Tag Archives: global
#439783 This Google-Funded Project Is Tracking ...
It’s crunch time on climate change. The IPCC’s latest report told the world just how bad it is, and…it’s bad. Companies, NGOs, and governments are scrambling for fixes, both short-term and long-term, from banning sale of combustion-engine vehicles to pouring money into hydrogen to building direct air capture plants. And one initiative, launched last week, is taking an “if you can name it, you can tame it” approach by creating an independent database that measures and tracks emissions all over the world.
Climate TRACE, which stands for tracking real-time atmospheric carbon emissions, is a collaboration between nonprofits, tech companies, and universities, including CarbonPlan, Earthrise Alliance, Johns Hopkins Applied Physics Laboratory, former US Vice President Al Gore, and others. The organization started thanks to a grant from Google, which funded an effort to measure power plant emissions using satellites. A team of fellows from Google helped build algorithms to monitor the power plants (the Google.org Fellowship was created in 2019 to let Google employees do pro bono technical work for grant recipients).
Climate TRACE uses data from satellites and other remote sensing technologies to “see” emissions. Artificial intelligence algorithms combine this data with verifiable emissions measurements to produce estimates of the total emissions coming from various sources.
These sources are divided into ten sectors—like power, manufacturing, transportation, and agriculture—each with multiple subsectors (i.e., two subsectors of agriculture are rice cultivation and manure management). The total carbon emitted January 2015 to December 2020, by the project’s estimation, was 303.96 billion tons. The biggest offender? Electricity generation. It’s no wonder, then, that states, companies, and countries are rushing to make (occasionally unrealistic) carbon-neutral pledges, and that the renewable energy industry is booming.
The founders of the initiative hope that, by increasing transparency, the database will increase accountability, thereby spurring action. Younger consumers care about climate change, and are likely to push companies and brands to do something about it.
The BBC reported that in a recent survey led by the UK’s Bath University, almost 60 percent of respondents said they were “very worried” or “extremely worried” about climate change, while more than 45 percent said feelings about the climate affected their daily lives. The survey received responses from 10,000 people aged 16 to 25, finding that young people are the most concerned with climate change in the global south, while in the northern hemisphere those most worried are in Portugal, which has grappled with severe wildfires. Many of the survey respondents, independent of location, reportedly feel that “humanity is doomed.”
Once this demographic reaches working age, they’ll be able to throw their weight around, and it seems likely they’ll do so in a way that puts the planet and its future at center stage. For all its sanctimoniousness, “naming and shaming” of emitters not doing their part may end up being both necessary and helpful.
Until now, Climate TRACE’s website points out, emissions inventories have been largely self-reported (I mean, what’s even the point?), and they’ve used outdated information and opaque measurement methods. Besides being independent, which is huge in itself, TRACE is using 59 trillion bytes of data from more than 300 satellites, more than 11,100 sensors, and other sources of emissions information.
“We’ve established a shared, open monitoring system capable of detecting essentially all forms of humanity’s greenhouse gas emissions,” said Gavin McCormick, executive director of coalition convening member WattTime. “This is a transformative step forward that puts timely information at the fingertips of all those who seek to drive significant emissions reductions on our path to net zero.”
Given the scale of the project, the parties involved, and how quickly it has all come together—the grant from Google was in May 2019—it seems Climate TRACE is well-positioned to make a difference.
Image Credit: NASA Continue reading
#439077 How Scientists Grew Human Muscles in Pig ...
The little pigs bouncing around the lab looked exceedingly normal. Yet their adorable exterior hid a remarkable secret: each piglet carried two different sets of genes. For now, both sets came from their own species. But one day, one of those sets may be human.
The piglets are chimeras—creatures with intermingled sets of genes, as if multiple entities were seamlessly mashed together. Named after the Greek lion-goat-serpent monsters, chimeras may hold the key to an endless supply of human organs and tissues for transplant. The crux is growing these human parts in another animal—one close enough in size and function to our own.
Last week, a team from the University of Minnesota unveiled two mind-bending chimeras. One was joyous little piglets, each propelled by muscles grown from a different pig. Another was pig embryos, transplanted into surrogate pigs, that developed human muscles for more than 20 days.
The study, led by Drs. Mary and Daniel Garry at the University of Minnesota, had a therapeutic point: engineering a brilliant way to replace muscle loss, especially for the muscles around our skeletons that allow us to move and navigate the world. Trauma and injury, such as from firearm wounds or car crashes, can damage muscle tissue beyond the point of repair. Unfortunately, muscles are also stubborn in that donor tissue from cadavers doesn’t usually “take” at the injury site. For now, there are no effective treatments for severe muscle death, called volumetric muscle loss.
The new human-pig hybrids are designed to tackle this problem. Muscle wasting aside, the study also points to a clever “hack” that increases the amount of human tissue inside a growing pig embryo.
If further improved, the technology could “provide an unlimited supply of organs for transplantation,” said Dr. Mary Garry to Inverse. What’s more, because the human tissue can be sourced from patients themselves, the risk of rejection by the immune system is relatively low—even when grown inside a pig.
“The shortage of organs for heart transplantation, vascular grafting, and skeletal muscle is staggering,” said Garry. Human-animal chimeras could have a “seismic impact” that transforms organ transplantation and helps solve the organ shortage crisis.
That is, if society accepts the idea of a semi-humanoid pig.
Wait…But How?
The new study took a page from previous chimera recipes.
The main ingredients and steps go like this: first, you need an embryo that lacks the ability to develop a tissue or organ. This leaves an “empty slot” of sorts that you can fill with another set of genes—pig, human, or even monkey.
Second, you need to fine-tune the recipe so that the embryos “take” the new genes, incorporating them into their bodies as if they were their own. Third, the new genes activate to instruct the growing embryo to make the necessary tissue or organs without harming the overall animal. Finally, the foreign genes need to stay put, without cells migrating to another body part—say, the brain.
Not exactly straightforward, eh? The piglets are technological wonders that mix cutting-edge gene editing with cloning technologies.
The team went for two chimeras: one with two sets of pig genes, the other with a pig and human mix. Both started with a pig embryo that can’t make its own skeletal muscles (those are the muscles surrounding your bones). Using CRISPR, the gene-editing Swiss Army Knife, they snipped out three genes that are absolutely necessary for those muscles to develop. Like hitting a bullseye with three arrows simultaneously, it’s already a technological feat.
Here’s the really clever part: the muscles around your bones have a slightly different genetic makeup than the ones that line your blood vessels or the ones that pump your heart. While the resulting pig embryos had severe muscle deformities as they developed, their hearts beat as normal. This means the gene editing cut only impacted skeletal muscles.
Then came step two: replacing the missing genes. Using a microneedle, the team injected a fertilized and slightly developed pig egg—called a blastomere—into the embryo. If left on its natural course, a blastomere eventually develops into another embryo. This step “smashes” the two sets of genes together, with the newcomer filling the muscle void. The hybrid embryo was then placed into a surrogate, and roughly four months later, chimeric piglets were born.
Equipped with foreign DNA, the little guys nevertheless seemed totally normal, nosing around the lab and running everywhere without obvious clumsy stumbles. Under the microscope, their “xenomorph” muscles were indistinguishable from run-of-the-mill average muscle tissue—no signs of damage or inflammation, and as stretchy and tough as muscles usually are. What’s more, the foreign DNA seemed to have only developed into muscles, even though they were prevalent across the body. Extensive fishing experiments found no trace of the injected set of genes inside blood vessels or the brain.
A Better Human-Pig Hybrid
Confident in their recipe, the team next repeated the experiment with human cells, with a twist. Instead of using controversial human embryonic stem cells, which are obtained from aborted fetuses, they relied on induced pluripotent stem cells (iPSCs). These are skin cells that have been reverted back into a stem cell state.
Unlike previous attempts at making human chimeras, the team then scoured the genetic landscape of how pig and human embryos develop to find any genetic “brakes” that could derail the process. One gene, TP53, stood out, which was then promptly eliminated with CRISPR.
This approach provides a way for future studies to similarly increase the efficiency of interspecies chimeras, the team said.
The human-pig embryos were then carefully grown inside surrogate pigs for less than a month, and extensively analyzed. By day 20, the hybrids had already grown detectable human skeletal muscle. Similar to the pig-pig chimeras, the team didn’t detect any signs that the human genes had sprouted cells that would eventually become neurons or other non-muscle cells.
For now, human-animal chimeras are not allowed to grow to term, in part to stem the theoretical possibility of engineering humanoid hybrid animals (shudder). However, a sentient human-pig chimera is something that the team specifically addressed. Through multiple experiments, they found no trace of human genes in the embryos’ brain stem cells 20 and 27 days into development. Similarly, human donor genes were absent in cells that would become the hybrid embryos’ reproductive cells.
Despite bioethical quandaries and legal restrictions, human-animal chimeras have taken off, both as a source of insight into human brain development and a well of personalized organs and tissues for transplant. In 2019, Japan lifted its ban on developing human brain cells inside animal embryos, as well as the term limit—to global controversy. There’s also the question of animal welfare, given that hybrid clones will essentially become involuntary organ donors.
As the debates rage on, scientists are nevertheless pushing the limits of human-animal chimeras, while treading as carefully as possible.
“Our data…support the feasibility of the generation of these interspecies chimeras, which will serve as a model for translational research or, one day, as a source for xenotransplantation,” the team said.
Image Credit: Christopher Carson on Unsplash Continue reading