Tag Archives: future

#438982 Quantum Computing and Reinforcement ...

Deep reinforcement learning is having a superstar moment.

Powering smarter robots. Simulating human neural networks. Trouncing physicians at medical diagnoses and crushing humanity’s best gamers at Go and Atari. While far from achieving the flexible, quick thinking that comes naturally to humans, this powerful machine learning idea seems unstoppable as a harbinger of better thinking machines.

Except there’s a massive roadblock: they take forever to run. Because the concept behind these algorithms is based on trial and error, a reinforcement learning AI “agent” only learns after being rewarded for its correct decisions. For complex problems, the time it takes an AI agent to try and fail to learn a solution can quickly become untenable.

But what if you could try multiple solutions at once?

This week, an international collaboration led by Dr. Philip Walther at the University of Vienna took the “classic” concept of reinforcement learning and gave it a quantum spin. They designed a hybrid AI that relies on both quantum and run-of-the-mill classic computing, and showed that—thanks to quantum quirkiness—it could simultaneously screen a handful of different ways to solve a problem.

The result is a reinforcement learning AI that learned over 60 percent faster than its non-quantum-enabled peers. This is one of the first tests that shows adding quantum computing can speed up the actual learning process of an AI agent, the authors explained.

Although only challenged with a “toy problem” in the study, the hybrid AI, once scaled, could impact real-world problems such as building an efficient quantum internet. The setup “could readily be integrated within future large-scale quantum communication networks,” the authors wrote.

The Bottleneck
Learning from trial and error comes intuitively to our brains.

Say you’re trying to navigate a new convoluted campground without a map. The goal is to get from the communal bathroom back to your campsite. Dead ends and confusing loops abound. We tackle the problem by deciding to turn either left or right at every branch in the road. One will get us closer to the goal; the other leads to a half hour of walking in circles. Eventually, our brain chemistry rewards correct decisions, so we gradually learn the correct route. (If you’re wondering…yeah, true story.)

Reinforcement learning AI agents operate in a similar trial-and-error way. As a problem becomes more complex, the number—and time—of each trial also skyrockets.

“Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation,” explained study author Dr. Hans Briegel at the Universität Innsbruck in Austria, who previously led efforts to speed up AI decision-making using quantum mechanics. If there’s pressure that allows “only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all,” he wrote.

Many attempts have tried speeding up reinforcement learning. Giving the AI agent a short-term “memory.” Tapping into neuromorphic computing, which better resembles the brain. In 2014, Briegel and colleagues showed that a “quantum brain” of sorts can help propel an AI agent’s decision-making process after learning. But speeding up the learning process itself has eluded our best attempts.

The Hybrid AI
The new study went straight for that previously untenable jugular.

The team’s key insight was to tap into the best of both worlds—quantum and classical computing. Rather than building an entire reinforcement learning system using quantum mechanics, they turned to a hybrid approach that could prove to be more practical. Here, the AI agent uses quantum weirdness as it’s trying out new approaches—the “trial” in trial and error. The system then passes the baton to a classical computer to give the AI its reward—or not—based on its performance.

At the heart of the quantum “trial” process is a quirk called superposition. Stay with me. Our computers are powered by electrons, which can represent only two states—0 or 1. Quantum mechanics is far weirder, in that photons (particles of light) can simultaneously be both 0 and 1, with a slightly different probability of “leaning towards” one or the other.

This noncommittal oddity is part of what makes quantum computing so powerful. Take our reinforcement learning example of navigating a new campsite. In our classic world, we—and our AI—need to decide between turning left or right at an intersection. In a quantum setup, however, the AI can (in a sense) turn left and right at the same time. So when searching for the correct path back to home base, the quantum system has a leg up in that it can simultaneously explore multiple routes, making it far faster than conventional, consecutive trail and error.

“As a consequence, an agent that can explore its environment in superposition will learn significantly faster than its classical counterpart,” said Briegel.

It’s not all theory. To test out their idea, the team turned to a programmable chip called a nanophotonic processor. Think of it as a CPU-like computer chip, but it processes particles of light—photons—rather than electricity. These light-powered chips have been a long time in the making. Back in 2017, for example, a team from MIT built a fully optical neural network into an optical chip to bolster deep learning.

The chips aren’t all that exotic. Nanophotonic processors act kind of like our eyeglasses, which can carry out complex calculations that transform light that passes through them. In the glasses case, they let people see better. For a light-based computer chip, it allows computation. Rather than using electrical cables, the chips use “wave guides” to shuttle photons and perform calculations based on their interactions.

The “error” or “reward” part of the new hardware comes from a classical computer. The nanophotonic processor is coupled to a traditional computer, where the latter provides the quantum circuit with feedback—that is, whether to reward a solution or not. This setup, the team explains, allows them to more objectively judge any speed-ups in learning in real time.

In this way, a hybrid reinforcement learning agent alternates between quantum and classical computing, trying out ideas in wibbly-wobbly “multiverse” land while obtaining feedback in grounded, classic physics “normality.”

A Quantum Boost
In simulations using 10,000 AI agents and actual experimental data from 165 trials, the hybrid approach, when challenged with a more complex problem, showed a clear leg up.

The key word is “complex.” The team found that if an AI agent has a high chance of figuring out the solution anyway—as for a simple problem—then classical computing works pretty well. The quantum advantage blossoms when the task becomes more complex or difficult, allowing quantum mechanics to fully flex its superposition muscles. For these problems, the hybrid AI was 63 percent faster at learning a solution compared to traditional reinforcement learning, decreasing its learning effort from 270 guesses to 100.

Now that scientists have shown a quantum boost for reinforcement learning speeds, the race for next-generation computing is even more lit. Photonics hardware required for long-range light-based communications is rapidly shrinking, while improving signal quality. The partial-quantum setup could “aid specifically in problems where frequent search is needed, for example, network routing problems” that’s prevalent for a smooth-running internet, the authors wrote. With a quantum boost, reinforcement learning may be able to tackle far more complex problems—those in the real world—than currently possible.

“We are just at the beginning of understanding the possibilities of quantum artificial intelligence,” said lead author Walther.

Image Credit: Oleg Gamulinskiy from Pixabay Continue reading

Posted in Human Robots

#438925 Nanophotonics Could Be the ‘Dark ...

The race to build the first practical quantum computers looks like a two-horse contest between machines built from superconducting qubits and those that use trapped ions. But new research suggests a third contender—machines based on optical technology—could sneak up on the inside.

The most advanced quantum computers today are the ones built by Google and IBM, which rely on superconducting circuits to generate the qubits that form the basis of quantum calculations. They are now able to string together tens of qubits, and while controversial, Google claims its machines have achieved quantum supremacy—the ability to carry out a computation beyond normal computers.

Recently this approach has been challenged by a wave of companies looking to use trapped ion qubits, which are more stable and less error-prone than superconducting ones. While these devices are less developed, engineering giant Honeywell has already released a machine with 10 qubits, which it says is more powerful than a machine made of a greater number of superconducting qubits.

But despite this progress, both of these approaches have some major drawbacks. They require specialized fabrication methods, incredibly precise control mechanisms, and they need to be cooled to close to absolute zero to protect the qubits from any outside interference.

That’s why researchers at Canadian quantum computing hardware and software startup Xanadu are backing an alternative quantum computing approach based on optics, which was long discounted as impractical. In a paper published last week in Nature, they unveiled the first fully programmable and scalable optical chip that can run quantum algorithms. Not only does the system run at room temperature, but the company says it could scale to millions of qubits.

The idea isn’t exactly new. As Chris Lee notes in Ars Technica, people have been experimenting with optical approaches to quantum computing for decades, because encoding information in photons’ quantum states and manipulating those states is relatively easy. The biggest problem was that optical circuits were very large and not readily programmable, which meant you had to build a new computer for every new problem you wanted to solve.

That started to change thanks to the growing maturity of photonic integrated circuits. While early experiments with optical computing involved complex table-top arrangements of lasers, lenses, and detectors, today it’s possible to buy silicon chips not dissimilar to electronic ones that feature hundreds of tiny optical components.

In recent years, the reliability and performance of these devices has improved dramatically, and they’re now regularly used by the telecommunications industry. Some companies believe they could be the future of artificial intelligence too.

This allowed the Xanadu researchers to design a silicon chip that implements a complex optical network made up of beam splitters, waveguides, and devices called interferometers that cause light sources to interact with each other.

The chip can generate and manipulate up to eight qubits, but unlike conventional qubits, which can simultaneously be in two states, these qubits can be in any configuration of three states, which means they can carry more information.

Once the light has travelled through the network, it is then fed out to cutting-edge photon-counting detectors that provide the result. This is one of the potential limitations of the system, because currently these detectors need to be cryogenically cooled, although the rest of the chip does not.

But most importantly, the chip is easily re-programmable, which allows it to tackle a variety of problems. The computation can be controlled by adjusting the settings of these interferometers, but the researchers have also developed a software platform that hides the physical complexity from users and allows them to program it using fairly conventional code.

The company announced that its chips were available on the cloud in September of 2020, but the Nature paper is the first peer-reviewed test of their system. The researchers verified that the computations being done were genuinely quantum mechanical in nature, but they also implemented two more practical algorithms: one for simulating molecules and the other for judging how similar two graphs are, which has applications in a variety of pattern recognition problems.

In an accompanying opinion piece, Ulrik Andersen from the Technical University of Denmark says the quality of the qubits needs to be improved considerably and photon losses reduced if the technology is ever to scale to practical problems. But, he says, this breakthrough suggests optical approaches “could turn out to be the dark horse of quantum computing.”

Image Credit: Shahadat Rahman on Unsplash Continue reading

Posted in Human Robots

#438809 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
Facebook’s New AI Teaches Itself to See With Less Human Help
Will Knight | Wired
“Peer inside an AI algorithm and you’ll find something constructed using data that was curated and labeled by an army of human workers. Now, Facebook has shown how some AI algorithms can learn to do useful work with far less human help. The company built an algorithm that learned to recognize objects in images with little help from labels.”

CULTURE
New AI ‘Deep Nostalgia’ Brings Old Photos, Including Very Old Ones, to Life
Kim Lyons | The Verge
“The Deep Nostalgia service, offered by online genealogy company MyHeritage, uses AI licensed from D-ID to create the effect that a still photo is moving. It’s kinda like the iOS Live Photos feature, which adds a few seconds of video to help smartphone photographers find the best shot. But Deep Nostalgia can take photos from any camera and bring them to ‘life.’i”

COMPUTING
Could ‘Topological Materials’ Be a New Medium For Ultra-Fast Electronics?
Charles Q. Choi | IEEE Spectrum
“Potential future transistors that can exceed Moore’s law may rely on exotic materials called ‘topological matter’ in which electricity flows across surfaces only, with virtually no dissipation of energy. And now new findings suggest these special topological materials might one day find use in high-speed, low-power electronics and in quantum computers.”

ENERGY
A Chinese Province Could Ban Bitcoin Mining to Cut Down Energy Use
Dharna Noor | Gizmodo
“Since energy prices in Inner Mongolia are particularly low, many bitcoin miners have set up shop there specifically. The region is the third-largest mining site in China. Because the grid is heavily coal-powered, however, that’s led to skyrocketing emissions, putting it in conflict with President Xi Jinping’s promise last September to have China reach peak carbon emissions by 2030 at the latest and achieve carbon neutrality before 2060.”

VIRTUAL REALITY
Mesh Is Microsoft’s Vision for Sending Your Hologram Back to the Office
Sam Rutherford | Gizmodo
“With Mesh, Microsoft is hoping to create a virtual environment capable of sharing data, 3D models, avatars, and more—basically, the company wants to upgrade the traditional remote-working experience with the power of AR and VR. In the future, Microsoft is planning for something it’s calling ‘holoportation,’ which will allow Mesh devices to create photorealistic digital avatars of your body that can appear in virtual spaces anywhere in the world—assuming you’ve been invited, of course.”

SPACE
Rocket Lab Could Be SpaceX’s Biggest Rival
Neel V. Patel | MIT Technology Review
“At 40 meters tall and able to carry 20 times the weight that Electron can, [the new] Neutron [rocket] is being touted by Rocket Lab as its entry into markets for large satellite and mega-constellation launches, as well as future robotics missions to the moon and Mars. Even more tantalizing, Rocket Lab says Neutron will be designed for human spaceflight as well.”

SCIENCE
Can Alien Smog Lead Us to Extraterrestrial Civilizations?
Meghan Herbst | Wired
“Kopparapu is at the forefront of an emerging field in astronomy that is aiming to identify technosignatures, or technological markers we can search for in the cosmos. No longer conceptually limited to radio signals, astronomers are looking for ways we could identify planets or other spacefaring objects by looking for things like atmospheric gases, lasers, and even hypothetical sun-encircling structures called Dyson spheres.”

DIGITAL CURRENCIES
China Charges Ahead With a National Digital Currency
Nathaniel Popper and Cao Li | The New York Times
“China has charged ahead with a bold effort to remake the way that government-backed money works, rolling out its own digital currency with different qualities than cash or digital deposits. The country’s central bank, which began testing eCNY last year in four cities, recently expanded those trials to bigger cities such as Beijing and Shanghai, according to government presentations.”

Image Credit: Leon Seibert / Unsplash Continue reading

Posted in Human Robots

#438762 When Robots Enter the World, Who Is ...

Over the last half decade or so, the commercialization of autonomous robots that can operate outside of structured environments has dramatically increased. But this relatively new transition of robotic technologies from research projects to commercial products comes with its share of challenges, many of which relate to the rapidly increasing visibility that these robots have in society.

Whether it's because of their appearance of agency, or because of their history in popular culture, robots frequently inspire people’s imagination. Sometimes this is a good thing, like when it leads to innovative new use cases. And sometimes this is a bad thing, like when it leads to use cases that could be classified as irresponsible or unethical. Can the people selling robots do anything about the latter? And even if they can, should they?

Roboticists understand that robots, fundamentally, are tools. We build them, we program them, and even the autonomous ones are just following the instructions that we’ve coded into them. However, that same appearance of agency that makes robots so compelling means that it may not be clear to people without much experience with or exposure to real robots that a robot itself isn’t inherently good or bad—rather, as a tool, a robot is a reflection of its designers and users.

This can put robotics companies into a difficult position. When they sell a robot to someone, that person can, hypothetically, use the robot in any way they want. Of course, this is the case with every tool, but it’s the autonomous aspect that makes robots unique. I would argue that autonomy brings with it an implied association between a robot and its maker, or in this case, the company that develops and sells it. I’m not saying that this association is necessarily a reasonable one, but I think that it exists, even if that robot has been sold to someone else who has assumed full control over everything it does.

“All of our buyers, without exception, must agree that Spot will not be used to harm or intimidate people or animals, as a weapon or configured to hold a weapon”
—Robert Playter, Boston Dynamics

Robotics companies are certainly aware of this, because many of them are very careful about who they sell their robots to, and very explicit about what they want their robots to be doing. But once a robot is out in the wild, as it were, how far should that responsibility extend? And realistically, how far can it extend? Should robotics companies be held accountable for what their robots do in the world, or should we accept that once a robot is sold to someone else, responsibility is transferred as well? And what can be done if a robot is being used in an irresponsible or unethical way that could have a negative impact on the robotics community?

For perspective on this, we contacted folks from three different robotics companies, each of which has experience selling distinctive mobile robots to commercial end users. We asked them the same five questions about the responsibility that robotics companies have regarding the robots that they sell, and here’s what they had to say:

Do you have any restrictions on what people can do with your robots? If so, what are they, and if not, why not?

Péter Fankhauser, CEO, ANYbotics:

We closely work together with our customers to make sure that our solution provides the right approach for their problem. Thereby, the target use case is clear from the beginning and we do not work with customers interested in using our robot ANYmal outside the intended target applications. Specifically, we strictly exclude any military or weaponized uses and since the foundation of ANYbotics it is close to our heart to make human work easier, safer, and more enjoyable.

Robert Playter, CEO, Boston Dynamics:

Yes, we have restrictions on what people can do with our robots, which are outlined in our Terms and Conditions of Sale. All of our buyers, without exception, must agree that Spot will not be used to harm or intimidate people or animals, as a weapon or configured to hold a weapon. Spot, just like any product, must be used in compliance with the law.

Ryan Gariepy, CTO, Clearpath Robotics:

We do have strict restrictions and KYC processes which are based primarily on Canadian export control regulations. They depend on the type of equipment sold as well as where it is going. More generally, we also will not sell or support a robot if we know that it will create an uncontrolled safety hazard or if we have reason to believe that the buyer is unqualified to use the product. And, as always, we do not support using our products for the development of fully autonomous weapons systems.

More broadly, if you sell someone a robot, why should they be restricted in what they can do with it?
Péter Fankhauser, ANYbotics: We see the robot less as a simple object but more as an artificial workforce. This implies to us that the usage is closely coupled with the transfer of the robot and both the customer and the provider agree what the robot is expected to do. This approach is supported by what we hear from our customers with an increasing interest to pay for the robots as a service or per use.

Robert Playter, Boston Dynamics: We’re offering a product for sale. We’re going to do the best we can to stop bad actors from using our technology for harm, but we don’t have the control to regulate every use. That said, we believe that our business will be best served if our technology is used for peaceful purposes—to work alongside people as trusted assistants and remove them from harm’s way. We do not want to see our technology used to cause harm or promote violence. Our restrictions are similar to those of other manufacturers or technology companies that take steps to reduce or eliminate the violent or unlawful use of their products.

Ryan Gariepy, Clearpath Robotics: Assuming the organization doing the restricting is a private organization and the robot and its software is sold vs. leased or “managed,” there aren't strong legal reasons to restrict use. That being said, the manufacturer likewise has no obligation to continue supporting that specific robot or customer going forward. However, given that we are only at the very edge of how robots will reshape a great deal of society, it is in the best interest for the manufacturer and user to be honest with each other about their respective goals. Right now, you're not only investing in the initial purchase and relationship, you're investing in the promise of how you can help each other succeed in the future.

“If a robot is being used in a way that is irresponsible due to safety: intervene! If it’s unethical: speak up!”
—Péter Fankhauser, ANYbotics

What can you realistically do to make sure that people who buy your robots use them in the ways that you intend?
Péter Fankhauser, ANYbotics: We maintain a close collaboration with our customers to ensure their success with our solution. So for us, we have refrained from technical solutions to block unintended use.

Robert Playter, Boston Dynamics: We vet our customers to make sure that their desired applications are things that Spot can support, and are in alignment with our Terms and Conditions of Sale. We’ve turned away customers whose applications aren’t a good match with our technology. If customers misuse our technology, we’re clear in our Terms of Sale that their violations may void our warranty and prevent their robots from being updated, serviced, repaired, or replaced. We may also repossess robots that are not purchased, but leased. Finally, we will refuse future sales to customers that violate our Terms of Sale.

Ryan Gariepy, Clearpath Robotics: We typically work with our clients ahead of the purchase to make sure their expectations match reality, in particular on aspects like safety, supervisory requirements, and usability. It's far worse to sell a robot that'll sit on a shelf or worse, cause harm, then to not sell a robot at all, so we prefer to reduce the risk of this situation in advance of receiving an order or shipping a robot.

How do you evaluate the merit of edge cases, for example if someone wants to use your robot in research or art that may push the boundaries of what you personally think is responsible or ethical?
Péter Fankhauser, ANYbotics: It’s about the dialog, understanding, and figuring out alternatives that work for all involved parties and the earlier you can have this dialog the better.

Robert Playter, Boston Dynamics: There’s a clear line between exploring robots in research and art, and using the robot for violent or illegal purposes.

Ryan Gariepy, Clearpath Robotics: We have sold thousands of robots to hundreds of clients, and I do not recall the last situation that was not covered by a combination of export control and a general evaluation of the client's goals and expectations. I'm sure this will change as robots continue to drop in price and increase in flexibility and usability.

“You're not only investing in the initial purchase and relationship, you're investing in the promise of how you can help each other succeed in the future.”
—Ryan Gariepy, Clearpath Robotics

What should roboticists do if we see a robot being used in a way that we feel is unethical or irresponsible?
Péter Fankhauser, ANYbotics: If it’s irresponsible due to safety: intervene! If it’s unethical: speak up!

Robert Playter, Boston Dynamics: We want robots to be beneficial for humanity, which includes the notion of not causing harm. As an industry, we think robots will achieve long-term commercial viability only if people see robots as helpful, beneficial tools without worrying if they’re going to cause harm.

Ryan Gariepy, Clearpath Robotics: On a one off basis, they should speak to a combination of the user, the supplier or suppliers, the media, and, if safety is an immediate concern, regulatory or government agencies. If the situation in question risks becoming commonplace and is not being taken seriously, they should speak up more generally in appropriate forums—conferences, industry groups, standards bodies, and the like.

As more and more robots representing different capabilities become commercially available, these issues are likely to come up more frequently. The three companies we talked to certainly don’t represent every viewpoint, and we did reach out to other companies who declined to comment. But I would think (I would hope?) that everyone in the robotics community can agree that robots should be used in a way that makes people’s lives better. What “better” means in the context of art and research and even robots in the military may not always be easy to define, and inevitably there’ll be disagreement as to what is ethical and responsible, and what isn’t.

We’ll keep on talking about it, though, and do our best to help the robotics community to continue growing and evolving in a positive way. Let us know what you think in the comments. Continue reading

Posted in Human Robots

#438755 Soft Legged Robot Uses Pneumatic ...

Soft robots are inherently safe, highly resilient, and potentially very cheap, making them promising for a wide array of applications. But development on them has been a bit slow relative to other areas of robotics, at least partially because soft robots can’t directly benefit from the massive increase in computing power and sensor and actuator availability that we’ve seen over the last few decades. Instead, roboticists have had to get creative to find ways of achieving the functionality of conventional robotics components using soft materials and compatible power sources.

In the current issue of Science Robotics, researchers from UC San Diego demonstrate a soft walking robot with four legs that moves with a turtle-like gait controlled by a pneumatic circuit system made from tubes and valves. This air-powered nervous system can actuate multiple degrees of freedom in sequence from a single source of pressurized air, offering a huge reduction in complexity and bringing a very basic form of decision making onto the robot itself.

Generally, when people talk about soft robots, the robots are only mostly soft. There are some components that are very difficult to make soft, including pressure sources and the necessary electronics to direct that pressure between different soft actuators in a way that can be used for propulsion. What’s really cool about this robot is that researchers have managed to take a pressure source (either a single tether or an onboard CO2 cartridge) and direct it to four different legs, each with three different air chambers, using an oscillating three valve circuit made entirely of soft materials.

Photo: UCSD

The pneumatic circuit that powers and controls the soft quadruped.

The inspiration for this can be found in biology—natural organisms, including quadrupeds, use nervous system components called central pattern generators (CPGs) to prompt repetitive motions with limbs that are used for walking, flying, and swimming. This is obviously more complicated in some organisms than in others, and is typically mediated by sensory feedback, but the underlying structure of a CPG is basically just a repeating circuit that drives muscles in sequence to produce a stable, continuous gait. In this case, we’ve got pneumatic muscles being driven in opposing pairs, resulting in a diagonal couplet gait, where diagonally opposed limbs rotate forwards and backwards at the same time.

Diagram: Science Robotics

(J) Pneumatic logic circuit for rhythmic leg motion. A constant positive pressure source (P+) applied to three inverter components causes a high-pressure state to propagate around the circuit, with a delay at each inverter. While the input to one inverter is high, the attached actuator (i.e., A1, A2, or A3) is inflated. This sequence of high-pressure states causes each pair of legs of the robot to rotate in a direction determined by the pneumatic connections. (K) By reversing the sequence of activation of the pneumatic oscillator circuit, the attached actuators inflate in a new sequence (A1, A3, and A2), causing (L) the legs of the robot to rotate in reverse. (M) Schematic bottom view of the robot with the directions of leg motions indicated for forward walking.

Diagram: Science Robotics

Each of the valves acts as an inverter by switching the normally closed half (top) to open and the normally open half (bottom) to closed.

The circuit itself is made up of three bistable pneumatic valves connected by tubing that acts as a delay by providing resistance to the gas moving through it that can be adjusted by altering the tube’s length and inner diameter. Within the circuit, the movement of the pressurized gas acts as both a source of energy and as a signal, since wherever the pressure is in the circuit is where the legs are moving. The simplest circuit uses only three valves, and can keep the robot walking in one single direction, but more valves can add more complex leg control options. For example, the researchers were able to use seven valves to tune the phase offset of the gait, and even just one additional valve (albeit of a slightly more complex design) could enable reversal of the system, causing the robot to walk backwards in response to input from a soft sensor. And with another complex valve, a manual (tethered) controller could be used for omnidirectional movement.

This work has some similarities to the rover that JPL is developing to explore Venus—that rover isn’t a soft robot, of course, but it operates under similar constraints in that it can’t rely on conventional electronic systems for autonomous navigation or control. It turns out that there are plenty of clever ways to use mechanical (or in this case, pneumatic) intelligence to make robots with relatively complex autonomous behaviors, meaning that in the future, soft (or soft-ish) robots could find valuable roles in situations where using a non-compliant system is not a good option.

For more on why we should be so excited about soft robots and just how soft a soft robot needs to be, we spoke with Michael Tolley, who runs the Bioinspired Robotics and Design Lab at UCSD, and Dylan Drotman, the paper’s first author.

IEEE Spectrum: What can soft robots do for us that more rigid robotic designs can’t?

Michael Tolley: At the very highest level, one of the fundamental assumptions of robotics is that you have rigid bodies connected at joints, and all your motion happens at these joints. That's a really nice approach because it makes the math easy, frankly, and it simplifies control. But when you look around us in nature, even though animals do have bones and joints, the way we interact with the world is much more complicated than that simple story. I’m interested in where we can take advantage of material properties in robotics. If you look at robots that have to operate in very unknown environments, I think you can build in some of the intelligence for how to deal with those environments into the body of the robot itself. And that’s the category this work really falls under—it's about navigating the world.

Dylan Drotman: Walking through confined spaces is a good example. With the rigid legged robot, you would have to completely change the way that the legs move to walk through a confined space, while if you have flexible legs, like the robot in our paper, you can use relatively simple control strategies to squeeze through an area you wouldn’t be able to get through with a rigid system.

How smart can a soft robot get?

Drotman: Right now we have a sensor on the front that's connected through a fluidic transmission to a bistable valve that causes the robot to reverse. We could add other sensors around the robot to allow it to change direction whenever it runs into an obstacle to effectively make an electronics-free version of a Roomba.

Tolley: Stepping back a little bit from that, one could make an argument that we’re using basic memory elements to generate very basic signals. There’s nothing in principle that would stop someone from making a pneumatic computer—it’s just very complicated to make something that complex. I think you could build on this and do more intelligent decision making, but using this specific design and the components we’re using, it’s likely to be things that are more direct responses to the environment.

How well would robots like these scale down?

Drotman: At the moment we’re manufacturing these components by hand, so the idea would be to make something more like a printed circuit board instead, and looking at how the channel sizes and the valve design would affect the actuation properties. We’ll also be coming up with new circuits, and different designs for the circuits themselves.

Tolley: Down to centimeter or millimeter scale, I don’t think you’d have fundamental fluid flow problems. I think you’re going to be limited more by system design constraints. You’ll have to be able to locomote while carrying around your pressure source, and possibly some other components that are also still rigid. When you start to talk about really small scales, though, it's not as clear to me that you really need an intrinsically soft robot. If you think about insects, their structural geometry can make them behave like they’re soft, but they’re not intrinsically soft.

Should we be thinking about soft robots and compliant robots in the same way, or are they fundamentally different?

Tolley: There’s certainly a connection between the two. You could have a compliant robot that behaves in a very similar way to an intrinsically soft robot, or a robot made of intrinsically soft materials. At that point, it comes down to design and manufacturing and practical limitations on what you can make. I think when you get down to small scales, the two sort of get connected.

There was some interesting work several years ago on using explosions to power soft robots. Is that still a thing?

Tolley: One of the opportunities with soft robots is that with material compliance, you have the potential to store energy. I think there’s exciting potential there for rapid motion with a soft body. Combustion is one way of doing that with power coming from a chemical source all at once, but you could also use a relatively weak muscle that over time stores up energy in a soft body and then releases it.

Is it realistic to expect complete softness from soft robots, or will they likely always have rigid components because they have to store or generate and move pressurized gas somehow?

Tolley: If you look in nature, you do have soft pumps like the heart, but although it’s soft, it’s still relatively stiff. Like, if you grab a heart, it’s not totally squishy. I haven’t done it, but I’d imagine. If you have a container that you’re pressurizing, it has to be stiff enough to not just blow up like a balloon. Certainly pneumatics or hydraulics are not the only way to go for soft actuators; there has been some really nice work on smart muscles and smart materials like hydraulic electrostatic (HASEL) actuators. They seem promising, but all of these actuators have challenges. We’ve chosen to stick with pressurized pneumatics in the near term; longer term, I think you’ll start to see more of these smart material actuators become more practical.

Personally, I don’t have any problem with soft robots having some rigid components. Most animals on land have some rigid components, but they can still take advantage of being soft, so it’s probably going to be a combination. But I do also like the vision of making an entirely soft, squishy thing. Continue reading

Posted in Human Robots