Tag Archives: global
#431015 Finish Him! MegaBots’ Giant Robot Duel ...
It began two years ago when MegaBots co-founders Matt Oehrlein and Gui Cavalcanti donned American flags as capes and challenged Suidobashi Heavy Industries to a giant robot duel in a YouTube video that immediately went viral.
The battle proposed: MegaBots’ 15-foot tall, 1,200-pound MK2 robot vs. Suidobashi’s 9,000-pound robot, KURATAS. Oehrlein and Cavalcanti first discovered the KURATAS robot in a listing on Amazon with a million-dollar price tag.
In an equally flamboyant response video, Suidobashi CEO and founder Kogoro Kurata accepted the challenge. (Yes, he named his robot after himself.) Both parties planned to take a year to prepare their robots for combat.
In the end, it took twice the amount of time. Nonetheless, the battle is going down this September in an undisclosed location in Japan.
Oehrlein shared more about the much-anticipated showdown during our interview at Singularity University’s Global Summit.
Two years since the initial video, MegaBots has now completed the combat-capable MK3 robot, named Eagle Prime. This new 12-ton, 16-foot-tall robot is powered by a 430-horsepower Corvette engine and requires two human pilots.
It’s also the robot they recently shipped to Japan to take on KURATAS.
Building Eagle Prime has been no small feat. With arms and legs that each weigh as much as a car, assembling the robot takes forklifts, cranes, and a lot of caution. Fortress One, MegaBots’ headquarters in Hayward, California is where the magic happens.
In terms of “weaponry,” Eagle Prime features a giant pneumatic cannon that shoots huge paint cannonballs. Oehrlein warns, “They can shatter all the windows in a car. It’s very powerful.” A logging grapple, which looks like a giant claw and exerts 3,000 pounds of steel-crushing force, has also been added to the robot.
“It’s a combination of range combat, using the paint balls to maybe blind cameras on the other robot or take out sensitive electronics, and then closing in with the claw and trying to disable their systems at close range,” Oehrlein explains.
Safety systems include a cockpit roll cage for the two pilots, five-point safety seatbelt harnesses, neck restraints, helmets, and flame retardant suits.
Co-founder, Matt Oehrlein, inside the cockpit of MegaBots’ Eagle Prime giant robot.
Oehrlein and Cavalcanti have also spent considerable time inside Eagle Prime practicing battlefield tactics and maneuvering the robot through obstacle courses.
Suidobashi’s robot is a bit shorter and lighter, but also a little faster, so the battle dynamics should be interesting.
You may be thinking, “Why giant dueling robots?”
MegaBots’ grand vision is a full-blown international sports league of giant fighting robots on the scale of Formula One racing. Picture a nostalgic evening sipping a beer (or three) and watching Pacific Rim- and Power Rangers-inspired robots battle—only in real life.
Eagle Prime is, in good humor, a proudly patriotic robot.
“Japan is known as a robotic powerhouse,” says Oehrlein, “I think there’s something interesting about the slightly overconfident American trying to get a foothold in the robotics space and doing it by building a bigger, louder, heavier robot, in true American fashion.”
For safety reasons, no fans will be admitted during the time of the fight. The battle will be posted after the fact on MegaBots’ YouTube channel and Facebook page.
We’ll soon find out whether this becomes another American underdog story.
In the meantime, I give my loyalty to MegaBots, and in the words of Mortal Kombat, say, “Finish him!”
via GIPHY
Image Credit: MegaBots Continue reading
#430874 12 Companies That Are Making the World a ...
The Singularity University Global Summit in San Francisco this week brought brilliant minds together from all over the world to share a passion for using science and technology to solve the world’s most pressing challenges.
Solving these challenges means ensuring basic needs are met for all people. It means improving quality of life and mitigating future risks both to people and the planet.
To recognize organizations doing outstanding work in these fields, SU holds the Global Grand Challenge Awards. Three participating organizations are selected in each of 12 different tracks and featured at the summit’s EXPO. The ones found to have the most potential to positively impact one billion people are selected as the track winners.
Here’s a list of the companies recognized this year, along with some details about the great work they’re doing.
Global Grand Challenge Awards winners at Singularity University’s Global Summit in San Francisco.
Disaster Resilience
LuminAID makes portable lanterns that can provide 24 hours of light on 10 hours of solar charging. The lanterns came from a project to assist post-earthquake relief efforts in Haiti, when the product’s creators considered the dangerous conditions at night in the tent cities and realized light was a critical need. The lights have been used in more than 100 countries and after disasters, including Hurricane Sandy, Typhoon Haiyan, and the earthquakes in Nepal.
Environment
BreezoMeter uses big data and machine learning to deliver accurate air quality information in real time. Users can see pollution details as localized as a single city block, and data is impacted by real-time traffic. Forecasting is also available, with air pollution information available up to four days ahead of time, or several years in the past.
Food
Aspire Food Group believes insects are the protein of the future, and that technology has the power to bring the tradition of eating insects that exists in many countries and cultures to the rest of the world. The company uses technologies like robotics and automated data collection to farm insects that have the protein quality of meat and the environmental footprint of plants.
Energy
Rafiki Power acts as a rural utility company, building decentralized energy solutions in regions that lack basic services like running water and electricity. The company’s renewable hybrid systems are packed and standardized in recycled 20-foot shipping containers, and they’re currently powering over 700 household and business clients in rural Tanzania.
Governance
MakeSense is an international community that brings together people in 128 cities across the world to help social entrepreneurs solve challenges in areas like education, health, food, and environment. Social entrepreneurs post their projects and submit challenges to the community, then participants organize workshops to mobilize and generate innovative solutions to help the projects grow.
Health
Unima developed a fast and low-cost diagnostic and disease surveillance tool for infectious diseases. The tool allows health professionals to diagnose diseases at the point of care, in less than 15 minutes, without the use of any lab equipment. A drop of the patient’s blood is put on a diagnostic paper, where the antibody generates a visual reaction when in contact with the biomarkers in the sample. The result is evaluated by taking a photo with an app in a smartphone, which uses image processing, artificial intelligence and machine learning.
Prosperity
Egalite helps people with disabilities enter the labor market, and helps companies develop best practices for inclusion of the disabled. Egalite’s founders are passionate about the potential of people with disabilities and the return companies get when they invest in that potential.
Learning
Iris.AI is an artificial intelligence system that reads scientific paper abstracts and extracts key concepts for users, presenting concepts visually and allowing users to navigate a topic across disciplines. Since its launch, Iris.AI has read 30 million research paper abstracts and more than 2,000 TED talks. The AI uses a neural net and deep learning technology to continuously improve its output.
Security
Hala Systems, Inc. is a social enterprise focused on developing technology-driven solutions to the world’s toughest humanitarian challenges. Hala is currently focused on civilian protection, accountability, and the prevention of violent extremism before, during, and after conflict. Ultimately, Hala aims to transform the nature of civilian defense during warfare, as well as to reduce casualties and trauma during post-conflict recovery, natural disasters, and other major crises.
Shelter
Billion Bricks designs and provides shelter and infrastructure solutions for the homeless. The company’s housing solutions are scalable, sustainable, and able to create opportunities for communities to emerge from poverty. Their approach empowers communities to replicate the solutions on their own, reducing dependency on support and creating ownership and pride.
Space
Tellus Labs uses satellite data to tackle challenges like food security, water scarcity, and sustainable urban and industrial systems, and drive meaningful change. The company built a planetary-scale model of all 170 million acres of US corn and soy crops to more accurately forecast yields and help stabilize the market fluctuations that accompany the USDA’s monthly forecasts.
Water
Loowatt designed a toilet that uses a patented sealing technology to contain human waste within biodegradable film. The toilet is designed for linking to anaerobic digestion technology to provide a source of biogas for cooking, electricity, and other applications, creating the opportunity to offset capital costs with energy production.
Image Credit: LuminAID via YouTube Continue reading
#430868 These 7 Forces Are Changing the World at ...
It was the Greek philosopher Heraclitus who first said, “The only thing that is constant is change.”
He was onto something. But even he would likely be left speechless at the scale and pace of change the world has experienced in the past 100 years—not to mention the past 10.
Since 1917, the global population has gone from 1.9 billion people to 7.5 billion. Life expectancy has more than doubled in many developing countries and risen significantly in developed countries. In 1917 only eight percent of homes had phones—in the form of landline telephones—while today more than seven in 10 Americans own a smartphone—aka, a supercomputer that fits in their pockets.
And things aren’t going to slow down anytime soon. In a talk at Singularity University’s Global Summit this week in San Francisco, SU cofounder and chairman Peter Diamandis told the audience, “Tomorrow’s speed of change will make today look like we’re crawling.” He then shared his point of view about some of the most important factors driving this accelerating change.
Peter Diamandis at Singularity University’s Global Summit in San Francisco.
Computation
In 1965, Gordon Moore (cofounder of Intel) predicted computer chips would double in power and halve in cost every 18 to 24 months. What became known as Moore’s Law turned out to be accurate, and today affordable computer chips contain a billion or more transistors spaced just nanometers apart.
That means computers can do exponentially more calculations per second than they could thirty, twenty, or ten years ago—and at a dramatically lower cost. This in turn means we can generate a lot more information, and use computers for all kinds of applications they wouldn’t have been able to handle in the past (like diagnosing rare forms of cancer, for example).
Convergence
Increased computing power is the basis for a myriad of technological advances, which themselves are converging in ways we couldn’t have imagined a couple decades ago. As new technologies advance, the interactions between various subsets of those technologies create new opportunities that accelerate the pace of change much more than any single technology can on its own.
A breakthrough in biotechnology, for example, might spring from a crucial development in artificial intelligence. An advance in solar energy could come about by applying concepts from nanotechnology.
Interface Moments
Technology is becoming more accessible even to the most non-techy among us. The internet was once the domain of scientists and coders, but these days anyone can make their own web page, and browsers make those pages easily searchable. Now, interfaces are opening up areas like robotics or 3D printing.
As Diamandis put it, “You don’t need to know how to code to 3D print an attachment for your phone. We’re going from mind to materialization, from intentionality to implication.”
Artificial intelligence is what Diamandis calls “the ultimate interface moment,” enabling everyone who can speak their mind to connect and leverage exponential technologies.
Connectivity
Today there are about three billion people around the world connected to the internet—that’s up from 1.8 billion in 2010. But projections show that by 2025 there will be eight billion people connected. This is thanks to a race between tech billionaires to wrap the Earth in internet; Elon Musk’s SpaceX has plans to launch a network of 4,425 satellites to get the job done, while Google’s Project Loon is using giant polyethylene balloons for the task.
These projects will enable five billion new minds to come online, and those minds will have access to exponential technologies via interface moments.
Sensors
Diamandis predicts that after we establish a 5G network with speeds of 10–100 Gbps, a proliferation of sensors will follow, to the point that there’ll be around 100,000 sensors per city block. These sensors will be equipped with the most advanced AI, and the combination of these two will yield an incredible amount of knowledge.
“By 2030 we’re heading towards 100 trillion sensors,” Diamandis said. “We’re heading towards a world in which we’re going to be able to know anything we want, anywhere we want, anytime we want.” He added that tens of thousands of drones will hover over every major city.
Intelligence
“If you think there’s an arms race going on for AI, there’s also one for HI—human intelligence,” Diamandis said. He explained that if a genius was born in a remote village 100 years ago, he or she would likely not have been able to gain access to the resources needed to put his or her gifts to widely productive use. But that’s about to change.
Private companies as well as military programs are working on brain-machine interfaces, with the ultimate aim of uploading the human mind. The focus in the future will be on increasing intelligence of individuals as well as companies and even countries.
Wealth Concentration
A final crucial factor driving mass acceleration is the increase in wealth concentration. “We’re living in a time when there’s more wealth in the hands of private individuals, and they’re willing to take bigger risks than ever before,” Diamandis said. Billionaires like Mark Zuckerberg, Jeff Bezos, Elon Musk, and Bill Gates are putting millions of dollars towards philanthropic causes that will benefit not only themselves, but humanity at large.
What It All Means
One of the biggest implications of the rate at which the world is changing, Diamandis said, is that the cost of everything is trending towards zero. We are heading towards abundance, and the evidence lies in the reduction of extreme poverty we’ve already seen and will continue to see at an even more rapid rate.
Listening to Diamandis’ optimism, it’s hard not to find it contagious.
“The world is becoming better at an extraordinary rate,” he said, pointing out the rises in literacy, democracy, vaccinations, and life expectancy, and the concurrent decreases in child mortality, birth rate, and poverty.
“We’re alive during a pivotal time in human history,” he concluded. “There is nothing we don’t have access to.”
Stock Media provided by seanpavonephoto / Pond5 Continue reading
#430855 Why Education Is the Hardest Sector of ...
We’ve all heard the warning cries: automation will disrupt entire industries and put millions of people out of jobs. In fact, up to 45 percent of existing jobs can be automated using current technology.
However, this may not necessarily apply to the education sector. After a detailed analysis of more than 2,000-plus work activities for more than 800 occupations, a report by McKinsey & Co states that of all the sectors examined, “…the technical feasibility of automation is lowest in education.”
There is no doubt that technological trends will have a powerful impact on global education, both by improving the overall learning experience and by increasing global access to education. Massive open online courses (MOOCs), chatbot tutors, and AI-powered lesson plans are just a few examples of the digital transformation in global education. But will robots and artificial intelligence ever fully replace teachers?
The Most Difficult Sector to Automate
While various tasks revolving around education—like administrative tasks or facilities maintenance—are open to automation, teaching itself is not.
Effective education involves more than just transfer of information from a teacher to a student. Good teaching requires complex social interactions and adaptation to the individual student’s learning needs. An effective teacher is not just responsive to each student’s strengths and weaknesses, but is also empathetic towards the student’s state of mind. It’s about maximizing human potential.
Furthermore, students don’t just rely on effective teachers to teach them the course material, but also as a source of life guidance and career mentorship. Deep and meaningful human interaction is crucial and is something that is very difficult, if not impossible, to automate.
Automating teaching is an example of a task that would require artificial general intelligence (as opposed to narrow or specific intelligence). In other words, this is the kind of task that would require an AI that understands natural human language, can be empathetic towards emotions, plan, strategize and make impactful decisions under unpredictable circumstances.
This would be the kind of machine that can do anything a human can do, and it doesn’t exist—at least, not yet.
We’re Getting There
Let’s not forget how quickly AI is evolving. Just because it’s difficult to fully automate teaching, it doesn’t mean the world’s leading AI experts aren’t trying.
Meet Jill Watson, the teaching assistant from Georgia Institute of Technology. Watson isn’t your average TA. She’s an IBM-powered artificial intelligence that is being implemented in universities around the world. Watson is able to answer students’ questions with 97 percent certainty.
Technologies like this also have applications in grading and providing feedback. Some AI algorithms are being trained and refined to perform automatic essay scoring. One project has achieved a 0.945 correlation with human graders.
All of this will have a remarkable impact on online education as we know it and dramatically increase online student retention rates.
Any student with a smartphone can access a wealth of information and free courses from universities around the world. MOOCs have allowed valuable courses to become available to millions of students. But at the moment, not all participants can receive customized feedback for their work. Currently, this is limited by manpower, but in the future that may not be the case.
What chatbots like Jill Watson allow is the opportunity for hundreds of thousands, if not millions, of students to have their work reviewed and all their questions answered at a minimal cost.
AI algorithms also have a significant role to play in personalization of education. Every student is unique and has a different set of strengths and weaknesses. Data analysis can be used to improve individual student results, assess each student’s strengths and weaknesses, and create mass-customized programs. Algorithms can analyze student data and consequently make flexible programs that adapt to the learner based on real-time feedback. According to the McKinsey Global Institute, all of this data in education could unlock between $900 billion and $1.2 trillion in global economic value.
Beyond Automated Teaching
It’s important to recognize that technological automation alone won’t fix the many issues in our global education system today. Dominated by outdated curricula, standardized tests, and an emphasis on short-term knowledge, many experts are calling for a transformation of how we teach.
It is not enough to simply automate the process. We can have a completely digital learning experience that continues to focus on outdated skills and fails to prepare students for the future. In other words, we must not only be innovative with our automation capabilities, but also with educational content, strategy, and policies.
Are we equipping students with the most important survival skills? Are we inspiring young minds to create a better future? Are we meeting the unique learning needs of each and every student? There’s no point automating and digitizing a system that is already flawed. We need to ensure the system that is being digitized is itself being transformed for the better.
Stock Media provided by davincidig / Pond5 Continue reading