Tag Archives: global

#434637 AI Is Rapidly Augmenting Healthcare and ...

When it comes to the future of healthcare, perhaps the only technology more powerful than CRISPR is artificial intelligence.

Over the past five years, healthcare AI startups around the globe raised over $4.3 billion across 576 deals, topping all other industries in AI deal activity.

During this same period, the FDA has given 70 AI healthcare tools and devices ‘fast-tracked approval’ because of their ability to save both lives and money.

The pace of AI-augmented healthcare innovation is only accelerating.

In Part 3 of this blog series on longevity and vitality, I cover the different ways in which AI is augmenting our healthcare system, enabling us to live longer and healthier lives.

In this blog, I’ll expand on:

Machine learning and drug design
Artificial intelligence and big data in medicine
Healthcare, AI & China

Let’s dive in.

Machine Learning in Drug Design
What if AI systems, specifically neural networks, could predict the design of novel molecules (i.e. medicines) capable of targeting and curing any disease?

Imagine leveraging cutting-edge artificial intelligence to accomplish with 50 people what the pharmaceutical industry can barely do with an army of 5,000.

And what if these molecules, accurately engineered by AIs, always worked? Such a feat would revolutionize our $1.3 trillion global pharmaceutical industry, which currently holds a dismal record of 1 in 10 target drugs ever reaching human trials.

It’s no wonder that drug development is massively expensive and slow. It takes over 10 years to bring a new drug to market, with costs ranging from $2.5 billion to $12 billion.

This inefficient, slow-to-innovate, and risk-averse industry is a sitting duck for disruption in the years ahead.

One of the hottest startups in digital drug discovery today is Insilico Medicine. Leveraging AI in its end-to-end drug discovery pipeline, Insilico Medicine aims to extend healthy longevity through drug discovery and aging research.

Their comprehensive drug discovery engine uses millions of samples and multiple data types to discover signatures of disease, identify the most promising protein targets, and generate perfect molecules for these targets. These molecules either already exist or can be generated de novo with the desired set of parameters.

In late 2018, Insilico’s CEO Dr. Alex Zhavoronkov announced the groundbreaking result of generating novel molecules for a challenging protein target with an unprecedented hit rate in under 46 days. This included both synthesis of the molecules and experimental validation in a biological test system—an impressive feat made possible by converging exponential technologies.

Underpinning Insilico’s drug discovery pipeline is a novel machine learning technique called Generative Adversarial Networks (GANs), used in combination with deep reinforcement learning.

Generating novel molecular structures for diseases both with and without known targets, Insilico is now pursuing drug discovery in aging, cancer, fibrosis, Parkinson’s disease, Alzheimer’s disease, ALS, diabetes, and many others. Once rolled out, the implications will be profound.

Dr. Zhavoronkov’s ultimate goal is to develop a fully-automated Health-as-a-Service (HaaS) and Longevity-as-a-Service (LaaS) engine.

Once plugged into the services of companies from Alibaba to Alphabet, such an engine would enable personalized solutions for online users, helping them prevent diseases and maintain optimal health.

Insilico, alongside other companies tackling AI-powered drug discovery, truly represents the application of the 6 D’s. What was once a prohibitively expensive and human-intensive process is now rapidly becoming digitized, dematerialized, demonetized and, perhaps most importantly, democratized.

Companies like Insilico can now do with a fraction of the cost and personnel what the pharmaceutical industry can barely accomplish with thousands of employees and a hefty bill to foot.

As I discussed in my blog on ‘The Next Hundred-Billion-Dollar Opportunity,’ Google’s DeepMind has now turned its neural networks to healthcare, entering the digitized drug discovery arena.

In 2017, DeepMind achieved a phenomenal feat by matching the fidelity of medical experts in correctly diagnosing over 50 eye disorders.

And just a year later, DeepMind announced a new deep learning tool called AlphaFold. By predicting the elusive ways in which various proteins fold on the basis of their amino acid sequences, AlphaFold may soon have a tremendous impact in aiding drug discovery and fighting some of today’s most intractable diseases.

Artificial Intelligence and Data Crunching
AI is especially powerful in analyzing massive quantities of data to uncover patterns and insights that can save lives. Take WAVE, for instance. Every year, over 400,000 patients die prematurely in US hospitals as a result of heart attack or respiratory failure.

Yet these patients don’t die without leaving plenty of clues. Given information overload, however, human physicians and nurses alone have no way of processing and analyzing all necessary data in time to save these patients’ lives.

Enter WAVE, an algorithm that can process enough data to offer a six-hour early warning of patient deterioration.

Just last year, the FDA approved WAVE as an AI-based predictive patient surveillance system to predict and thereby prevent sudden death.

Another highly valuable yet difficult-to-parse mountain of medical data comprises the 2.5 million medical papers published each year.

For some time, it has become physically impossible for a human physician to read—let alone remember—all of the relevant published data.

To counter this compounding conundrum, Johnson & Johnson is teaching IBM Watson to read and understand scientific papers that detail clinical trial outcomes.

Enriching Watson’s data sources, Apple is also partnering with IBM to provide access to health data from mobile apps.

One such Watson system contains 40 million documents, ingesting an average of 27,000 new documents per day, and providing insights for thousands of users.

After only one year, Watson’s successful diagnosis rate of lung cancer has reached 90 percent, compared to the 50 percent success rate of human doctors.

But what about the vast amount of unstructured medical patient data that populates today’s ancient medical system? This includes medical notes, prescriptions, audio interview transcripts, and pathology and radiology reports.

In late 2018, Amazon announced a new HIPAA-eligible machine learning service that digests and parses unstructured data into categories, such as patient diagnoses, treatments, dosages, symptoms and signs.

Taha Kass-Hout, Amazon’s senior leader in health care and artificial intelligence, told the Wall Street Journal that internal tests demonstrated that the software even performs as well as or better than other published efforts.

On the heels of this announcement, Amazon confirmed it was teaming up with the Fred Hutchinson Cancer Research Center to evaluate “millions of clinical notes to extract and index medical conditions.”

Having already driven extraordinary algorithmic success rates in other fields, data is the healthcare industry’s goldmine for future innovation.

Healthcare, AI & China
In 2017, the Chinese government published its ambitious national plan to become a global leader in AI research by 2030, with healthcare listed as one of four core research areas during the first wave of the plan.

Just a year earlier, China began centralizing healthcare data, tackling a major roadblock to developing longevity and healthcare technologies (particularly AI systems): scattered, dispersed, and unlabeled patient data.

Backed by the Chinese government, China’s largest tech companies—particularly Tencent—have now made strong entrances into healthcare.

Just recently, Tencent participated in a $154 million megaround for China-based healthcare AI unicorn iCarbonX.

Hoping to develop a complete digital representation of your biological self, iCarbonX has acquired numerous US personalized medicine startups.

Considering Tencent’s own Miying healthcare AI platform—aimed at assisting healthcare institutions in AI-driven cancer diagnostics—Tencent is quickly expanding into the drug discovery space, participating in two multimillion-dollar, US-based AI drug discovery deals just this year.

China’s biggest, second-order move into the healthtech space comes through Tencent’s WeChat. In the course of a mere few years, already 60 percent of the 38,000 medical institutions registered on WeChat allow patients to digitally book appointments through Tencent’s mobile platform. At the same time, 2,000 Chinese hospitals accept WeChat payments.

Tencent has additionally partnered with the U.K.’s Babylon Health, a virtual healthcare assistant startup whose app now allows Chinese WeChat users to message their symptoms and receive immediate medical feedback.

Similarly, Alibaba’s healthtech focus started in 2016 when it released its cloud-based AI medical platform, ET Medical Brain, to augment healthcare processes through everything from diagnostics to intelligent scheduling.

Conclusion
As Nvidia CEO Jensen Huang has stated, “Software ate the world, but AI is going to eat software.” Extrapolating this statement to a more immediate implication, AI will first eat healthcare, resulting in dramatic acceleration of longevity research and an amplification of the human healthspan.

Next week, I’ll continue to explore this concept of AI systems in healthcare.

Particularly, I’ll expand on how we’re acquiring and using the data for these doctor-augmenting AI systems: from ubiquitous biosensors, to the mobile healthcare revolution, and finally, to the transformative power of the health nucleus.

As AI and other exponential technologies increase our healthspan by 30 to 40 years, how will you leverage these same exponential technologies to take on your moonshots and live out your massively transformative purpose?

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Zapp2Photo / Shutterstock.com Continue reading

Posted in Human Robots

#434580 How Genome Sequencing and Senolytics Can ...

The causes of aging are extremely complex and unclear. With the dramatic demonetization of genome reading and editing over the past decade, and Big Pharma, startups, and the FDA starting to face aging as a disease, we are starting to find practical ways to extend our healthspan.

Here, in Part 2 of a series of blogs on longevity and vitality, I explore how genome sequencing and editing, along with new classes of anti-aging drugs, are augmenting our biology to further extend our healthy lives.

In this blog I’ll cover two classes of emerging technologies:

Genome Sequencing and Editing;
Senolytics, Nutraceuticals & Pharmaceuticals.

Let’s dive in.

Genome Sequencing & Editing
Your genome is the software that runs your body.

A sequence of 3.2 billion letters makes you “you.” These base pairs of A’s, T’s, C’s, and G’s determine your hair color, your height, your personality, your propensity to disease, your lifespan, and so on.

Until recently, it’s been very difficult to rapidly and cheaply “read” these letters—and even more difficult to understand what they mean.

Since 2001, the cost to sequence a whole human genome has plummeted exponentially, outpacing Moore’s Law threefold. From an initial cost of $3.7 billion, it dropped to $10 million in 2006, and to $5,000 in 2012.

Today, the cost of genome sequencing has dropped below $500, and according to Illumina, the world’s leading sequencing company, the process will soon cost about $100 and take about an hour to complete.

This represents one of the most powerful and transformative technology revolutions in healthcare.

When we understand your genome, we’ll be able to understand how to optimize “you.”

We’ll know the perfect foods, the perfect drugs, the perfect exercise regimen, and the perfect supplements, just for you.
We’ll understand what microbiome types, or gut flora, are ideal for you (more on this in a later blog).
We’ll accurately predict how specific sedatives and medicines will impact you.
We’ll learn which diseases and illnesses you’re most likely to develop and, more importantly, how to best prevent them from developing in the first place (rather than trying to cure them after the fact).

CRISPR Gene Editing
In addition to reading the human genome, scientists can now edit a genome using a naturally-occurring biological system discovered in 1987 called CRISPR/Cas9.

Short for Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9, the editing system was adapted from a naturally-occurring defense system found in bacteria.

Here’s how it works:

The bacteria capture snippets of DNA from invading viruses (or bacteriophage) and use them to create DNA segments known as CRISPR arrays.
The CRISPR arrays allow the bacteria to “remember” the viruses (or closely related ones), and defend against future invasions.
If the viruses attack again, the bacteria produce RNA segments from the CRISPR arrays to target the viruses’ DNA. The bacteria then use Cas9 to cut the DNA apart, which disables the virus.

Most importantly, CRISPR is cheap, quick, easy to use, and more accurate than all previous gene editing methods. As a result, CRISPR/Cas9 has swept through labs around the world as the way to edit a genome.

A short search in the literature will show an exponential rise in the number of CRISPR-related publications and patents.

2018: Filled With CRISPR Breakthroughs
Early results are impressive. Researchers from the University of Chicago recently used CRISPR to genetically engineer cocaine resistance into mice.

Researchers at the University of Texas Southwestern Medical Center used CRISPR to reverse the gene defect causing Duchenne muscular dystrophy (DMD) in dogs (DMD is the most common fatal genetic disease in children).

With great power comes great responsibility, and moral and ethical dilemmas.

In 2015, Chinese scientists sparked global controversy when they first edited human embryo cells in the lab with the goal of modifying genes that would make the child resistant to smallpox, HIV, and cholera.

Three years later, in November 2018, researcher He Jiankui informed the world that the first set of CRISPR-engineered female twins had been delivered.

To accomplish his goal, Jiankui deleted a region of a receptor on the surface of white blood cells known as CCR5, introducing a rare, natural genetic variation that makes it more difficult for HIV to infect its favorite target, white blood cells.

Setting aside the significant ethical conversations, CRISPR will soon provide us the tools to eliminate diseases, create hardier offspring, produce new environmentally resistant crops, and even wipe out pathogens.

Senolytics, Nutraceuticals & Pharmaceuticals
Over the arc of your life, the cells in your body divide until they reach what is known as the Hayflick limit, or the number of times a normal human cell population will divide before cell division stops, which is typically about 50 divisions.

What normally follows next is programmed cell death or destruction by the immune system. A very small fraction of cells, however, become senescent cells and evade this fate to linger indefinitely.

These lingering cells secrete a potent mix of molecules that triggers chronic inflammation, damages the surrounding tissue structures, and changes the behavior of nearby cells for the worse.

Senescent cells appear to be one of the root causes of aging, causing everything from fibrosis and blood vessel calcification, to localized inflammatory conditions such as osteoarthritis, to diminished lung function.

Fortunately, both the scientific and entrepreneurial communities have begun to work on senolytic therapies, moving the technology for selectively destroying senescent cells out of the laboratory and into a half-dozen startup companies.

Prominent companies in the field include the following:

Unity Biotechnology is developing senolytic medicines to selectively eliminate senescent cells with an initial focus on delivering localized therapy in osteoarthritis, ophthalmology and pulmonary disease.
Oisin Biotechnologiesis pioneering a programmable gene therapy that can destroy cells based on their internal biochemistry.
SIWA Therapeuticsis working on an immunotherapy approach to the problem of senescent cells.

In recent years, researchers have identified or designed a handful of senolytic compounds that can curb aging by regulating senescent cells. Two of these drugs that have gained mainstay research traction are rapamycin and metformin.

Rapamycin
Originally extracted from bacteria found on Easter Island, Rapamycin acts on the m-TOR (mechanistic target of rapamycin) pathway to selectively block a key protein that facilitates cell division.

Currently, rapamycin derivatives are widely used as immunosuppression in organ and bone marrow transplants. Research now suggests that use results in prolonged lifespan and enhanced cognitive and immune function.

PureTech Health subsidiary resTORbio (which started 2018 by going public) is working on a rapamycin-based drug intended to enhance immunity and reduce infection. Their clinical-stage RTB101 drug works by inhibiting part of the mTOR pathway.

Results of the drug’s recent clinical trial include:

Decreased incidence of infection
Improved influenza vaccination response
A 30.6 percent decrease in respiratory tract infections

Impressive, to say the least.

Metformin
Metformin is a widely-used generic drug for mitigating liver sugar production in Type 2 diabetes patients.

Researchers have found that Metformin also reduces oxidative stress and inflammation, which otherwise increase as we age.

There is strong evidence that Metformin can augment cellular regeneration and dramatically mitigate cellular senescence by reducing both oxidative stress and inflammation.

Over 100 studies registered on ClinicalTrials.gov are currently following up on strong evidence of Metformin’s protective effect against cancer.

Nutraceuticals and NAD+
Beyond cellular senescence, certain critical nutrients and proteins tend to decline as a function of age. Nutraceuticals combat aging by supplementing and replenishing these declining nutrient levels.

NAD+ exists in every cell, participating in every process from DNA repair to creating the energy vital for cellular processes. It’s been shown that NAD+ levels decline as we age.

The Elysium Health Basis supplement aims to elevate NAD+ levels in the body to extend one’s lifespan. Elysium’s clinical study reports that Basis increases NAD+ levels consistently by a sustained 40 percent.

Conclusion
These are just a taste of the tremendous momentum that longevity and aging technology has right now. As artificial intelligence and quantum computing transform how we decode our DNA and how we discover drugs, genetics and pharmaceuticals will become truly personalized.

The next blog in this series will demonstrate how artificial intelligence is converging with genetics and pharmaceuticals to transform how we approach longevity, aging, and vitality.

We are edging closer to a dramatically extended healthspan—where 100 is the new 60. What will you create, where will you explore, and how will you spend your time if you are able to add an additional 40 healthy years to your life?

Join Me
Abundance Digital is my online educational portal and community of abundance-minded entrepreneurs. You’ll find weekly video updates from Peter, a curated newsfeed of exponential news, and a place to share your bold ideas. Click here to learn more and sign up.

Image Credit: ktsdesign / Shutterstock.com Continue reading

Posted in Human Robots

#434569 From Parkour to Surgery, Here Are the ...

The robot revolution may not be here quite yet, but our mechanical cousins have made some serious strides. And now some of the leading experts in the field have provided a rundown of what they see as the 10 most exciting recent developments.

Compiled by the editors of the journal Science Robotics, the list includes some of the most impressive original research and innovative commercial products to make a splash in 2018, as well as a couple from 2017 that really changed the game.

1. Boston Dynamics’ Atlas doing parkour

It seems like barely a few months go by without Boston Dynamics rewriting the book on what a robot can and can’t do. Last year they really outdid themselves when they got their Atlas humanoid robot to do parkour, leaping over logs and jumping between wooden crates.

Atlas’s creators have admitted that the videos we see are cherry-picked from multiple attempts, many of which don’t go so well. But they say they’re meant to be inspirational and aspirational rather than an accurate picture of where robotics is today. And combined with the company’s dog-like Spot robot, they are certainly pushing boundaries.

2. Intuitive Surgical’s da Vinci SP platform
Robotic surgery isn’t new, but the technology is improving rapidly. Market leader Intuitive’s da Vinci surgical robot was first cleared by the FDA in 2000, but since then it’s come a long way, with the company now producing three separate systems.

The latest addition is the da Vinci SP (single port) system, which is able to insert three instruments into the body through a single 2.5cm cannula (tube) bringing a whole new meaning to minimally invasive surgery. The system was granted FDA clearance for urological procedures last year, and the company has now started shipping the new system to customers.

3. Soft robot that navigates through growth

Roboticists have long borrowed principles from the animal kingdom, but a new robot design that mimics the way plant tendrils and fungi mycelium move by growing at the tip has really broken the mold on robot navigation.

The editors point out that this is the perfect example of bio-inspired design; the researchers didn’t simply copy nature, they took a general principle and expanded on it. The tube-like robot unfolds from the front as pneumatic pressure is applied, but unlike a plant, it can grow at the speed of an animal walking and can navigate using visual feedback from a camera.

4. 3D printed liquid crystal elastomers for soft robotics
Soft robotics is one of the fastest-growing sub-disciplines in the field, but powering these devices without rigid motors or pumps is an ongoing challenge. A variety of shape-shifting materials have been proposed as potential artificial muscles, including liquid crystal elastomeric actuators.

Harvard engineers have now demonstrated that these materials can be 3D printed using a special ink that allows the designer to easily program in all kinds of unusual shape-shifting abilities. What’s more, their technique produces actuators capable of lifting significantly more weight than previous approaches.

5. Muscle-mimetic, self-healing, and hydraulically amplified actuators
In another effort to find a way to power soft robots, last year researchers at the University of Colorado Boulder designed a series of super low-cost artificial muscles that can lift 200 times their own weight and even heal themselves.

The devices rely on pouches filled with a liquid that makes them contract with the force and speed of mammalian skeletal muscles when a voltage is applied. The most promising for robotics applications is the so-called Peano-HASEL, which features multiple rectangular pouches connected in series that contract linearly, just like real muscle.

6. Self-assembled nanoscale robot from DNA

While you may think of robots as hulking metallic machines, a substantial number of scientists are working on making nanoscale robots out of DNA. And last year German researchers built the first remote-controlled DNA robotic arm.

They created a length of tightly-bound DNA molecules to act as the arm and attached it to a DNA base plate via a flexible joint. Because DNA carries a charge, they were able to get the arm to swivel around like the hand of a clock by applying a voltage and switch direction by reversing that voltage. The hope is that this arm could eventually be used to build materials piece by piece at the nanoscale.

7. DelFly nimble bioinspired robotic flapper

Robotics doesn’t only borrow from biology—sometimes it gives back to it, too. And a new flapping-winged robot designed by Dutch engineers that mimics the humble fruit fly has done just that, by revealing how the animals that inspired it carry out predator-dodging maneuvers.

The lab has been building flapping robots for years, but this time they ditched the airplane-like tail used to control previous incarnations. Instead, they used insect-inspired adjustments to the motions of its twin pairs of flapping wings to hover, pitch, and roll with the agility of a fruit fly. That has provided a useful platform for investigating insect flight dynamics, as well as more practical applications.

8. Soft exosuit wearable robot

Exoskeletons could prevent workplace injuries, help people walk again, and even boost soldiers’ endurance. Strapping on bulky equipment isn’t ideal, though, so researchers at Harvard are working on a soft exoskeleton that combines specially-designed textiles, sensors, and lightweight actuators.

And last year the team made an important breakthrough by combining their novel exoskeleton with a machine-learning algorithm that automatically tunes the device to the user’s particular walking style. Using physiological data, it is able to adjust when and where the device needs to deliver a boost to the user’s natural movements to improve walking efficiency.

9. Universal Robots (UR) e-Series Cobots
Robots in factories are nothing new. The enormous mechanical arms you see in car factories normally have to be kept in cages to prevent them from accidentally crushing people. In recent years there’s been growing interest in “co-bots,” collaborative robots designed to work side-by-side with their human colleagues and even learn from them.

Earlier this year saw the demise of ReThink robotics, the pioneer of the approach. But the simple single arm devices made by Danish firm Universal Robotics are becoming ubiquitous in workshops and warehouses around the world, accounting for about half of global co-bot sales. Last year they released their latest e-Series, with enhanced safety features and force/torque sensing.

10. Sony’s aibo
After a nearly 20-year hiatus, Sony’s robotic dog aibo is back, and it’s had some serious upgrades. As well as a revamp to its appearance, the new robotic pet takes advantage of advances in AI, with improved environmental and command awareness and the ability to develop a unique character based on interactions with its owner.

The editors note that this new context awareness mark the device out as a significant evolution in social robots, which many hope could aid in childhood learning or provide companionship for the elderly.

Image Credit: DelFly Nimble / CC BY – SA 4.0 Continue reading

Posted in Human Robots

#434559 Can AI Tell the Difference Between a ...

Scarcely a day goes by without another headline about neural networks: some new task that deep learning algorithms can excel at, approaching or even surpassing human competence. As the application of this approach to computer vision has continued to improve, with algorithms capable of specialized recognition tasks like those found in medicine, the software is getting closer to widespread commercial use—for example, in self-driving cars. Our ability to recognize patterns is a huge part of human intelligence: if this can be done faster by machines, the consequences will be profound.

Yet, as ever with algorithms, there are deep concerns about their reliability, especially when we don’t know precisely how they work. State-of-the-art neural networks will confidently—and incorrectly—classify images that look like television static or abstract art as real-world objects like school-buses or armadillos. Specific algorithms could be targeted by “adversarial examples,” where adding an imperceptible amount of noise to an image can cause an algorithm to completely mistake one object for another. Machine learning experts enjoy constructing these images to trick advanced software, but if a self-driving car could be fooled by a few stickers, it might not be so fun for the passengers.

These difficulties are hard to smooth out in large part because we don’t have a great intuition for how these neural networks “see” and “recognize” objects. The main insight analyzing a trained network itself can give us is a series of statistical weights, associating certain groups of points with certain objects: this can be very difficult to interpret.

Now, new research from UCLA, published in the journal PLOS Computational Biology, is testing neural networks to understand the limits of their vision and the differences between computer vision and human vision. Nicholas Baker, Hongjing Lu, and Philip J. Kellman of UCLA, alongside Gennady Erlikhman of the University of Nevada, tested a deep convolutional neural network called VGG-19. This is state-of-the-art technology that is already outperforming humans on standardized tests like the ImageNet Large Scale Visual Recognition Challenge.

They found that, while humans tend to classify objects based on their overall (global) shape, deep neural networks are far more sensitive to the textures of objects, including local color gradients and the distribution of points on the object. This result helps explain why neural networks in image recognition make mistakes that no human ever would—and could allow for better designs in the future.

In the first experiment, a neural network was trained to sort images into 1 of 1,000 different categories. It was then presented with silhouettes of these images: all of the local information was lost, while only the outline of the object remained. Ordinarily, the trained neural net was capable of recognizing these objects, assigning more than 90% probability to the correct classification. Studying silhouettes, this dropped to 10%. While human observers could nearly always produce correct shape labels, the neural networks appeared almost insensitive to the overall shape of the images. On average, the correct object was ranked as the 209th most likely solution by the neural network, even though the overall shapes were an exact match.

A particularly striking example arose when they tried to get the neural networks to classify glass figurines of objects they could already recognize. While you or I might find it easy to identify a glass model of an otter or a polar bear, the neural network classified them as “oxygen mask” and “can opener” respectively. By presenting glass figurines, where the texture information that neural networks relied on for classifying objects is lost, the neural network was unable to recognize the objects by shape alone. The neural network was similarly hopeless at classifying objects based on drawings of their outline.

If you got one of these right, you’re better than state-of-the-art image recognition software. Image Credit: Nicholas Baker, Hongjing Lu, Gennady Erlikhman, Philip J. Kelman. “Deep convolutional networks do not classify based on global object shape.” Plos Computational Biology. 12/7/18. / CC BY 4.0
When the neural network was explicitly trained to recognize object silhouettes—given no information in the training data aside from the object outlines—the researchers found that slight distortions or “ripples” to the contour of the image were again enough to fool the AI, while humans paid them no mind.

The fact that neural networks seem to be insensitive to the overall shape of an object—relying instead on statistical similarities between local distributions of points—suggests a further experiment. What if you scrambled the images so that the overall shape was lost but local features were preserved? It turns out that the neural networks are far better and faster at recognizing scrambled versions of objects than outlines, even when humans struggle. Students could classify only 37% of the scrambled objects, while the neural network succeeded 83% of the time.

Humans vastly outperform machines at classifying object (a) as a bear, while the machine learning algorithm has few problems classifying the bear in figure (b). Image Credit: Nicholas Baker, Hongjing Lu, Gennady Erlikhman, Philip J. Kelman. “Deep convolutional networks do not classify based on global object shape.” Plos Computational Biology. 12/7/18. / CC BY 4.0
“This study shows these systems get the right answer in the images they were trained on without considering shape,” Kellman said. “For humans, overall shape is primary for object recognition, and identifying images by overall shape doesn’t seem to be in these deep learning systems at all.”

Naively, one might expect that—as the many layers of a neural network are modeled on connections between neurons in the brain and resemble the visual cortex specifically—the way computer vision operates must necessarily be similar to human vision. But this kind of research shows that, while the fundamental architecture might resemble that of the human brain, the resulting “mind” operates very differently.

Researchers can, increasingly, observe how the “neurons” in neural networks light up when exposed to stimuli and compare it to how biological systems respond to the same stimuli. Perhaps someday it might be possible to use these comparisons to understand how neural networks are “thinking” and how those responses differ from humans.

But, as yet, it takes a more experimental psychology to probe how neural networks and artificial intelligence algorithms perceive the world. The tests employed against the neural network are closer to how scientists might try to understand the senses of an animal or the developing brain of a young child rather than a piece of software.

By combining this experimental psychology with new neural network designs or error-correction techniques, it may be possible to make them even more reliable. Yet this research illustrates just how much we still don’t understand about the algorithms we’re creating and using: how they tick, how they make decisions, and how they’re different from us. As they play an ever-greater role in society, understanding the psychology of neural networks will be crucial if we want to use them wisely and effectively—and not end up missing the woods for the trees.

Image Credit: Irvan Pratama / Shutterstock.com Continue reading

Posted in Human Robots

#434297 How Can Leaders Ensure Humanity in a ...

It’s hard to avoid the prominence of AI in our lives, and there is a plethora of predictions about how it will influence our future. In their new book Solomon’s Code: Humanity in a World of Thinking Machines, co-authors Olaf Groth, Professor of Strategy, Innovation and Economics at HULT International Business School and CEO of advisory network Cambrian.ai, and Mark Nitzberg, Executive Director of UC Berkeley’s Center for Human-Compatible AI, believe that the shift in balance of power between intelligent machines and humans is already here.

I caught up with the authors about how the continued integration between technology and humans, and their call for a “Digital Magna Carta,” a broadly-accepted charter developed by a multi-stakeholder congress that would help guide the development of advanced technologies to harness their power for the benefit of all humanity.

Lisa Kay Solomon: Your new book, Solomon’s Code, explores artificial intelligence and its broader human, ethical, and societal implications that all leaders need to consider. AI is a technology that’s been in development for decades. Why is it so urgent to focus on these topics now?

Olaf Groth and Mark Nitzberg: Popular perception always thinks of AI in terms of game-changing narratives—for instance, Deep Blue beating Gary Kasparov at chess. But it’s the way these AI applications are “getting into our heads” and making decisions for us that really influences our lives. That’s not to say the big, headline-grabbing breakthroughs aren’t important; they are.

But it’s the proliferation of prosaic apps and bots that changes our lives the most, by either empowering or counteracting who we are and what we do. Today, we turn a rapidly growing number of our decisions over to these machines, often without knowing it—and even more often without understanding the second- and third-order effects of both the technologies and our decisions to rely on them.

There is genuine power in what we call a “symbio-intelligent” partnership between human, machine, and natural intelligences. These relationships can optimize not just economic interests, but help improve human well-being, create a more purposeful workplace, and bring more fulfillment to our lives.

However, mitigating the risks while taking advantage of the opportunities will require a serious, multidisciplinary consideration of how AI influences human values, trust, and power relationships. Whether or not we acknowledge their existence in our everyday life, these questions are no longer just thought exercises or fodder for science fiction.

In many ways, these technologies can challenge what it means to be human, and their ramifications already affect us in real and often subtle ways. We need to understand how

LKS: There is a lot of hype and misconceptions about AI. In your book, you provide a useful distinction between the cognitive capability that we often associate with AI processes, and the more human elements of consciousness and conscience. Why are these distinctions so important to understand?

OG & MN: Could machines take over consciousness some day as they become more powerful and complex? It’s hard to say. But there’s little doubt that, as machines become more capable, humans will start to think of them as something conscious—if for no other reason than our natural inclination to anthropomorphize.

Machines are already learning to recognize our emotional states and our physical health. Once they start talking that back to us and adjusting their behavior accordingly, we will be tempted to develop a certain rapport with them, potentially more trusting or more intimate because the machine recognizes us in our various states.

Consciousness is hard to define and may well be an emergent property, rather than something you can easily create or—in turn—deduce to its parts. So, could it happen as we put more and more elements together, from the realms of AI, quantum computing, or brain-computer interfaces? We can’t exclude that possibility.

Either way, we need to make sure we’re charting out a clear path and guardrails for this development through the Three Cs in machines: cognition (where AI is today); consciousness (where AI could go); and conscience (what we need to instill in AI before we get there). The real concern is that we reach machine consciousness—or what humans decide to grant as consciousness—without a conscience. If that happens, we will have created an artificial sociopath.

LKS: We have been seeing major developments in how AI is influencing product development and industry shifts. How is the rise of AI changing power at the global level?

OG & MN: Both in the public and private sectors, the data holder has the power. We’ve already seen the ascendance of about 10 “digital barons” in the US and China who sit on huge troves of data, massive computing power, and the resources and money to attract the world’s top AI talent. With these gaps already open between the haves and the have-nots on the technological and corporate side, we’re becoming increasingly aware that similar inequalities are forming at a societal level as well.

Economic power flows with data, leaving few options for socio-economically underprivileged populations and their corrupt, biased, or sparse digital footprints. By concentrating power and overlooking values, we fracture trust.

We can already see this tension emerging between the two dominant geopolitical models of AI. China and the US have emerged as the most powerful in both technological and economic terms, and both remain eager to drive that influence around the world. The EU countries are more contained on these economic and geopolitical measures, but they’ve leaped ahead on privacy and social concerns.

The problem is, no one has yet combined leadership on all three critical elements of values, trust, and power. The nations and organizations that foster all three of these elements in their AI systems and strategies will lead the future. Some are starting to recognize the need for the combination, but we found just 13 countries that have created significant AI strategies. Countries that wait too long to join them risk subjecting themselves to a new “data colonialism” that could change their economies and societies from the outside.

LKS: Solomon’s Code looks at AI from a variety of perspectives, considering both positive and potentially dangerous effects. You caution against the rising global threat and weaponization of AI and data, suggesting that “biased or dirty data is more threatening than nuclear arms or a pandemic.” For global leaders, entrepreneurs, technologists, policy makers and social change agents reading this, what specific strategies do you recommend to ensure ethical development and application of AI?

OG & MN: We’ve surrendered many of our most critical decisions to the Cult of Data. In most cases, that’s a great thing, as we rely more on scientific evidence to understand our world and our way through it. But we swing too far in other instances, assuming that datasets and algorithms produce a complete story that’s unsullied by human biases or intellectual shortcomings. We might choose to ignore it, but no one is blind to the dangers of nuclear war or pandemic disease. Yet, we willfully blind ourselves to the threat of dirty data, instead believing it to be pristine.

So, what do we do about it? On an individual level, it’s a matter of awareness, knowing who controls your data and how outsourcing of decisions to thinking machines can present opportunities and threats alike.

For business, government, and political leaders, we need to see a much broader expansion of ethics committees with transparent criteria with which to evaluate new products and services. We might consider something akin to clinical trials for pharmaceuticals—a sort of testing scheme that can transparently and independently measure the effects on humans of algorithms, bots, and the like. All of this needs to be multidisciplinary, bringing in expertise from across technology, social systems, ethics, anthropology, psychology, and so on.

Finally, on a global level, we need a new charter of rights—a Digital Magna Carta—that formalizes these protections and guides the development of new AI technologies toward all of humanity’s benefit. We’ve suggested the creation of a multi-stakeholder Cambrian Congress (harkening back to the explosion of life during the Cambrian period) that can not only begin to frame benefits for humanity, but build the global consensus around principles for a basic code-of-conduct, and ideas for evaluation and enforcement mechanisms, so we can get there without any large-scale failures or backlash in society. So, it’s not one or the other—it’s both.

Image Credit: whiteMocca / Shutterstock.com Continue reading

Posted in Human Robots