Tag Archives: Georgia
#435822 The Internet Is Coming to the Rest of ...
People surf it. Spiders crawl it. Gophers navigate it.
Now, a leading group of cognitive biologists and computer scientists want to make the tools of the Internet accessible to the rest of the animal kingdom.
Dubbed the Interspecies Internet, the project aims to provide intelligent animals such as elephants, dolphins, magpies, and great apes with a means to communicate among each other and with people online.
And through artificial intelligence, virtual reality, and other digital technologies, researchers hope to crack the code of all the chirps, yips, growls, and whistles that underpin animal communication.
Oh, and musician Peter Gabriel is involved.
“We can use data analysis and technology tools to give non-humans a lot more choice and control,” the former Genesis frontman, dressed in his signature Nehru-style collar shirt and loose, open waistcoat, told IEEE Spectrum at the inaugural Interspecies Internet Workshop, held Monday in Cambridge, Mass. “This will be integral to changing our relationship with the natural world.”
The workshop was a long time in the making.
Eighteen years ago, Gabriel visited a primate research center in Atlanta, Georgia, where he jammed with two bonobos, a male named Kanzi and his half-sister Panbanisha. It was the first time either bonobo had sat at a piano before, and both displayed an exquisite sense of musical timing and melody.
Gabriel seemed to be speaking to the great apes through his synthesizer. It was a shock to the man who once sang “Shock the Monkey.”
“It blew me away,” he says.
Add in the bonobos’ ability to communicate by pointing to abstract symbols, Gabriel notes, and “you’d have to be deaf, dumb, and very blind not to notice language being used.”
Gabriel eventually teamed up with Internet protocol co-inventor Vint Cerf, cognitive psychologist Diana Reiss, and IoT pioneer Neil Gershenfeld to propose building an Interspecies Internet. Presented in a 2013 TED Talk as an “idea in progress,” the concept proved to be ahead of the technology.
“It wasn’t ready,” says Gershenfeld, director of MIT’s Center for Bits and Atoms. “It needed to incubate.”
So, for the past six years, the architects of the Dolittlesque initiative embarked on two small pilot projects, one for dolphins and one for chimpanzees.
At her Hunter College lab in New York City, Reiss developed what she calls the D-Pad—a touchpad for dolphins.
Reiss had been trying for years to create an underwater touchscreen with which to probe the cognition and communication skills of bottlenose dolphins. But “it was a nightmare coming up with something that was dolphin-safe and would work,” she says.
Her first attempt emitted too much heat. A Wii-like system of gesture recognition proved too difficult to install in the dolphin tanks.
Eventually, she joined forces with Rockefeller University biophysicist Marcelo Magnasco and invented an optical detection system in which images and infrared sensors are projected through an underwater viewing window onto a glass panel, allowing the dolphins to play specially designed apps, including one dubbed Whack-a-Fish.
Meanwhile, in the United Kingdom, Gabriel worked with Alison Cronin, director of the ape rescue center Monkey World, to test the feasibility of using FaceTime with chimpanzees.
The chimps engaged with the technology, Cronin reported at this week’s workshop. However, our hominid cousins proved as adept at videotelephonic discourse as my three-year-old son is at video chatting with his grandparents—which is to say, there was a lot of pass-the-banana-through-the-screen and other silly games, and not much meaningful conversation.
“We can use data analysis and technology tools to give non-humans a lot more choice and control.”
—Peter Gabriel
The buggy, rudimentary attempt at interspecies online communication—what Cronin calls her “Max Headroom experiment”—shows that building the Interspecies Internet will not be as simple as giving out Skype-enabled tablets to smart animals.
“There are all sorts of problems with creating a human-centered experience for another animal,” says Gabriel Miller, director of research and development at the San Diego Zoo.
Miller has been working on animal-focused sensory tools such as an “Elephone” (for elephants) and a “Joybranch” (for birds), but it’s not easy to design efficient interactive systems for other creatures—and for the Interspecies Internet to be successful, Miller points out, “that will be super-foundational.”
Researchers are making progress on natural language processing of animal tongues. Through a non-profit organization called the Earth Species Project, former Firefox designer Aza Raskin and early Twitter engineer Britt Selvitelle are applying deep learning algorithms developed for unsupervised machine translation of human languages to fashion a Rosetta Stone–like tool capable of interpreting the vocalizations of whales, primates, and other animals.
Inspired by the scientists who first documented the complex sonic arrangements of humpback whales in the 1960s—a discovery that ushered in the modern marine conservation movement—Selvitelle hopes that an AI-powered animal translator can have a similar effect on environmentalism today.
“A lot of shifts happen when someone who doesn’t have a voice gains a voice,” he says.
A challenge with this sort of AI software remains verification and validation. Normally, machine-learning algorithms are benchmarked against a human expert, but who is to say if a cybernetic translation of a sperm whale’s clicks is accurate or not?
One could back-translate an English expression into sperm whale-ese and then into English again. But with the great apes, there might be a better option.
According to primatologist Sue Savage-Rumbaugh, expertly trained bonobos could serve as bilingual interpreters, translating the argot of apes into the parlance of people, and vice versa.
Not just any trained ape will do, though. They have to grow up in a mixed Pan/Homo environment, as Kanzi and Panbanisha were.
“If I can have a chat with a cow, maybe I can have more compassion for it.”
—Jeremy Coller
Those bonobos were raised effectively from birth both by Savage-Rumbaugh, who taught the animals to understand spoken English and to communicate via hundreds of different pictographic “lexigrams,” and a bonobo mother named Matata that had lived for six years in the Congolese rainforests before her capture.
Unlike all other research primates—which are brought into captivity as infants, reared by human caretakers, and have limited exposure to their natural cultures or languages—those apes thus grew up fluent in both bonobo and human.
Panbanisha died in 2012, but Kanzi, aged 38, is still going strong, living at an ape sanctuary in Des Moines, Iowa. Researchers continue to study his cognitive abilities—Francine Dolins, a primatologist at the University of Michigan-Dearborn, is running one study in which Kanzi and other apes hunt rabbits and forage for fruit through avatars on a touchscreen. Kanzi could, in theory, be recruited to check the accuracy of any Google Translate–like app for bonobo hoots, barks, grunts, and cries.
Alternatively, Kanzi could simply provide Internet-based interpreting services for our two species. He’s already proficient at video chatting with humans, notes Emily Walco, a PhD student at Harvard University who has personally Skyped with Kanzi. “He was super into it,” Walco says.
And if wild bonobos in Central Africa can be coaxed to gather around a computer screen, Savage-Rumbaugh is confident Kanzi could communicate with them that way. “It can all be put together,” she says. “We can have an Interspecies Internet.”
“Both the technology and the knowledge had to advance,” Savage-Rumbaugh notes. However, now, “the techniques that we learned could really be extended to a cow or a pig.”
That’s music to the ears of Jeremy Coller, a private equity specialist whose foundation partially funded the Interspecies Internet Workshop. Coller is passionate about animal welfare and has devoted much of his philanthropic efforts toward the goal of ending factory farming.
At the workshop, his foundation announced the creation of the Coller Doolittle Prize, a US $100,000 award to help fund further research related to the Interspecies Internet. (A working group also formed to synthesize plans for the emerging field, to facilitate future event planning, and to guide testing of shared technology platforms.)
Why would a multi-millionaire with no background in digital communication systems or cognitive psychology research want to back the initiative? For Coller, the motivation boils to interspecies empathy.
“If I can have a chat with a cow,” he says, “maybe I can have more compassion for it.”
An abridged version of this post appears in the September 2019 print issue as “Elephants, Dolphins, and Chimps Need the Internet, Too.” Continue reading
#435722 Stochastic Robots Use Randomness to ...
The idea behind swarm robots is to replace discrete, expensive, breakable uni-tasking components with a whole bunch of much simpler, cheaper, and replaceable robots that can work together to do the same sorts of tasks. Unfortunately, all of those swarm robots end up needing their own computing and communications and stuff if you want to get them to do what you want them to do.
A different approach to swarm robotics is to use a swarm of much cheaper robots that are far less intelligent. In fact, they may not have to be intelligent at all, if you can rely on their physical characteristics to drive them instead. These swarms are “stochastic,” meaning that their motions are randomly determined, but if you’re clever and careful, you can still get them to do specific things.
Georgia Tech has developed some little swarm robots called “smarticles” that can’t really do much at all on their own, but once you put them together into a jumble, their randomness can actually accomplish something.
Honestly, calling these particle robots “smart” might be giving them a bit too much credit, because they’re actually kind of dumb and strictly speaking not capable of all that much on their own. A single smarticle weighs 35 grams, and consists of some little 3D-printed flappy bits attached to servos, plus an Arduino Pro Mini, a battery, and a light or sound sensor. When its little flappy bits are activated, each smarticle can move slightly, but a single one mostly just moves around in a square and then will gradually drift in a mostly random direction over time.
It gets more interesting when you throw a whole bunch of smarticles into a constrained area. A small collection of five or 10 smarticles constrained together form a “supersmarticle,” but besides being in close proximity to one another, the smarticles within the supersmarticle aren’t communicating or anything like that. As far as each smarticle is concerned, they’re independent, but weirdly, a bumble of them can work together without working together.
“These are very rudimentary robots whose behavior is dominated by mechanics and the laws of physics,” said Dan Goldman, a Dunn Family Professor in the School of Physics at the Georgia Institute of Technology.
The researchers noticed that if one small robot stopped moving, perhaps because its battery died, the group of smarticles would begin moving in the direction of that stalled robot. Graduate student Ross Warkentin learned he could control the movement by adding photo sensors to the robots that halt the arm flapping when a strong beam of light hits one of them.
“If you angle the flashlight just right, you can highlight the robot you want to be inactive, and that causes the ring to lurch toward or away from it, even though no robots are programmed to move toward the light,” Goldman said. “That allowed steering of the ensemble in a very rudimentary, stochastic way.”
It turns out that it’s possible to model this behavior, and control a supersmarticle with enough fidelity to steer it through a maze. And while these particular smarticles aren’t all that small, strictly speaking, the idea is to develop techniques that will work when robots are scaled way way down to the point where you can't physically fit useful computing in there at all.
The researchers are also working on some other concepts, like these:
Image: Science Robotics
The Georgia Tech researchers envision stochastic robot swarms that don’t have a perfectly defined shape or delineation but are capable of self-propulsion, relying on the ensemble-level behaviors that lead to collective locomotion. In such a robot, the researchers say, groups of largely generic agents may be able to achieve complex goals, as observed in biological collectives.
Er, yeah. I’m…not sure I really want there to be a bipedal humanoid robot built out of a bunch of tiny robots. Like, that seems creepy somehow, you know? I’m totally okay with slugs, but let’s not get crazy.
“A robot made of robots: Emergent transport and control of a smarticle ensemble, by William Savoie, Thomas A. Berrueta, Zachary Jackson, Ana Pervan, Ross Warkentin, Shengkai Li, Todd D. Murphey, Kurt Wiesenfeld, and Daniel I. Goldman” from the Georgia Institute of Technology, appears in the current issue of Science Robotics. Continue reading
#435687 Humanoid Robots Teach Coping Skills to ...
Photo: Rob Felt
IEEE Senior Member Ayanna Howard with one of the interactive androids that help children with autism improve their social and emotional engagement.
THE INSTITUTEChildren with autism spectrum disorder can have a difficult time expressing their emotions and can be highly sensitive to sound, sight, and touch. That sometimes restricts their participation in everyday activities, leaving them socially isolated. Occupational therapists can help them cope better, but the time they’re able to spend is limited and the sessions tend to be expensive.
Roboticist Ayanna Howard, an IEEE senior member, has been using interactive androids to guide children with autism on ways to socially and emotionally engage with others—as a supplement to therapy. Howard is chair of the School of Interactive Computing and director of the Human-Automation Systems Lab at Georgia Tech. She helped found Zyrobotics, a Georgia Tech VentureLab startup that is working on AI and robotics technologies to engage children with special needs. Last year Forbes named Howard, Zyrobotics’ chief technology officer, one of the Top 50 U.S. Women in Tech.
In a recent study, Howard and other researchers explored how robots might help children navigate sensory experiences. The experiment involved 18 participants between the ages of 4 and 12; five had autism, and the rest were meeting typical developmental milestones. Two humanoid robots were programmed to express boredom, excitement, nervousness, and 17 other emotional states. As children explored stations set up for hearing, seeing, smelling, tasting, and touching, the robots modeled what the socially acceptable responses should be.
“If a child’s expression is one of happiness or joy, the robot will have a corresponding response of encouragement,” Howard says. “If there are aspects of frustration or sadness, the robot will provide input to try again.” The study suggested that many children with autism exhibit stronger levels of engagement when the robots interact with them at such sensory stations.
It is one of many robotics projects Howard has tackled. She has designed robots for researching glaciers, and she is working on assistive robots for the home, as well as an exoskeleton that can help children who have motor disabilities.
Howard spoke about her work during the Ethics in AI: Impacts of (Anti?) Social Robotics panel session held in May at the IEEE Vision, Innovation, and Challenges Summit in San Diego. You can watch the session on IEEE.tv.
The next IEEE Vision, Innovation, and Challenges Summit and Honors Ceremony will be held on 15 May 2020 at the JW Marriott Parq Vancouver hotel, in Vancouver.
In this interview with The Institute, Howard talks about how she got involved with assistive technologies, the need for a more diverse workforce, and ways IEEE has benefited her career.
FOCUS ON ACCESSIBILITY
Howard was inspired to work on technology that can improve accessibility in 2008 while teaching high school students at a summer camp devoted to science, technology, engineering, and math.
“A young lady with a visual impairment attended camp. The robot programming tools being used at the camp weren’t accessible to her,” Howard says. “As an engineer, I want to fix problems when I see them, so we ended up designing tools to enable access to programming tools that could be used in STEM education.
“That was my starting motivation, and this theme of accessibility has expanded to become a main focus of my research. One of the things about this world of accessibility is that when you start interacting with kids and parents, you discover another world out there of assistive technologies and how robotics can be used for good in education as well as therapy.”
DIVERSITY OF THOUGHT
The Institute asked Howard why it’s important to have a more diverse STEM workforce and what could be done to increase the number of women and others from underrepresented groups.
“The makeup of the current engineering workforce isn’t necessarily representative of the world, which is composed of different races, cultures, ages, disabilities, and socio-economic backgrounds,” Howard says. “We’re creating products used by people around the globe, so we have to ensure they’re being designed for a diverse population. As IEEE members, we also need to engage with people who aren’t engineers, and we don’t do that enough.”
Educational institutions are doing a better job of increasing diversity in areas such as gender, she says, adding that more work is needed because the enrollment numbers still aren’t representative of the population and the gains don’t necessarily carry through after graduation.
“There has been an increase in the number of underrepresented minorities and females going into engineering and computer science,” she says, “but data has shown that their numbers are not sustained in the workforce.”
ROLE MODEL
Because there are more underrepresented groups on today’s college campuses that can form a community, the lack of engineering role models—although a concern on campuses—is more extreme for preuniversity students, Howard says.
“Depending on where you go to school, you may not know what an engineer does or even consider engineering as an option,” she says, “so there’s still a big disconnect there.”
Howard has been involved for many years in math- and science-mentoring programs for at-risk high school girls. She tells them to find what they’re passionate about and combine it with math and science to create something. She also advises them not to let anyone tell them that they can’t.
Howard’s father is an engineer. She says he never encouraged or discouraged her to become one, but when she broke something, he would show her how to fix it and talk her through the process. Along the way, he taught her a logical way of thinking she says all engineers have.
“When I would try to explain something, he would quiz me and tell me to ‘think more logically,’” she says.
Howard earned a bachelor’s degree in engineering from Brown University, in Providence, R.I., then she received both a master’s and doctorate degree in electrical engineering from the University of Southern California. Before joining the faculty of Georgia Tech in 2005, she worked at NASA’s Jet Propulsion Laboratory at the California Institute of Technology for more than a decade as a senior robotics researcher and deputy manager in the Office of the Chief Scientist.
ACTIVE VOLUNTEER
Howard’s father was also an IEEE member, but that’s not why she joined the organization. She says she signed up when she was a student because, “that was something that you just did. Plus, my student membership fee was subsidized.”
She kept the membership as a grad student because of the discounted rates members receive on conferences.
Those conferences have had an impact on her career. “They allow you to understand what the state of the art is,” she says. “Back then you received a printed conference proceeding and reading through it was brutal, but by attending it in person, you got a 15-minute snippet about the research.”
Howard is an active volunteer with the IEEE Robotics and Automation and the IEEE Systems, Man, and Cybernetics societies, holding many positions and serving on several committees. She is also featured in the IEEE Impact Creators campaign. These members were selected because they inspire others to innovate for a better tomorrow.
“I value IEEE for its community,” she says. “One of the nice things about IEEE is that it’s international.” Continue reading
#435640 Video Friday: This Wearable Robotic Tail ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
CLAWAR 2019 – August 26-28, 2019 – Kuala Lumpur, Malaysia
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.
Lakshmi Nair from Georgia Tech describes some fascinating research towards robots that can create their own tools, as presented at ICRA this year:
Using a novel capability to reason about shape, function, and attachment of unrelated parts, researchers have for the first time successfully trained an intelligent agent to create basic tools by combining objects.
The breakthrough comes from Georgia Tech’s Robot Autonomy and Interactive Learning (RAIL) research lab and is a significant step toward enabling intelligent agents to devise more advanced tools that could prove useful in hazardous – and potentially life-threatening – environments.
[ Lakshmi Nair ]
Victor Barasuol, from the Dynamic Legged Systems Lab at IIT, wrote in to share some new research on their HyQ quadruped that enables sensorless shin collision detection. This helps the robot navigate unstructured environments, and also mitigates all those painful shin strikes, because ouch.
This will be presented later this month at the International Conference on Climbing and Walking Robots (CLAWAR) in Kuala Lumpur, Malaysia.
[ IIT ]
Thanks Victor!
You used to have a tail, you know—as an embryo, about a month in to your development. All mammals used to have tails, and now we just have useless tailbones, which don’t help us with balancing even a little bit. BRING BACK THE TAIL!
The tail, created by Junichi Nabeshima, Kouta Minamizawa, and MHD Yamen Saraiji from Keio University’s Graduate School of Media Design, was presented at SIGGRAPH 2019 Emerging Technologies.
[ Paper ] via [ Gizmodo ]
The noises in this video are fantastic.
[ ESA ]
Apparently the industrial revolution wasn’t a thorough enough beatdown of human knitting, because the robots are at it again.
[ MIT CSAIL ]
Skydio’s drones just keep getting more and more impressive. Now if only they’d make one that I can afford…
[ Skydio ]
The only thing more fun than watching robots is watching people react to robots.
[ SEER ]
There aren’t any robots in this video, but it’s robotics-related research, and very soothing to watch.
[ Stanford ]
#autonomousicecreamtricycle
In case it wasn’t clear, which it wasn’t, this is a Roboy project. And if you didn’t understand that first video, you definitely won’t understand this second one:
Whatever that t-shirt is at the end (Roboy in sunglasses puking rainbows…?) I need one.
[ Roboy ]
By adding electronics and computation technology to a simple cane that has been around since ancient times, a team of researchers at Columbia Engineering have transformed it into a 21st century robotic device that can provide light-touch assistance in walking to the aged and others with impaired mobility.
The light-touch robotic cane, called CANINE, acts as a cane-like mobile assistant. The device improves the individual’s proprioception, or self-awareness in space, during walking, which in turn improves stability and balance.
[ ROAR Lab ]
During the second field experiment for DARPA’s OFFensive Swarm-Enabled Tactics (OFFSET) program, which took place at Fort Benning, Georgia, teams of autonomous air and ground robots tested tactics on a mission to isolate an urban objective. Similar to the way a firefighting crew establishes a boundary around a burning building, they first identified locations of interest and then created a perimeter around the focal point.
[ DARPA ]
I think there’s a bit of new footage here of Ghost Robotics’ Vision 60 quadruped walking around without sensors on unstructured terrain.
[ Ghost Robotics ]
If you’re as tired of passenger drone hype as I am, there’s absolutely no need to watch this video of NEC’s latest hover test.
[ AP ]
As researchers teach robots to perform more and more complex tasks, the need for realistic simulation environments is growing. Existing techniques for closing the reality gap by approximating real-world physics often require extensive real world data and/or thousands of simulation samples. This paper presents TuneNet, a new machine learning-based method to directly tune the parameters of one model to match another using an iterative residual tuning technique. TuneNet estimates the parameter difference between two models using a single observation from the target and minimal simulation, allowing rapid, accurate and sample-efficient parameter estimation.
The system can be trained via supervised learning over an auto-generated simulated dataset. We show that TuneNet can perform system identification, even when the true parameter values lie well outside the distribution seen during training, and demonstrate that simulators tuned with TuneNet outperform existing techniques for predicting rigid body motion. Finally, we show that our method can estimate real-world parameter values, allowing a robot to perform sim-to-real task transfer on a dynamic manipulation task unseen during training. We are also making a baseline implementation of our code available online.
[ Paper ]
Here’s an update on what GITAI has been up to with their telepresence astronaut-replacement robot.
[ GITAI ]
Curiosity captured this 360-degree panorama of a location on Mars called “Teal Ridge” on June 18, 2019. This location is part of a larger region the rover has been exploring called the “clay-bearing unit” on the side of Mount Sharp, which is inside Gale Crater. The scene is presented with a color adjustment that approximates white balancing to resemble how the rocks and sand would appear under daytime lighting conditions on Earth.
[ MSL ]
Some updates (in English) on ROS from ROSCon France. The first is a keynote from Brian Gerkey:
And this second video is from Omri Ben-Bassat, about how to keep your Anki Vector alive using ROS:
All of the ROSCon FR talks are available on Vimeo.
[ ROSCon FR ] Continue reading