Tag Archives: general

#430579 What These Lifelike Androids Can Teach ...

For Dr. Hiroshi Ishiguro, one of the most interesting things about androids is the changing questions they pose us, their creators, as they evolve. Does it, for example, do something to the concept of being human if a human-made creation starts telling you about what kind of boys ‘she’ likes?
If you want to know the answer to the boys question, you need to ask ERICA, one of Dr. Ishiguro’s advanced androids. Beneath her plastic skull and silicone skin, wires connect to AI software systems that bring her to life. Her ability to respond goes far beyond standard inquiries. Spend a little time with her, and the feeling of a distinct personality starts to emerge. From time to time, she works as a receptionist at Dr. Ishiguro and his team’s Osaka University labs. One of her android sisters is an actor who has starred in plays and a film.

ERICA’s ‘brother’ is an android version of Dr. Ishiguro himself, which has represented its creator at various events while the biological Ishiguro can remain in his offices in Japan. Microphones and cameras capture Ishiguro’s voice and face movements, which are relayed to the android. Apart from mimicking its creator, the Geminoid™ android is also capable of lifelike blinking, fidgeting, and breathing movements.
Say hello to relaxation
As technological development continues to accelerate, so do the possibilities for androids. From a position as receptionist, ERICA may well branch out into many other professions in the coming years. Companion for the elderly, comic book storyteller (an ancient profession in Japan), pop star, conversational foreign language partner, and newscaster are some of the roles and responsibilities Dr. Ishiguro sees androids taking on in the near future.
“Androids are not uncanny anymore. Most people adapt to interacting with Erica very quickly. Actually, I think that in interacting with androids, which are still different from us, we get a better appreciation of interacting with other cultures. In both cases, we are talking with someone who is different from us and learn to overcome those differences,” he says.
A lot has been written about how robots will take our jobs. Dr. Ishiguro believes these fears are blown somewhat out of proportion.
“Robots and androids will take over many simple jobs. Initially there might be some job-related issues, but new schemes, like for example a robot tax similar to the one described by Bill Gates, should help,” he says.
“Androids will make it possible for humans to relax and keep evolving. If we compare the time we spend studying now compared to 100 years ago, it has grown a lot. I think it needs to keep growing if we are to keep expanding our scientific and technological knowledge. In the future, we might end up spending 20 percent of our lifetime on work and 80 percent of the time on education and growing our skills.”
Android asks who you are
For Dr. Ishiguro, another aspect of robotics in general, and androids in particular, is how they question what it means to be human.
“Identity is a very difficult concept for humans sometimes. For example, I think clothes are part of our identity, in a way that is similar to our faces and bodies. We don’t change those from one day to the next, and that is why I have ten matching black outfits,” he says.
This link between physical appearance and perceived identity is one of the aspects Dr. Ishiguro is exploring. Another closely linked concept is the connection between body and feeling of self. The Ishiguro avatar was once giving a presentation in Austria. Its creator recalls how he felt distinctly like he was in Austria, even capable of feeling sensation of touch on his own body when people laid their hands on the android. If he was distracted, he felt almost ‘sucked’ back into his body in Japan.
“I am constantly thinking about my life in this way, and I believe that androids are a unique mirror that helps us formulate questions about why we are here and why we have been so successful. I do not necessarily think I have found the answers to these questions, so if you have, please share,” he says with a laugh.
His work and these questions, while extremely interesting on their own, become extra poignant when considering the predicted melding of mind and machine in the near future.
The ability to be present in several locations through avatars—virtual or robotic—raises many questions of both philosophical and practical nature. Then add the hypotheticals, like why send a human out onto the hostile surface of Mars if you could send a remote-controlled android, capable of relaying everything it sees, hears and feels?
The two ways of robotics will meet
Dr. Ishiguro sees the world of AI-human interaction as currently roughly split into two. One is the chat-bot approach that companies like Amazon, Microsoft, Google, and recently Apple, employ using stationary objects like speakers. Androids like ERICA represent another approach.
“It is about more than the form factor. I think that the android approach is generally more story-based. We are integrating new conversation features based on assumptions about the situation and running different scenarios that expand the android’s vocabulary and interactions. Another aspect we are working on is giving androids desire and intention. Like with people, androids should have desires and intentions in order for you to want to interact with them over time,” Dr. Ishiguro explains.
This could be said to be part of a wider trend for Japan, where many companies are developing human-like robots that often have some Internet of Things capabilities, making them able to handle some of the same tasks as an Amazon Echo. The difference in approach could be summed up in the words ‘assistant’ (Apple, Amazon, etc.) and ‘companion’ (Japan).
Dr. Ishiguro sees this as partly linked to how Japanese as a language—and market—is somewhat limited. This has a direct impact on viability and practicality of ‘pure’ voice recognition systems. At the same time, Japanese people have had greater exposure to positive images of robots, and have a different cultural / religious view of objects having a ‘soul’. However, it may also mean Japanese companies and android scientists are both stealing a lap on their western counterparts.
“If you speak to an Amazon Echo, that is not a natural way to interact for humans. This is part of why we are making human-like robot systems. The human brain is set up to recognize and interact with humans. So, it makes sense to focus on developing the body for the AI mind, as well as the AI. I believe that the final goal for both Japanese and other companies and scientists is to create human-like interaction. Technology has to adapt to us, because we cannot adapt fast enough to it, as it develops so quickly,” he says.
Banner image courtesy of Hiroshi Ishiguro Laboratories, ATR all rights reserved.
Dr. Ishiguro’s team has collaborated with partners and developed a number of android systems:
Geminoid™ HI-2 has been developed by Hiroshi Ishiguro Laboratories and Advanced Telecommunications Research Institute International (ATR).
Geminoid™ F has been developed by Osaka University and Hiroshi Ishiguro Laboratories, Advanced Telecommunications Research Institute International (ATR).
ERICA has been developed by ERATO ISHIGURO Symbiotic Human-Robot Interaction Project Continue reading

Posted in Human Robots

#428626 Cimcorp to fully automate Turkish Tire ...

Cimcorp Selected to Supply Turnkey Automated Handling System to Large Turkish Tire Manufacturer, Petlas
The leading tire handling specialist’s system will handle tires in the tire-finishing and palletizing areas in Turkish manufacturer’s expanded facility
Ulvila, Finland – November 9, 2016 – Cimcorp, leading global supplier of turnkey automation for intralogistics and tire-handling solutions, announces it has been selected to implement a fully automated handling system in Petlas Tire Corporation’s (Petlas) factory in Kirsehir, Turkey. Based on Cimcorp’s Dream Factory solution, the automation will take care of the handling of passenger car radial (PCR) finished tires in the tire-finishing and palletizing areas. Work on the order is already underway and the’ turnkey material handling system will become fully operational in fall 2017.
The order, Cimcorp’s first project for Petlas, is part of a huge investment program to expand the Kirsehir plant in order to increase Petlas’ PCR production capacity and meet growing demand.
Turkey achieved record car production and export levels in 2015, with production up by 16 percent and exports up 12 percent over the preceding year. This growth rate is higher than in any other European country and, with its automotive plants rolling out 1.36 million vehicles in 2015, Turkey is now the seventh largest automotive producer in Europe.
With the production equipment – the tire-building machines, presses and testing machines – already installed, Petlas is commencing the automation of the plant’s material handling. This comprises Cimcorp’s robotic buffer stores, tire conveyors and control software – Cimcorp WCS (Warehouse Control Software) – to take care of all material flows. Using linear robots operating on overhead gantries, the system will automate the handling and transfer of finished tires from the trimming stations, through visual inspection and uniformity testing, to palletizing.
Yahya Ertem, general manager, Petlas Tire Corporation, said, “We think highly of Cimcorp’s software, which integrates the machines into one entity and keeps the flow of material and data under complete control. Cimcorp’s Dream Factory solution fits with our vision to achieve ‘excellence in business’ and will help us to achieve our strategic goals.”
Tero Peltomäki, vice president of sales and projects, Cimcorp, said, “It has been fantastic to work with the Petlas team, honing our design into the best possible solution for the Kirsehir plant. The automation will help Petlas to enhance its market position as a leading tire manufacturer and distributor and we look forward to working on future automation projects with the company.”
To receive high-resolution images, please send requests to Heidi Scott via email at: lasendio@dprgroup.com

About Cimcorp
Cimcorp Group – part of Murata Machinery, Ltd. (Muratec) – is a leading global supplier of turnkey automation for intralogistics, using advanced robotics and software technologies. As well as being a manufacturer and integrator of pioneering material handling systems for the tire industry, Cimcorp has developed unique robotic solutions for order fulfillment and storage that are being used in the food & beverage, retail, e-commerce, FMCG and postal services sectors. With locations in Finland, Canada and the United States, the group has around 300 employees and has delivered over 2,000 logistics automation solutions. Designed to reduce operating costs, ensure traceability and improve efficiency, these systems are used within manufacturing and distribution centers in 40 countries across five continents. For more information, visit www.cimcorp.com.
About Petlas Tire Corporation (Petlas)
Founded in 1976, Petlas Tire Corporation has operations in 98 countries worldwide and employs 2,150 people. The company’s plant in Kirsehir currently has the capacity to produce 8 million PCR (passenger car radial) tires, 2 million agricultural tires, 500,000 TBR (truck & bus radial) tires and 300,000 OTR (off-the-road) tires per year. For more information, visit www.petlas.com.

The post Cimcorp to fully automate Turkish Tire Manufacturer Petlas appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#428133 H-Ros – Hardware Robot Operating ...

As ROS – Robot Operating System is being used by more and more robots, a new form of building robots that uses ROS is coming into play, which is called H-Ros, Hardware Robot Operating System. This is currently supported by several companies that adopt its standard interfaces. Each piece runs ROS 2.0 on its own has its own ROS nodes and topics. Building robots is about putting together different H-ROS components that can come from different manufacturers but still interoperate thanks to the standard hardware interfaces defined within H-ROS. The blocks that make up the system fall into 5 categories, which are, sensing, actuation, communication, cognition and hybrid components. Below is the press release provied to us by Erle Robotics, which is one of the several firms that are currently working on this.
////////////////////////////////////////////////////////////////////////////////////
Erle Robotics announced a new platform that provides manufacturers tools for building interoperable robot components that can easily be exchanged between robots
Photo Credit: https://www.h-ros.com/, www.erlerobotics.com

Erle Robotics announced during ROSCon 2016 in Seoul, Korea, a new game-changing standard for building robot components, H-ROS: the Hardware Robot Operating System. H-ROS provides manufacturers tools for building interoperable robot components that can easily be exchanged or replaced between robots.

Powered by the popular Robot Operating System (ROS), H-ROS offers building-block-style parts that come as reusable and reconfigurable components allowing developers, to easily upgrade their robots with hardware from different manufacturers and add new features in seconds.

With H-ROS, building robots will be about placing H-ROS-compatible hardware components together to build new robot configurations. Constructing robots won’t be restricted to a few with high technical skills but it will be extended to a great majority with a general understanding of the sensing and actuation needed in a particular scenario.

H-ROS was initially funded by the US Defense Advanced Research Projects Agency (DARPA) through the Robotics Fast Track program in 2016 and developed by Erle Robotics. The platform has already been tested by several international manufacturers who have built robots out of this technology. This is the case of H-ROS Turtlebot, which was presented during the conference in Seoul.

H-ROS is now available for selected industry partners and will soon be released for the wider robotics community. Additional information can be requested through its official web page at https://h-ros.com/.
Photo Credit: https://www.h-ros.com/, www.erlerobotics.comPhoto Credit: https://www.h-ros.com/, www.erlerobotics.comPhoto Credit: https://www.h-ros.com/, www.erlerobotics.comPhoto Credit: https://www.h-ros.com/, www.erlerobotics.com
The post H-Ros – Hardware Robot Operating System appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#428040 Servosila Robotic Arms launched

Servosila, a robotics technology company, announced a launch of a new line of robotic arm manipulators specifically targeted at mobile robotics market.
“Servosila Robotic Arms are the first manipulators specifically designed for mobile robots,” – said the company’s spokesperson, – “it is very easy to retrofit any existing robotic chassis or a torso with a Servosila Robotic Arm”.

Servosila Robotic Arms are attachable payload modules for mobile service robots or other robotic platforms. Servosila Robotic Arms shall typically be mounted on a chassis or a torso of a mobile robot and be powered by an on-board power supply system of the host robotic platform.
The robotic arms can be used both outdoors and indoors. The arms are water-tight, dust-proof and function properly in the rain and in the snow. The arms are designed to withstand impacts, collisions with obstacles and, in general, the harsh treatment so common to mobile robotics applications.
The servo drives and external electrical connectors of the robotic arms are water-tight and dust-proof (IP68 rating). The entire arm can be occasionally submersed in water without any adverse effects on its performance. The robotic arms may be operated in cold or hot weather.
Mobile robots tend to bump into things and hit obstacles while on the move. The harsh nature of outdoor mobile robotics applications caused a profound effect on the design of Servosila Robotic Arms, especially on the internal structure of servo drives and their harmonic reduction gears.
There are no exposed cables on the outside of the robotic arms that could be torn off when a mobile robot moves through bushes or forests.
Numerous protection measures built into electronic servo controllers and mechanical parts of Servosila Robotic Arms ensure reliable operation on-board of outdoor mobile service robots.

Servosila Robotic Arms are lightweight by design. For a given lifting capability, Servosila Robotic Arms have a significantly lower weight than their industrial counterparts. The lower weight of a Servosila Robotic Arm enables a mobile robot equipped with the arm to operate longer on a single battery charge, keep its center of gravity lower for better balance, climb stairs easier or have a superior mobility.

When not in an active use, Servosila Robotic Arms can folded into a very compact form that doesn’t occupy much space on the top of a robotic chassis or on the side of a torso. This feature protects the robotic arm of a mobile robot in case of an unexpected collision with an obstacle or whenever a rough terrain is encountered by the mobile robotic platform. The compact folded form also comes handy during transportation.

By folding its robotic arm into the compact form, the robot frees up its working area for other payloads to operate in. This is useful in case the robot is equipped with additional payloads other than the robotic arm.
www.servosila.com/en/robotic-arms
Photo Credits: Servosila Limited (Hong Kong)
The post Servosila Robotic Arms launched appeared first on Roboticmagazine. Continue reading

Posted in Human Robots