Tag Archives: goal
#436403 Why Your 5G Phone Connection Could Mean ...
Will getting full bars on your 5G connection mean getting caught out by sudden weather changes?
The question may strike you as hypothetical, nonsensical even, but it is at the core of ongoing disputes between meteorologists and telecommunications companies. Everyone else, including you and I, are caught in the middle, wanting both 5G’s faster connection speeds and precise information about our increasingly unpredictable weather. So why can’t we have both?
Perhaps we can, but because of the way 5G networks function, it may take some special technology—specifically, artificial intelligence.
The Bandwidth Worries
Around the world, the first 5G networks are already being rolled out. The networks use a variety of frequencies to transmit data to and from devices at speeds up to 100 times faster than existing 4G networks.
One of the bandwidths used is between 24.25 and 24.45 gigahertz (GHz). In a recent FCC auction, telecommunications companies paid a combined $2 billion for the 5G usage rights for this spectrum in the US.
However, meteorologists are concerned that transmissions near the lower end of that range can interfere with their ability to accurately measure water vapor in the atmosphere. Wired reported that acting chief of the National Oceanic and Atmospheric Administration (NOAA), Neil Jacobs, told the US House Subcommittee on the Environment that 5G interference could substantially cut the amount of weather data satellites can gather. As a result, forecast accuracy could drop by as much as 30 percent.
Among the consequences could be less time to prepare for hurricanes, and it may become harder to predict storms’ paths. Due to the interconnectedness of weather patterns, measurement issues in one location can affect other areas too. Lack of accurate atmospheric data from the US could, for example, lead to less accurate forecasts for weather patterns over Europe.
The Numbers Game
Water vapor emits a faint signal at 23.8 GHz. Weather satellites measure the signals, and the data is used to gauge atmospheric humidity levels. Meteorologists have expressed concern that 5G signals in the same range can disturb those readings. The issue is that it would be nigh on impossible to tell whether a signal is water vapor or an errant 5G signal.
Furthermore, 5G disturbances in other frequency bands could make forecasting even more difficult. Rain and snow emit frequencies around 36-37 GHz. 50.2-50.4 GHz is used to measure atmospheric temperatures, and 86-92 GHz clouds and ice. All of the above are under consideration for international 5G signals. Some have warned that the wider consequences could set weather forecasts back to the 1980s.
Telecommunications companies and interest organizations have argued back, saying that weather sensors aren’t as susceptible to interference as meteorologists fear. Furthermore, 5G devices and signals will produce much less interference with weather forecasts than organizations like NOAA predict. Since very little scientific research has been carried out to examine the claims of either party, we seem stuck in a ‘wait and see’ situation.
To offset some of the possible effects, the two groups have tried to reach a consensus on a noise buffer between the 5G transmissions and water-vapor signals. It could be likened to limiting the noise from busy roads or loud sound systems to avoid bothering neighboring buildings.
The World Meteorological Organization was looking to establish a -55 decibel watts buffer. In Europe, regulators are locked in on a -42 decibel watts buffer for 5G base stations. For comparison, the US Federal Communications Commission has advocated for a -20 decibel watts buffer, which would, in reality, allow more than 150 times more noise than the European proposal.
How AI Could Help
Much of the conversation about 5G’s possible influence on future weather predictions is centered around mobile phones. However, the phones are far from the only systems that will be receiving and transmitting signals on 5G. Self-driving cars and the Internet of Things are two other technologies that could soon be heavily reliant on faster wireless signals.
Densely populated areas are likely going to be the biggest emitters of 5G signals, leading to a suggestion to only gather water-vapor data over oceans.
Another option is to develop artificial intelligence (AI) approaches to clean or process weather data. AI is playing an increasing role in weather forecasting. For example, in 2016 IBM bought The Weather Company for $2 billion. The goal was to combine the two companies’ models and data in IBM’s Watson to create more accurate forecasts. AI would also be able to predict increases or drops in business revenues due to weather changes. Monsanto has also been investing in AI for forecasting, in this case to provide agriculturally-related weather predictions.
Smartphones may also provide a piece of the weather forecasting puzzle. Studies have shown how data from thousands of smartphones can help to increase the accuracy of storm predictions, as well as the force of storms.
“Weather stations cost a lot of money,” Cliff Mass, an atmospheric scientist at the University of Washington in Seattle, told Inside Science, adding, “If there are already 20 million smartphones, you might as well take advantage of the observation system that’s already in place.”
Smartphones may not be the solution when it comes to finding new ways of gathering the atmospheric data on water vapor that 5G could disrupt. But it does go to show that some technologies open new doors, while at the same time, others shut them.
Image Credit: Image by Free-Photos from Pixabay Continue reading
#436218 An AI Debated Its Own Potential for Good ...
Artificial intelligence is going to overhaul the way we live and work. But will the changes it brings be for the better? As the technology slowly develops (let’s remember that right now, we’re still very much in the narrow AI space and nowhere near an artificial general intelligence), whether it will end up doing us more harm than good is a question at the top of everyone’s mind.
What kind of response might we get if we posed this question to an AI itself?
Last week at the Cambridge Union in England, IBM did just that. Its Project Debater (an AI that narrowly lost a debate to human debating champion Harish Natarajan in February) gave the opening arguments in a debate about the promise and peril of artificial intelligence.
Critical thinking, linking different lines of thought, and anticipating counter-arguments are all valuable debating skills that humans can practice and refine. While these skills are tougher for an AI to get good at since they often require deeper contextual understanding, AI does have a major edge over humans in absorbing and analyzing information. In the February debate, Project Debater used IBM’s cloud computing infrastructure to read hundreds of millions of documents and extract relevant details to construct an argument.
This time around, Debater looked through 1,100 arguments for or against AI. The arguments were submitted to IBM by the public during the week prior to the debate, through a website set up for that purpose. Of the 1,100 submissions, the AI classified 570 as anti-AI, or of the opinion that the technology will bring more harm to humanity than good. 511 arguments were found to be pro-AI, and the rest were irrelevant to the topic at hand.
Debater grouped the arguments into five themes; the technology’s ability to take over dangerous or monotonous jobs was a pro-AI theme, and on the flip side was its potential to perpetuate the biases of its creators. “AI companies still have too little expertise on how to properly assess datasets and filter out bias,” the tall black box that houses Project Debater said. “AI will take human bias and will fixate it for generations.”
After Project Debater kicked off the debate by giving opening arguments for both sides, two teams of people took over, elaborating on its points and coming up with their own counter-arguments.
In the end, an audience poll voted in favor of the pro-AI side, but just barely; 51.2 percent of voters felt convinced that AI can help us more than it can hurt us.
The software’s natural language processing was able to identify racist, obscene, or otherwise inappropriate comments and weed them out as being irrelevant to the debate. But it also repeated the same arguments multiple times, and mixed up a statement about bias as being pro-AI rather than anti-AI.
IBM has been working on Project Debater for over six years, and though it aims to iron out small glitches like these, the system’s goal isn’t to ultimately outwit and defeat humans. On the contrary, the AI is meant to support our decision-making by taking in and processing huge amounts of information in a nuanced way, more quickly than we ever could.
IBM engineer Noam Slonim envisions Project Debater’s tech being used, for example, by a government seeking citizens’ feedback about a new policy. “This technology can help to establish an interesting and effective communication channel between the decision maker and the people that are going to be impacted by the decision,” he said.
As for the question of whether AI will do more good or harm, perhaps Sylvie Delacroix put it best. A professor of law and ethics at the University of Birmingham who argued on the pro-AI side of the debate, she pointed out that the impact AI will have depends on the way we design it, saying “AI is only as good as the data it has been fed.”
She’s right; rather than asking what sort of impact AI will have on humanity, we should start by asking what sort of impact we want it to have. The people working on AI—not AIs themselves—are ultimately responsible for how much good or harm will be done.
Image Credit: IBM Project Debater at Cambridge Union Society, photo courtesy of IBM Research Continue reading