is the level of consciousness that allows you to feel more or less confident about a decision when making a choice. In computational terms, it’s an algorithm that spews out the probability that a decision (or computation) is correct, even if it’s often experienced as a “gut feeling.”
C2 also has its claws in memory and curiosity. These self-monitoring algorithms allow us to know what we know or don’t know—so-called “meta-memory,” responsible for that feeling of having something at the tip of your tongue. Monitoring what we know (or don’t know) is particularly important for children, says Dehaene.
“Young children absolutely need to monitor what they know in order to…inquire and become curious and learn more,” he explains.
The two aspects of consciousness synergize to our benefit: C1 pulls relevant information into our mental workspace (while discarding other “probable” ideas or solutions), while C2 helps with long-term reflection on whether the conscious thought led to a helpful response.
Going back to the low fuel light example, C1 allows the car to solve the problem in the moment—these algorithms globalize the information, so that the car becomes aware of the problem.
But to solve the problem, the car would need a “catalog of its cognitive abilities”—a self-awareness of what resources it has readily available, for example, a GPS map of gas stations.
“A car with this sort of self-knowledge is what we call having C2,” says Dehaene. Because the signal is globally available and because it’s being monitored in a way that the machine is looking at itself, the car would care about the low gas light and behave like humans do—lower fuel consumption and find a gas station.
“Most present-day machine learning systems are devoid of any self-monitoring,” the authors note.
But their theory seems to be on the right track. The few examples whereby a self-monitoring system was implemented—either within the structure of the algorithm or as a separate network—the AI has generated “internal models that are meta-cognitive in nature, making it possible for an agent to develop a (limited, implicit, practical) understanding of itself.”
Towards conscious machines
Would a machine endowed with C1 and C2 behave as if it were conscious? Very likely: a smartcar would “know” that it’s seeing something, express confidence in it, report it to others, and find the best solutions for problems. If its self-monitoring mechanisms break down, it may also suffer “hallucinations” or even experience visual illusions similar to humans.
Thanks to C1 it would be able to use the information it has and use it flexibly, and because of C2 it would know the limit of what it knows, says Dehaene. “I think (the machine) would be conscious,” and not just merely appearing so to humans.
If you’re left with a feeling that consciousness is far more than global information sharing and self-monitoring, you’re not alone.
“Such a purely functional definition of consciousness may leave some readers unsatisfied,” the authors acknowledge.
“But we’re trying to take a radical stance, maybe simplifying the problem. Consciousness is a functional property, and when we keep adding functions to machines, at some point these properties will characterize what we mean by consciousness,” Dehaene concludes.
Image Credit: agsandrew / Shutterstock.com Continue reading
#431081 How the Intelligent Home of the Future ...
As Dorothy famously said in The Wizard of Oz, there’s no place like home. Home is where we go to rest and recharge. It’s familiar, comfortable, and our own. We take care of our homes by cleaning and maintaining them, and fixing things that break or go wrong.
What if our homes, on top of giving us shelter, could also take care of us in return?
According to Chris Arkenberg, this could be the case in the not-so-distant future. As part of Singularity University’s Experts On Air series, Arkenberg gave a talk called “How the Intelligent Home of The Future Will Care For You.”
Arkenberg is a research and strategy lead at Orange Silicon Valley, and was previously a research fellow at the Deloitte Center for the Edge and a visiting researcher at the Institute for the Future.
Arkenberg told the audience that there’s an evolution going on: homes are going from being smart to being connected, and will ultimately become intelligent.
Market Trends
Intelligent home technologies are just now budding, but broader trends point to huge potential for their growth. We as consumers already expect continuous connectivity wherever we go—what do you mean my phone won’t get reception in the middle of Yosemite? What do you mean the smart TV is down and I can’t stream Game of Thrones?
As connectivity has evolved from a privilege to a basic expectation, Arkenberg said, we’re also starting to have a better sense of what it means to give up our data in exchange for services and conveniences. It’s so easy to click a few buttons on Amazon and have stuff show up at your front door a few days later—never mind that data about your purchases gets recorded and aggregated.
“Right now we have single devices that are connected,” Arkenberg said. “Companies are still trying to show what the true value is and how durable it is beyond the hype.”
Connectivity is the basis of an intelligent home. To take a dumb object and make it smart, you get it online. Belkin’s Wemo, for example, lets users control lights and appliances wirelessly and remotely, and can be paired with Amazon Echo or Google Home for voice-activated control.
Speaking of voice-activated control, Arkenberg pointed out that physical interfaces are evolving, too, to the point that we’re actually getting rid of interfaces entirely, or transitioning to ‘soft’ interfaces like voice or gesture.
Drivers of change
Consumers are open to smart home tech and companies are working to provide it. But what are the drivers making this tech practical and affordable? Arkenberg said there are three big ones:
Computation: Computers have gotten exponentially more powerful over the past few decades. If it wasn’t for processors that could handle massive quantities of information, nothing resembling an Echo or Alexa would even be possible. Artificial intelligence and machine learning are powering these devices, and they hinge on computing power too.
Sensors: “There are more things connected now than there are people on the planet,” Arkenberg said. Market research firm Gartner estimates there are 8.4 billion connected things currently in use. Wherever digital can replace hardware, it’s doing so. Cheaper sensors mean we can connect more things, which can then connect to each other.
Data: “Data is the new oil,” Arkenberg said. “The top companies on the planet are all data-driven giants. If data is your business, though, then you need to keep finding new ways to get more and more data.” Home assistants are essentially data collection systems that sit in your living room and collect data about your life. That data in turn sets up the potential of machine learning.
Colonizing the Living Room
Alexa and Echo can turn lights on and off, and Nest can help you be energy-efficient. But beyond these, what does an intelligent home really look like?
Arkenberg’s vision of an intelligent home uses sensing, data, connectivity, and modeling to manage resource efficiency, security, productivity, and wellness.
Autonomous vehicles provide an interesting comparison: they’re surrounded by sensors that are constantly mapping the world to build dynamic models to understand the change around itself, and thereby predict things. Might we want this to become a model for our homes, too? By making them smart and connecting them, Arkenberg said, they’d become “more biological.”
There are already several products on the market that fit this description. RainMachine uses weather forecasts to adjust home landscape watering schedules. Neurio monitors energy usage, identifies areas where waste is happening, and makes recommendations for improvement.
These are small steps in connecting our homes with knowledge systems and giving them the ability to understand and act on that knowledge.
He sees the homes of the future being equipped with digital ears (in the form of home assistants, sensors, and monitoring devices) and digital eyes (in the form of facial recognition technology and machine vision to recognize who’s in the home). “These systems are increasingly able to interrogate emotions and understand how people are feeling,” he said. “When you push more of this active intelligence into things, the need for us to directly interface with them becomes less relevant.”
Could our homes use these same tools to benefit our health and wellness? FREDsense uses bacteria to create electrochemical sensors that can be applied to home water systems to detect contaminants. If that’s not personal enough for you, get a load of this: ClinicAI can be installed in your toilet bowl to monitor and evaluate your biowaste. What’s the point, you ask? Early detection of colon cancer and other diseases.
What if one day, your toilet’s biowaste analysis system could link up with your fridge, so that when you opened it it would tell you what to eat, and how much, and at what time of day?
Roadblocks to intelligence
“The connected and intelligent home is still a young category trying to establish value, but the technological requirements are now in place,” Arkenberg said. We’re already used to living in a world of ubiquitous computation and connectivity, and we have entrained expectations about things being connected. For the intelligent home to become a widespread reality, its value needs to be established and its challenges overcome.
One of the biggest challenges will be getting used to the idea of continuous surveillance. We’ll get convenience and functionality if we give up our data, but how far are we willing to go? Establishing security and trust is going to be a big challenge moving forward,” Arkenberg said.
There’s also cost and reliability, interoperability and fragmentation of devices, or conversely, what Arkenberg called ‘platform lock-on,’ where you’d end up relying on only one provider’s system and be unable to integrate devices from other brands.
Ultimately, Arkenberg sees homes being able to learn about us, manage our scheduling and transit, watch our moods and our preferences, and optimize our resource footprint while predicting and anticipating change.
“This is the really fascinating provocation of the intelligent home,” Arkenberg said. “And I think we’re going to start to see this play out over the next few years.”
Sounds like a home Dorothy wouldn’t recognize, in Kansas or anywhere else.
Stock Media provided by adam121 / Pond5 Continue reading
#431023 Finish Him! MegaBots’ Giant Robot Duel ...
It began two years ago when MegaBots co-founders Matt Oehrlein and Gui Cavalcanti donned American flags as capes and challenged Suidobashi Heavy Industries to a giant robot duel in a YouTube video that immediately went viral.
The battle proposed: MegaBots’ 15-foot tall, 1,200-pound MK2 robot vs. Suidobashi’s 9,000-pound robot, KURATAS. Oehrlein and Cavalcanti first discovered the KURATAS robot in a listing on Amazon with a million-dollar price tag.
In an equally flamboyant response video, Suidobashi CEO and founder Kogoro Kurata accepted the challenge. (Yes, he named his robot after himself.) Both parties planned to take a year to prepare their robots for combat.
In the end, it took twice the amount of time. Nonetheless, the battle is going down this September in an undisclosed location.
Oehrlein shared more about the much-anticipated showdown during our interview at Singularity University’s Global Summit.
Two years since the initial video, MegaBots has now completed the combat-capable MK3 robot, named Eagle Prime. This new 12-ton, 16-foot-tall robot is powered by a 430-horsepower Corvette engine and requires two human pilots.
It’s also the robot they recently shipped to take on KURATAS.
Building Eagle Prime has been no small feat. With arms and legs that each weigh as much as a car, assembling the robot takes forklifts, cranes, and a lot of caution. Fortress One, MegaBots’ headquarters in Hayward, California is where the magic happens.
In terms of “weaponry,” Eagle Prime features a giant pneumatic cannon that shoots huge paint cannonballs. Oehrlein warns, “They can shatter all the windows in a car. It’s very powerful.” A logging grapple, which looks like a giant claw and exerts 3,000 pounds of steel-crushing force, has also been added to the robot.
“It’s a combination of range combat, using the paint balls to maybe blind cameras on the other robot or take out sensitive electronics, and then closing in with the claw and trying to disable their systems at close range,” Oehrlein explains.
Safety systems include a cockpit roll cage for the two pilots, five-point safety seatbelt harnesses, neck restraints, helmets, and flame retardant suits.
Co-founder, Matt Oehrlein, inside the cockpit of MegaBots’ Eagle Prime giant robot.
Oehrlein and Cavalcanti have also spent considerable time inside Eagle Prime practicing battlefield tactics and maneuvering the robot through obstacle courses.
Suidobashi’s robot is a bit shorter and lighter, but also a little faster, so the battle dynamics should be interesting.
You may be thinking, “Why giant dueling robots?”
MegaBots’ grand vision is a full-blown international sports league of giant fighting robots on the scale of Formula One racing. Picture a nostalgic evening sipping a beer (or three) and watching Pacific Rim- and Power Rangers-inspired robots battle—only in real life.
Eagle Prime is, in good humor, a proudly patriotic robot.
“Japan is known as a robotic powerhouse,” says Oehrlein, “I think there’s something interesting about the slightly overconfident American trying to get a foothold in the robotics space and doing it by building a bigger, louder, heavier robot, in true American fashion.”
For safety reasons, no fans will be admitted during the time of the fight. The battle will be posted after the fact on MegaBots’ YouTube channel and Facebook page.
We’ll soon find out whether this becomes another American underdog story.
In the meantime, I give my loyalty to MegaBots, and in the words of Mortal Kombat, say, “Finish him!”
via GIPHY
Image Credit: MegaBots Continue reading