Tag Archives: going
#439509 What’s Going on With Amazon’s ...
Amazon’s innovation blog recently published a post entitled “New technologies to improve Amazon employee safety,” which highlighted four different robotic systems that Amazon’s Robotics and Advanced Technology teams have been working on. Three of these robotic systems are mobile robots, which have been making huge contributions to the warehouse space over the past decade. Amazon in particular was one of the first (if not the first) e-commerce companies to really understand the fundamental power of robots in warehouses, with their $775 million acquisition of Kiva Systems’ pod-transporting robots back in 2012.
Since then, a bunch of other robotics companies have started commercially deploying robots in warehouses, and over the past five years or so, we’ve seen some of those robots develop enough autonomy and intelligence to be able to operate outside of restricted, highly structured environments and work directly with humans. Autonomous mobile robots for warehouses is now a highly competitive sector, with companies like Fetch Robotics, Locus Robotics, and OTTO Motors all offering systems that can zip payloads around busy warehouse floors safely and efficiently.
But if we’re to take the capabilities of the robots that Amazon showcased over the weekend at face value, the company appears to be substantially behind the curve on warehouse robots.
Let’s take a look at the three mobile robots that Amazon describes in their blog post:
“Bert” is one of Amazon’s first Autonomous Mobile Robots, or AMRs. Historically, it’s been difficult to incorporate robotics into areas of our facilities where people and robots are working in the same physical space. AMRs like Bert, which is being tested to autonomously navigate through our facilities with Amazon-developed advanced safety, perception, and navigation technology, could change that. With Bert, robots no longer need to be confined to restricted areas. This means that in the future, an employee could summon Bert to carry items across a facility. In addition, Bert might at some point be able to move larger, heavier items or carts that are used to transport multiple packages through our facilities. By taking those movements on, Bert could help lessen strain on employees.
This all sounds fairly impressive, but only if you’ve been checked out of the AMR space for the last few years. Amazon is presenting Bert as part of the “new technologies” they’re developing, and while that may be the case, as far as we can make out these are very much technologies that seem to be new mostly just to Amazon and not really to anyone else. There are any number of other companies who are selling mobile robot tech that looks to be significantly beyond what we’re seeing here—tech that (unless we’re missing something) has already largely solved many of the same technical problems that Amazon is working on.
We spoke with mobile robot experts from three different robotics companies, none of whom were comfortable going on record (for obvious reasons), but they all agreed that what Amazon is demonstrating in these videos appears to be 2+ years behind the state of the art in commercial mobile robots.
We’re obviously seeing a work in progress with Bert, but I’d be less confused if we were looking at a deployed system, because at least then you could make the argument that Amazon has managed to get something operational at (some) scale, which is much more difficult than a demo or pilot project. But the slow speed, the careful turns, the human chaperones—other AMR companies are way past this stage.
Kermit is an AGC (Autonomously Guided Cart) that is focused on moving empty totes from one location to another within our facilities so we can get empty totes back to the starting line. Kermit follows strategically placed magnetic tape to guide its navigation and uses tags placed along the way to determine if it should speed up, slow down, or modify its course in some way. Kermit is further along in development, currently being tested in several sites across the U.S., and will be introduced in at least a dozen more sites across North America this year.
Most folks in the mobile robots industry would hesitate to call Kermit an autonomous robot at all, which is likely why Amazon doesn’t refer to it as such, instead calling it a “guided cart.” As far as I know, pretty much every other mobile robotics company has done away with stuff like magnetic tape in favor of map-based natural-feature localization (a technology that has been commercially available for years), because then your robots can go anywhere in a mapped warehouse, not just on these predefined paths. Even if you have a space and workflow that never ever changes, busy warehouses have paths that get blocked for one reason or another all the time, and modern AMRs are flexible enough to plan around those paths to complete their tasks. With these autonomous carts that are locked to their tapes, they can’t even move over a couple of feet to get around an obstacle.
I have no idea why this monstrous system called Scooter is the best solution for moving carts around a warehouse. It just seems needlessly huge and complicated, especially since we know Amazon already understands that a great way of moving carts around is by using much smaller robots that can zip underneath a cart, lift it up, and carry it around with them. Obviously, the Kiva drive units only operate in highly structured environments, but other AMR companies are making this concept work on the warehouse floor just fine.
Why is Amazon at “possibilities” when other companies are at commercial deployments?
I honestly just don’t understand what’s happening here. Amazon has (I assume) a huge R&D budget at its disposal. It was investing in robotic technology for e-commerce warehouses super early, and at an unmatched scale. Even beyond Kiva, Amazon obviously understood the importance of AMRs several years ago, with its $100+ million acquisition of Canvas Technology in 2019. But looking back at Canvas’ old videos, it seems like Canvas was doing in 2017 more or less what we’re seeing Amazon’s Bert robot doing now, nearly half a decade later.
We reached out to Amazon Robotics for comment and sent them a series of questions about the robots in these videos. They sent us this response:
The health and safety of our employees is our number one priority—and has been since day one. We’re excited about the possibilities robotics and other technology can play in helping to improve employee safety.
Hmm.
I mean, sure, I’m excited about the same thing, but I’m still stuck on why Amazon is at possibilities, while other companies are at commercial deployments. It’s certainly possible that the sheer Amazon-ness of Amazon is a significant factor here, in the sense that a commercial deployment for Amazon is orders of magnitude larger and more complex than any of the AMR companies that we’re comparing them to are dealing with. And if Amazon can figure out how to make (say) an AMR without using lidar, it would make a much more significant difference for an in-house large-scale deployment relative to companies offering AMRs as a service.
For another take on what might be going on with this announcement from Amazon, we spoke with Matt Beane, who got his PhD at MIT and studies robotics at UCSB’s Technology Management Program. At the ACM/IEEE International Conference on Human-Robot Interaction (HRI) last year, Beane published a paper on the value of robots as social signals—that is, organizations get valuable outcomes from just announcing they have robots, because this encourages key audiences to see the organization in favorable ways. “My research strongly suggests that Amazon is reaping signaling value from this announcement,” Beane told us. There’s nothing inherently wrong with signaling, because robots can create instrumental value, and that value needs to be communicated to the people who will, ideally, benefit from it. But you have to be careful: “My paper also suggests this can be a risky move,” explains Beane. “Blowback can be pretty nasty if the systems aren’t in full-tilt, high-value use. In other words, it works only if the signal pretty closely matches the internal reality.”
There’s no way for us to know what the internal reality at Amazon is. All we have to go on is this blog post, which isn’t much, and we should reiterate that there may be a significant gap between what the post is showing us about Amazon’s mobile robots and what’s actually going on at Amazon Robotics. My hope is what we’re seeing here is primarily a sign that Amazon Robotics is starting to scale things up, and that we’re about to see them get a lot more serious about developing robots that will help make their warehouses less tedious, safer, and more productive. Continue reading
#439353 What’s Going on With Amazon’s ...
Amazon’s innovation blog recently published a post entitled “New technologies to improve Amazon employee safety,” which highlighted four different robotic systems that Amazon’s Robotics and Advanced Technology teams have been working on. Three of these robotic systems are mobile robots, which have been making huge contributions to the warehouse space over the past decade. Amazon in particular was one of the first (if not the first) e-commerce companies to really understand the fundamental power of robots in warehouses, with their $775 million acquisition of Kiva Systems’ pod-transporting robots back in 2012.
Since then, a bunch of other robotics companies have started commercially deploying robots in warehouses, and over the past five years or so, we’ve seen some of those robots develop enough autonomy and intelligence to be able to operate outside of restricted, highly structured environments and work directly with humans. Autonomous mobile robots for warehouses is now a highly competitive sector, with companies like Fetch Robotics, Locus Robotics, and OTTO Motors all offering systems that can zip payloads around busy warehouse floors safely and efficiently.
But if we’re to take the capabilities of the robots that Amazon showcased over the weekend at face value, the company appears to be substantially behind the curve on warehouse robots.
Let’s take a look at the three mobile robots that Amazon describes in their blog post:
“Bert” is one of Amazon’s first Autonomous Mobile Robots, or AMRs. Historically, it’s been difficult to incorporate robotics into areas of our facilities where people and robots are working in the same physical space. AMRs like Bert, which is being tested to autonomously navigate through our facilities with Amazon-developed advanced safety, perception, and navigation technology, could change that. With Bert, robots no longer need to be confined to restricted areas. This means that in the future, an employee could summon Bert to carry items across a facility. In addition, Bert might at some point be able to move larger, heavier items or carts that are used to transport multiple packages through our facilities. By taking those movements on, Bert could help lessen strain on employees.
This all sounds fairly impressive, but only if you’ve been checked out of the AMR space for the last few years. Amazon is presenting Bert as part of the “new technologies” they’re developing, and while that may be the case, as far as we can make out these are very much technologies that seem to be new mostly just to Amazon and not really to anyone else. There are any number of other companies who are selling mobile robot tech that looks to be significantly beyond what we’re seeing here—tech that (unless we’re missing something) has already largely solved many of the same technical problems that Amazon is working on.
We spoke with mobile robot experts from three different robotics companies, none of whom were comfortable going on record (for obvious reasons), but they all agreed that what Amazon is demonstrating in these videos appears to be 2+ years behind the state of the art in commercial mobile robots.
We’re obviously seeing a work in progress with Bert, but I’d be less confused if we were looking at a deployed system, because at least then you could make the argument that Amazon has managed to get something operational at (some) scale, which is much more difficult than a demo or pilot project. But the slow speed, the careful turns, the human chaperones—other AMR companies are way past this stage.
Kermit is an AGC (Autonomously Guided Cart) that is focused on moving empty totes from one location to another within our facilities so we can get empty totes back to the starting line. Kermit follows strategically placed magnetic tape to guide its navigation and uses tags placed along the way to determine if it should speed up, slow down, or modify its course in some way. Kermit is further along in development, currently being tested in several sites across the U.S., and will be introduced in at least a dozen more sites across North America this year.
Most folks in the mobile robots industry would hesitate to call Kermit an autonomous robot at all, which is likely why Amazon doesn’t refer to it as such, instead calling it a “guided cart.” As far as I know, pretty much every other mobile robotics company has done away with stuff like magnetic tape in favor of map-based natural-feature localization (a technology that has been commercially available for years), because then your robots can go anywhere in a mapped warehouse, not just on these predefined paths. Even if you have a space and workflow that never ever changes, busy warehouses have paths that get blocked for one reason or another all the time, and modern AMRs are flexible enough to plan around those paths to complete their tasks. With these autonomous carts that are locked to their tapes, they can’t even move over a couple of feet to get around an obstacle.
I have no idea why this monstrous system called Scooter is the best solution for moving carts around a warehouse. It just seems needlessly huge and complicated, especially since we know Amazon already understands that a great way of moving carts around is by using much smaller robots that can zip underneath a cart, lift it up, and carry it around with them. Obviously, the Kiva drive units only operate in highly structured environments, but other AMR companies are making this concept work on the warehouse floor just fine.
Why is Amazon at “possibilities” when other companies are at commercial deployments?
I honestly just don’t understand what’s happening here. Amazon has (I assume) a huge R&D budget at its disposal. It was investing in robotic technology for e-commerce warehouses super early, and at an unmatched scale. Even beyond Kiva, Amazon obviously understood the importance of AMRs several years ago, with its $100+ million acquisition of Canvas Technology in 2019. But looking back at Canvas’ old videos, it seems like Canvas was doing in 2017 more or less what we’re seeing Amazon’s Bert robot doing now, nearly half a decade later.
We reached out to Amazon Robotics for comment and sent them a series of questions about the robots in these videos. They sent us this response:
The health and safety of our employees is our number one priority—and has been since day one. We’re excited about the possibilities robotics and other technology can play in helping to improve employee safety.
Hmm.
I mean, sure, I’m excited about the same thing, but I’m still stuck on why Amazon is at possibilities, while other companies are at commercial deployments. It’s certainly possible that the sheer Amazon-ness of Amazon is a significant factor here, in the sense that a commercial deployment for Amazon is orders of magnitude larger and more complex than any of the AMR companies that we’re comparing them to are dealing with. And if Amazon can figure out how to make (say) an AMR without using lidar, it would make a much more significant difference for an in-house large-scale deployment relative to companies offering AMRs as a service.
For another take on what might be going on with this announcement from Amazon, we spoke with Matt Beane, who got his PhD at MIT and studies robotics at UCSB’s Technology Management Program. At the ACM/IEEE International Conference on Human-Robot Interaction (HRI) last year, Beane published a paper on the value of robots as social signals—that is, organizations get valuable outcomes from just announcing they have robots, because this encourages key audiences to see the organization in favorable ways. “My research strongly suggests that Amazon is reaping signaling value from this announcement,” Beane told us. There’s nothing inherently wrong with signaling, because robots can create instrumental value, and that value needs to be communicated to the people who will, ideally, benefit from it. But you have to be careful: “My paper also suggests this can be a risky move,” explains Beane. “Blowback can be pretty nasty if the systems aren’t in full-tilt, high-value use. In other words, it works only if the signal pretty closely matches the internal reality.”
There’s no way for us to know what the internal reality at Amazon is. All we have to go on is this blog post, which isn’t much, and we should reiterate that there may be a significant gap between what the post is showing us about Amazon’s mobile robots and what’s actually going on at Amazon Robotics. My hope is what we’re seeing here is primarily a sign that Amazon Robotics is starting to scale things up, and that we’re about to see them get a lot more serious about developing robots that will help make their warehouses less tedious, safer, and more productive. Continue reading
#439354 What’s Going on With Amazon’s ...
Amazon’s innovation blog recently published a post entitled “New technologies to improve Amazon employee safety,” which highlighted four different robotic systems that Amazon’s Robotics and Advanced Technology teams have been working on. Three of these robotic systems are mobile robots, which have been making huge contributions to the warehouse space over the past decade. Amazon in particular was one of the first (if not the first) e-commerce companies to really understand the fundamental power of robots in warehouses, with their $775 million acquisition of Kiva Systems’ pod-transporting robots back in 2012.
Since then, a bunch of other robotics companies have started commercially deploying robots in warehouses, and over the past five years or so, we’ve seen some of those robots develop enough autonomy and intelligence to be able to operate outside of restricted, highly structured environments and work directly with humans. Autonomous mobile robots for warehouses is now a highly competitive sector, with companies like Fetch Robotics, Locus Robotics, and OTTO Motors all offering systems that can zip payloads around busy warehouse floors safely and efficiently.
But if we’re to take the capabilities of the robots that Amazon showcased over the weekend at face value, the company appears to be substantially behind the curve on warehouse robots.
Let’s take a look at the three mobile robots that Amazon describes in their blog post:
“Bert” is one of Amazon’s first Autonomous Mobile Robots, or AMRs. Historically, it’s been difficult to incorporate robotics into areas of our facilities where people and robots are working in the same physical space. AMRs like Bert, which is being tested to autonomously navigate through our facilities with Amazon-developed advanced safety, perception, and navigation technology, could change that. With Bert, robots no longer need to be confined to restricted areas. This means that in the future, an employee could summon Bert to carry items across a facility. In addition, Bert might at some point be able to move larger, heavier items or carts that are used to transport multiple packages through our facilities. By taking those movements on, Bert could help lessen strain on employees.
This all sounds fairly impressive, but only if you’ve been checked out of the AMR space for the last few years. Amazon is presenting Bert as part of the “new technologies” they’re developing, and while that may be the case, as far as we can make out these are very much technologies that seem to be new mostly just to Amazon and not really to anyone else. There are any number of other companies who are selling mobile robot tech that looks to be significantly beyond what we’re seeing here—tech that (unless we’re missing something) has already largely solved many of the same technical problems that Amazon is working on.
We spoke with mobile robot experts from three different robotics companies, none of whom were comfortable going on record (for obvious reasons), but they all agreed that what Amazon is demonstrating in these videos appears to be 2+ years behind the state of the art in commercial mobile robots.
We’re obviously seeing a work in progress with Bert, but I’d be less confused if we were looking at a deployed system, because at least then you could make the argument that Amazon has managed to get something operational at (some) scale, which is much more difficult than a demo or pilot project. But the slow speed, the careful turns, the human chaperones—other AMR companies are way past this stage.
Kermit is an AGC (Autonomously Guided Cart) that is focused on moving empty totes from one location to another within our facilities so we can get empty totes back to the starting line. Kermit follows strategically placed magnetic tape to guide its navigation and uses tags placed along the way to determine if it should speed up, slow down, or modify its course in some way. Kermit is further along in development, currently being tested in several sites across the U.S., and will be introduced in at least a dozen more sites across North America this year.
Most folks in the mobile robots industry would hesitate to call Kermit an autonomous robot at all, which is likely why Amazon doesn’t refer to it as such, instead calling it a “guided cart.” As far as I know, pretty much every other mobile robotics company has done away with stuff like magnetic tape in favor of map-based natural-feature localization (a technology that has been commercially available for years), because then your robots can go anywhere in a mapped warehouse, not just on these predefined paths. Even if you have a space and workflow that never ever changes, busy warehouses have paths that get blocked for one reason or another all the time, and modern AMRs are flexible enough to plan around those paths to complete their tasks. With these autonomous carts that are locked to their tapes, they can’t even move over a couple of feet to get around an obstacle.
I have no idea why this monstrous system called Scooter is the best solution for moving carts around a warehouse. It just seems needlessly huge and complicated, especially since we know Amazon already understands that a great way of moving carts around is by using much smaller robots that can zip underneath a cart, lift it up, and carry it around with them. Obviously, the Kiva drive units only operate in highly structured environments, but other AMR companies are making this concept work on the warehouse floor just fine.
Why is Amazon at “possibilities” when other companies are at commercial deployments?
I honestly just don’t understand what’s happening here. Amazon has (I assume) a huge R&D budget at its disposal. It was investing in robotic technology for e-commerce warehouses super early, and at an unmatched scale. Even beyond Kiva, Amazon obviously understood the importance of AMRs several years ago, with its $100+ million acquisition of Canvas Technology in 2019. But looking back at Canvas’ old videos, it seems like Canvas was doing in 2017 more or less what we’re seeing Amazon’s Bert robot doing now, nearly half a decade later.
We reached out to Amazon Robotics for comment and sent them a series of questions about the robots in these videos. They sent us this response:
The health and safety of our employees is our number one priority—and has been since day one. We’re excited about the possibilities robotics and other technology can play in helping to improve employee safety.
Hmm.
I mean, sure, I’m excited about the same thing, but I’m still stuck on why Amazon is at possibilities, while other companies are at commercial deployments. It’s certainly possible that the sheer Amazon-ness of Amazon is a significant factor here, in the sense that a commercial deployment for Amazon is orders of magnitude larger and more complex than any of the AMR companies that we’re comparing them to are dealing with. And if Amazon can figure out how to make (say) an AMR without using lidar, it would make a much more significant difference for an in-house large-scale deployment relative to companies offering AMRs as a service.
For another take on what might be going on with this announcement from Amazon, we spoke with Matt Beane, who got his PhD at MIT and studies robotics at UCSB’s Technology Management Program. At the ACM/IEEE International Conference on Human-Robot Interaction (HRI) last year, Beane published a paper on the value of robots as social signals—that is, organizations get valuable outcomes from just announcing they have robots, because this encourages key audiences to see the organization in favorable ways. “My research strongly suggests that Amazon is reaping signaling value from this announcement,” Beane told us. There’s nothing inherently wrong with signaling, because robots can create instrumental value, and that value needs to be communicated to the people who will, ideally, benefit from it. But you have to be careful: “My paper also suggests this can be a risky move,” explains Beane. “Blowback can be pretty nasty if the systems aren’t in full-tilt, high-value use. In other words, it works only if the signal pretty closely matches the internal reality.”
There’s no way for us to know what the internal reality at Amazon is. All we have to go on is this blog post, which isn’t much, and we should reiterate that there may be a significant gap between what the post is showing us about Amazon’s mobile robots and what’s actually going on at Amazon Robotics. My hope is what we’re seeing here is primarily a sign that Amazon Robotics is starting to scale things up, and that we’re about to see them get a lot more serious about developing robots that will help make their warehouses less tedious, safer, and more productive. Continue reading
#439105 This Robot Taught Itself to Walk in a ...
Recently, in a Berkeley lab, a robot called Cassie taught itself to walk, a little like a toddler might. Through trial and error, it learned to move in a simulated world. Then its handlers sent it strolling through a minefield of real-world tests to see how it’d fare.
And, as it turns out, it fared pretty damn well. With no further fine-tuning, the robot—which is basically just a pair of legs—was able to walk in all directions, squat down while walking, right itself when pushed off balance, and adjust to different kinds of surfaces.
It’s the first time a machine learning approach known as reinforcement learning has been so successfully applied in two-legged robots.
This likely isn’t the first robot video you’ve seen, nor the most polished.
For years, the internet has been enthralled by videos of robots doing far more than walking and regaining their balance. All that is table stakes these days. Boston Dynamics, the heavyweight champ of robot videos, regularly releases mind-blowing footage of robots doing parkour, back flips, and complex dance routines. At times, it can seem the world of iRobot is just around the corner.
This sense of awe is well-earned. Boston Dynamics is one of the world’s top makers of advanced robots.
But they still have to meticulously hand program and choreograph the movements of the robots in their videos. This is a powerful approach, and the Boston Dynamics team has done incredible things with it.
In real-world situations, however, robots need to be robust and resilient. They need to regularly deal with the unexpected, and no amount of choreography will do. Which is how, it’s hoped, machine learning can help.
Reinforcement learning has been most famously exploited by Alphabet’s DeepMind to train algorithms that thrash humans at some the most difficult games. Simplistically, it’s modeled on the way we learn. Touch the stove, get burned, don’t touch the damn thing again; say please, get a jelly bean, politely ask for another.
In Cassie’s case, the Berkeley team used reinforcement learning to train an algorithm to walk in a simulation. It’s not the first AI to learn to walk in this manner. But going from simulation to the real world doesn’t always translate.
Subtle differences between the two can (literally) trip up a fledgling robot as it tries out its sim skills for the first time.
To overcome this challenge, the researchers used two simulations instead of one. The first simulation, an open source training environment called MuJoCo, was where the algorithm drew upon a large library of possible movements and, through trial and error, learned to apply them. The second simulation, called Matlab SimMechanics, served as a low-stakes testing ground that more precisely matched real-world conditions.
Once the algorithm was good enough, it graduated to Cassie.
And amazingly, it didn’t need further polishing. Said another way, when it was born into the physical world—it knew how to walk just fine. In addition, it was also quite robust. The researchers write that two motors in Cassie’s knee malfunctioned during the experiment, but the robot was able to adjust and keep on trucking.
Other labs have been hard at work applying machine learning to robotics.
Last year Google used reinforcement learning to train a (simpler) four-legged robot. And OpenAI has used it with robotic arms. Boston Dynamics, too, will likely explore ways to augment their robots with machine learning. New approaches—like this one aimed at training multi-skilled robots or this one offering continuous learning beyond training—may also move the dial. It’s early yet, however, and there’s no telling when machine learning will exceed more traditional methods.
And in the meantime, Boston Dynamics bots are testing the commercial waters.
Still, robotics researchers, who were not part of the Berkeley team, think the approach is promising. Edward Johns, head of Imperial College London’s Robot Learning Lab, told MIT Technology Review, “This is one of the most successful examples I have seen.”
The Berkeley team hopes to build on that success by trying out “more dynamic and agile behaviors.” So, might a self-taught parkour-Cassie be headed our way? We’ll see.
Image Credit: University of California Berkeley Hybrid Robotics via YouTube Continue reading