Tag Archives: going
#435605 All of the Winners in the DARPA ...
The first competitive event in the DARPA Subterranean Challenge concluded last week—hopefully you were able to follow along on the livestream, on Twitter, or with some of the articles that we’ve posted about the event. We’ll have plenty more to say about how things went for the SubT teams, but while they take a bit of a (well earned) rest, we can take a look at the winning teams as well as who won DARPA’s special superlative awards for the competition.
First Place: Team Explorer (25/40 artifacts found)
With their rugged, reliable robots featuring giant wheels and the ability to drop communications nodes, Team Explorer was in the lead from day 1, scoring in double digits on every single run.
Second Place: Team CoSTAR (11/40 artifacts found)
Team CoSTAR had one of the more diverse lineups of robots, and they switched up which robots they decided to send into the mine as they learned more about the course.
Third Place: Team CTU-CRAS (10/40 artifacts found)
While many teams came to SubT with DARPA funding, Team CTU-CRAS was self-funded, making them eligible for a special $200,000 Tunnel Circuit prize.
DARPA also awarded a bunch of “superlative awards” after SubT:
Most Accurate Artifact: Team Explorer
To score a point, teams had to submit the location of an artifact that was correct to within 5 meters of the artifact itself. However, DARPA was tracking the artifact locations with much higher precision—for example, the “zero” point on the backpack artifact was the center of the label on the front, which DARPA tracked to the millimeter. Team Explorer managed to return the location of a backpack with an error of just 0.18 meter, which is kind of amazing.
Down to the Wire: Team CSIRO Data61
With just an hour to find as many artifacts as possible, teams had to find the right balance between sending robots off to explore and bringing them back into communication range to download artifact locations. Team CSIRO Data61 cut their last point pretty close, sliding their final point in with a mere 22 seconds to spare.
Most Distinctive Robots: Team Robotika
Team Robotika had some of the quirkiest and most recognizable robots, which DARPA recognized with the “Most Distinctive” award. Robotika told us that part of the reason for that distinctiveness was practical—having a robot that was effectively in two parts meant that they could disassemble it so that it would fit in the baggage compartment of an airplane, very important for a team based in the Czech Republic.
Most Robots Per Person: Team Coordinated Robotics
Kevin Knoedler, who won NASA’s Space Robotics Challenge entirely by himself, brought his own personal swarm of drones to SubT. With a ratio of seven robots to one human, Kevin was almost certainly the hardest working single human at the challenge.
Fan Favorite: Team NCTU
Photo: Evan Ackerman/IEEE Spectrum
The Fan Favorite award went to the team that was most popular on Twitter (with the #SubTChallenge hashtag), and it may or may not be the case that I personally tweeted enough about Team NCTU’s blimp to win them this award. It’s also true that whenever we asked anyone on other teams what their favorite robot was (besides their own, of course), the blimp was overwhelmingly popular. So either way, the award is well deserved.
DARPA shared this little behind-the-scenes clip of the blimp in action (sort of), showing what happened to the poor thing when the mine ventilation system was turned on between runs and DARPA staff had to chase it down and rescue it:
The thing to keep in mind about the results of the Tunnel Circuit is that unlike past DARPA robotics challenges (like the DRC), they don’t necessarily indicate how things are going to go for the Urban or Cave circuits because of how different things are going to be. Explorer did a great job with a team of rugged wheeled vehicles, which turned out to be ideal for navigating through mines, but they’re likely going to need to change things up substantially for the rest of the challenges, where the terrain will be much more complex.
DARPA hasn’t provided any details on the location of the Urban Circuit yet; all we know is that it’ll be sometime in February 2020. This gives teams just six months to take all the lessons that they learned from the Tunnel Circuit and update their hardware, software, and strategies. What were those lessons, and what do teams plan to do differently next year? Check back next week, and we’ll tell you.
[ DARPA SubT ] Continue reading
#435601 New Double 3 Robot Makes Telepresence ...
Today, Double Robotics is announcing Double 3, the latest major upgrade to its line of consumer(ish) telepresence robots. We had a (mostly) fantastic time testing out Double 2 back in 2016. One of the things that we found out back then was that it takes a lot of practice to remotely drive the robot around. Double 3 solves this problem by leveraging the substantial advances in 3D sensing and computing that have taken place over the past few years, giving their new robot a level of intelligence that promises to make telepresence more accessible for everyone.
Double 2’s iPad has been replaced by “a fully integrated solution”—which is a fancy way of saying a dedicated 9.7-inch touchscreen and a whole bunch of other stuff. That other stuff includes an NVIDIA Jetson TX2 AI computing module, a beamforming six-microphone array, an 8-watt speaker, a pair of 13-megapixel cameras (wide angle and zoom) on a tilting mount, five ultrasonic rangefinders, and most excitingly, a pair of Intel RealSense D430 depth sensors.
It’s those new depth sensors that really make Double 3 special. The D430 modules each uses a pair of stereo cameras with a pattern projector to generate 1280 x 720 depth data with a range of between 0.2 and 10 meters away. The Double 3 robot uses all of this high quality depth data to locate obstacles, but at this point, it still doesn’t drive completely autonomously. Instead, it presents the remote operator with a slick, augmented reality view of drivable areas in the form of a grid of dots. You just click where you want the robot to go, and it will skillfully take itself there while avoiding obstacles (including dynamic obstacles) and related mishaps along the way.
This effectively offloads the most stressful part of telepresence—not running into stuff—from the remote user to the robot itself, which is the way it should be. That makes it that much easier to encourage people to utilize telepresence for the first time. The way the system is implemented through augmented reality is particularly impressive, I think. It looks like it’s intuitive enough for an inexperienced user without being restrictive, and is a clever way of mitigating even significant amounts of lag.
Otherwise, Double 3’s mobility system is exactly the same as the one featured on Double 2. In fact, that you can stick a Double 3 head on a Double 2 body and it instantly becomes a Double 3. Double Robotics is thoughtfully offering this to current Double 2 owners as a significantly more affordable upgrade option than buying a whole new robot.
For more details on all of Double 3's new features, we spoke with the co-founders of Double Robotics, Marc DeVidts and David Cann.
IEEE Spectrum: Why use this augmented reality system instead of just letting the user click on a regular camera image? Why make things more visually complicated, especially for new users?
Marc DeVidts and David Cann: One of the things that we realized about nine months ago when we got this whole thing working was that without the mixed reality for driving, it was really too magical of an experience for the customer. Even us—we had a hard time understanding whether the robot could really see obstacles and understand where the floor is and that kind of thing. So, we said “What would be the best way of communicating this information to the user?” And the right way to do it ended up drawing the graphics directly onto the scene. It’s really awesome—we have a full, real time 3D scene with the depth information drawn on top of it. We’re starting with some relatively simple graphics, and we’ll be adding more graphics in the future to help the user understand what the robot is seeing.
How robust is the vision system when it comes to obstacle detection and avoidance? Does it work with featureless surfaces, IR absorbent surfaces, in low light, in direct sunlight, etc?
We’ve looked at all of those cases, and one of the reasons that we’re going with the RealSense is the projector that helps us to see blank walls. We also found that having two sensors—one facing the floor and one facing forward—gives us a great coverage area. Having ultrasonic sensors in there as well helps us to detect anything that we can't see with the cameras. They're sort of a last safety measure, especially useful for detecting glass.
It seems like there’s a lot more that you could do with this sensing and mapping capability. What else are you working on?
We're starting with this semi-autonomous driving variant, and we're doing a private beta of full mapping. So, we’re going to do full SLAM of your environment that will be mapped by multiple robots at the same time while you're driving, and then you'll be able to zoom out to a map and click anywhere and it will drive there. That's where we're going with it, but we want to take baby steps to get there. It's the obvious next step, I think, and there are a lot more possibilities there.
Do you expect developers to be excited for this new mapping capability?
We're using a very powerful computer in the robot, a NVIDIA Jetson TX2 running Ubuntu. There's room to grow. It’s actually really exciting to be able to see, in real time, the 3D pose of the robot along with all of the depth data that gets transformed in real time into one view that gives you a full map. Having all of that data and just putting those pieces together and getting everything to work has been a huge feat in of itself.
We have an extensive API for developers to do custom implementations, either for telepresence or other kinds of robotics research. Our system isn't running ROS, but we're going to be adding ROS adapters for all of our hardware components.
Telepresence robots depend heavily on wireless connectivity, which is usually not something that telepresence robotics companies like Double have direct control over. Have you found that connectivity has been getting significantly better since you first introduced Double?
When we started in 2013, we had a lot of customers that didn’t have WiFi in their hallways, just in the conference rooms. We very rarely hear about customers having WiFi connectivity issues these days. The bigger issue we see is when people are calling into the robot from home, where they don't have proper traffic management on their home network. The robot doesn't need a ton of bandwidth, but it does need consistent, low latency bandwidth. And so, if someone else in the house is watching Netflix or something like that, it’s going to saturate your connection. But for the most part, it’s gotten a lot better over the last few years, and it’s no longer a big problem for us.
Do you think 5G will make a significant difference to telepresence robots?
We’ll see. We like the low latency possibilities and the better bandwidth, but it's all going to be a matter of what kind of reception you get. LTE can be great, if you have good reception; it’s all about where the tower is. I’m pretty sure that WiFi is going to be the primary thing for at least the next few years.
DeVidts also mentioned that an unfortunate side effect of the new depth sensors is that hanging a t-shirt on your Double to give it some personality will likely render it partially blind, so that's just something to keep in mind. To make up for this, you can switch around the colorful trim surrounding the screen, which is nowhere near as fun.
When the Double 3 is ready for shipping in late September, US $2,000 will get you the new head with all the sensors and stuff, which seamlessly integrates with your Double 2 base. Buying Double 3 straight up (with the included charging dock) will run you $4,ooo. This is by no means an inexpensive robot, and my impression is that it’s not really designed for individual consumers. But for commercial, corporate, healthcare, or education applications, $4k for a robot as capable as the Double 3 is really quite a good deal—especially considering the kinds of use cases for which it’s ideal.
[ Double Robotics ] Continue reading