Tag Archives: future
#438982 Quantum Computing and Reinforcement ...
Deep reinforcement learning is having a superstar moment.
Powering smarter robots. Simulating human neural networks. Trouncing physicians at medical diagnoses and crushing humanity’s best gamers at Go and Atari. While far from achieving the flexible, quick thinking that comes naturally to humans, this powerful machine learning idea seems unstoppable as a harbinger of better thinking machines.
Except there’s a massive roadblock: they take forever to run. Because the concept behind these algorithms is based on trial and error, a reinforcement learning AI “agent” only learns after being rewarded for its correct decisions. For complex problems, the time it takes an AI agent to try and fail to learn a solution can quickly become untenable.
But what if you could try multiple solutions at once?
This week, an international collaboration led by Dr. Philip Walther at the University of Vienna took the “classic” concept of reinforcement learning and gave it a quantum spin. They designed a hybrid AI that relies on both quantum and run-of-the-mill classic computing, and showed that—thanks to quantum quirkiness—it could simultaneously screen a handful of different ways to solve a problem.
The result is a reinforcement learning AI that learned over 60 percent faster than its non-quantum-enabled peers. This is one of the first tests that shows adding quantum computing can speed up the actual learning process of an AI agent, the authors explained.
Although only challenged with a “toy problem” in the study, the hybrid AI, once scaled, could impact real-world problems such as building an efficient quantum internet. The setup “could readily be integrated within future large-scale quantum communication networks,” the authors wrote.
The Bottleneck
Learning from trial and error comes intuitively to our brains.
Say you’re trying to navigate a new convoluted campground without a map. The goal is to get from the communal bathroom back to your campsite. Dead ends and confusing loops abound. We tackle the problem by deciding to turn either left or right at every branch in the road. One will get us closer to the goal; the other leads to a half hour of walking in circles. Eventually, our brain chemistry rewards correct decisions, so we gradually learn the correct route. (If you’re wondering…yeah, true story.)
Reinforcement learning AI agents operate in a similar trial-and-error way. As a problem becomes more complex, the number—and time—of each trial also skyrockets.
“Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation,” explained study author Dr. Hans Briegel at the Universität Innsbruck in Austria, who previously led efforts to speed up AI decision-making using quantum mechanics. If there’s pressure that allows “only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all,” he wrote.
Many attempts have tried speeding up reinforcement learning. Giving the AI agent a short-term “memory.” Tapping into neuromorphic computing, which better resembles the brain. In 2014, Briegel and colleagues showed that a “quantum brain” of sorts can help propel an AI agent’s decision-making process after learning. But speeding up the learning process itself has eluded our best attempts.
The Hybrid AI
The new study went straight for that previously untenable jugular.
The team’s key insight was to tap into the best of both worlds—quantum and classical computing. Rather than building an entire reinforcement learning system using quantum mechanics, they turned to a hybrid approach that could prove to be more practical. Here, the AI agent uses quantum weirdness as it’s trying out new approaches—the “trial” in trial and error. The system then passes the baton to a classical computer to give the AI its reward—or not—based on its performance.
At the heart of the quantum “trial” process is a quirk called superposition. Stay with me. Our computers are powered by electrons, which can represent only two states—0 or 1. Quantum mechanics is far weirder, in that photons (particles of light) can simultaneously be both 0 and 1, with a slightly different probability of “leaning towards” one or the other.
This noncommittal oddity is part of what makes quantum computing so powerful. Take our reinforcement learning example of navigating a new campsite. In our classic world, we—and our AI—need to decide between turning left or right at an intersection. In a quantum setup, however, the AI can (in a sense) turn left and right at the same time. So when searching for the correct path back to home base, the quantum system has a leg up in that it can simultaneously explore multiple routes, making it far faster than conventional, consecutive trail and error.
“As a consequence, an agent that can explore its environment in superposition will learn significantly faster than its classical counterpart,” said Briegel.
It’s not all theory. To test out their idea, the team turned to a programmable chip called a nanophotonic processor. Think of it as a CPU-like computer chip, but it processes particles of light—photons—rather than electricity. These light-powered chips have been a long time in the making. Back in 2017, for example, a team from MIT built a fully optical neural network into an optical chip to bolster deep learning.
The chips aren’t all that exotic. Nanophotonic processors act kind of like our eyeglasses, which can carry out complex calculations that transform light that passes through them. In the glasses case, they let people see better. For a light-based computer chip, it allows computation. Rather than using electrical cables, the chips use “wave guides” to shuttle photons and perform calculations based on their interactions.
The “error” or “reward” part of the new hardware comes from a classical computer. The nanophotonic processor is coupled to a traditional computer, where the latter provides the quantum circuit with feedback—that is, whether to reward a solution or not. This setup, the team explains, allows them to more objectively judge any speed-ups in learning in real time.
In this way, a hybrid reinforcement learning agent alternates between quantum and classical computing, trying out ideas in wibbly-wobbly “multiverse” land while obtaining feedback in grounded, classic physics “normality.”
A Quantum Boost
In simulations using 10,000 AI agents and actual experimental data from 165 trials, the hybrid approach, when challenged with a more complex problem, showed a clear leg up.
The key word is “complex.” The team found that if an AI agent has a high chance of figuring out the solution anyway—as for a simple problem—then classical computing works pretty well. The quantum advantage blossoms when the task becomes more complex or difficult, allowing quantum mechanics to fully flex its superposition muscles. For these problems, the hybrid AI was 63 percent faster at learning a solution compared to traditional reinforcement learning, decreasing its learning effort from 270 guesses to 100.
Now that scientists have shown a quantum boost for reinforcement learning speeds, the race for next-generation computing is even more lit. Photonics hardware required for long-range light-based communications is rapidly shrinking, while improving signal quality. The partial-quantum setup could “aid specifically in problems where frequent search is needed, for example, network routing problems” that’s prevalent for a smooth-running internet, the authors wrote. With a quantum boost, reinforcement learning may be able to tackle far more complex problems—those in the real world—than currently possible.
“We are just at the beginning of understanding the possibilities of quantum artificial intelligence,” said lead author Walther.
Image Credit: Oleg Gamulinskiy from Pixabay Continue reading
#438925 Nanophotonics Could Be the ‘Dark ...
The race to build the first practical quantum computers looks like a two-horse contest between machines built from superconducting qubits and those that use trapped ions. But new research suggests a third contender—machines based on optical technology—could sneak up on the inside.
The most advanced quantum computers today are the ones built by Google and IBM, which rely on superconducting circuits to generate the qubits that form the basis of quantum calculations. They are now able to string together tens of qubits, and while controversial, Google claims its machines have achieved quantum supremacy—the ability to carry out a computation beyond normal computers.
Recently this approach has been challenged by a wave of companies looking to use trapped ion qubits, which are more stable and less error-prone than superconducting ones. While these devices are less developed, engineering giant Honeywell has already released a machine with 10 qubits, which it says is more powerful than a machine made of a greater number of superconducting qubits.
But despite this progress, both of these approaches have some major drawbacks. They require specialized fabrication methods, incredibly precise control mechanisms, and they need to be cooled to close to absolute zero to protect the qubits from any outside interference.
That’s why researchers at Canadian quantum computing hardware and software startup Xanadu are backing an alternative quantum computing approach based on optics, which was long discounted as impractical. In a paper published last week in Nature, they unveiled the first fully programmable and scalable optical chip that can run quantum algorithms. Not only does the system run at room temperature, but the company says it could scale to millions of qubits.
The idea isn’t exactly new. As Chris Lee notes in Ars Technica, people have been experimenting with optical approaches to quantum computing for decades, because encoding information in photons’ quantum states and manipulating those states is relatively easy. The biggest problem was that optical circuits were very large and not readily programmable, which meant you had to build a new computer for every new problem you wanted to solve.
That started to change thanks to the growing maturity of photonic integrated circuits. While early experiments with optical computing involved complex table-top arrangements of lasers, lenses, and detectors, today it’s possible to buy silicon chips not dissimilar to electronic ones that feature hundreds of tiny optical components.
In recent years, the reliability and performance of these devices has improved dramatically, and they’re now regularly used by the telecommunications industry. Some companies believe they could be the future of artificial intelligence too.
This allowed the Xanadu researchers to design a silicon chip that implements a complex optical network made up of beam splitters, waveguides, and devices called interferometers that cause light sources to interact with each other.
The chip can generate and manipulate up to eight qubits, but unlike conventional qubits, which can simultaneously be in two states, these qubits can be in any configuration of three states, which means they can carry more information.
Once the light has travelled through the network, it is then fed out to cutting-edge photon-counting detectors that provide the result. This is one of the potential limitations of the system, because currently these detectors need to be cryogenically cooled, although the rest of the chip does not.
But most importantly, the chip is easily re-programmable, which allows it to tackle a variety of problems. The computation can be controlled by adjusting the settings of these interferometers, but the researchers have also developed a software platform that hides the physical complexity from users and allows them to program it using fairly conventional code.
The company announced that its chips were available on the cloud in September of 2020, but the Nature paper is the first peer-reviewed test of their system. The researchers verified that the computations being done were genuinely quantum mechanical in nature, but they also implemented two more practical algorithms: one for simulating molecules and the other for judging how similar two graphs are, which has applications in a variety of pattern recognition problems.
In an accompanying opinion piece, Ulrik Andersen from the Technical University of Denmark says the quality of the qubits needs to be improved considerably and photon losses reduced if the technology is ever to scale to practical problems. But, he says, this breakthrough suggests optical approaches “could turn out to be the dark horse of quantum computing.”
Image Credit: Shahadat Rahman on Unsplash Continue reading
#438762 When Robots Enter the World, Who Is ...
Over the last half decade or so, the commercialization of autonomous robots that can operate outside of structured environments has dramatically increased. But this relatively new transition of robotic technologies from research projects to commercial products comes with its share of challenges, many of which relate to the rapidly increasing visibility that these robots have in society.
Whether it's because of their appearance of agency, or because of their history in popular culture, robots frequently inspire people’s imagination. Sometimes this is a good thing, like when it leads to innovative new use cases. And sometimes this is a bad thing, like when it leads to use cases that could be classified as irresponsible or unethical. Can the people selling robots do anything about the latter? And even if they can, should they?
Roboticists understand that robots, fundamentally, are tools. We build them, we program them, and even the autonomous ones are just following the instructions that we’ve coded into them. However, that same appearance of agency that makes robots so compelling means that it may not be clear to people without much experience with or exposure to real robots that a robot itself isn’t inherently good or bad—rather, as a tool, a robot is a reflection of its designers and users.
This can put robotics companies into a difficult position. When they sell a robot to someone, that person can, hypothetically, use the robot in any way they want. Of course, this is the case with every tool, but it’s the autonomous aspect that makes robots unique. I would argue that autonomy brings with it an implied association between a robot and its maker, or in this case, the company that develops and sells it. I’m not saying that this association is necessarily a reasonable one, but I think that it exists, even if that robot has been sold to someone else who has assumed full control over everything it does.
“All of our buyers, without exception, must agree that Spot will not be used to harm or intimidate people or animals, as a weapon or configured to hold a weapon”
—Robert Playter, Boston Dynamics
Robotics companies are certainly aware of this, because many of them are very careful about who they sell their robots to, and very explicit about what they want their robots to be doing. But once a robot is out in the wild, as it were, how far should that responsibility extend? And realistically, how far can it extend? Should robotics companies be held accountable for what their robots do in the world, or should we accept that once a robot is sold to someone else, responsibility is transferred as well? And what can be done if a robot is being used in an irresponsible or unethical way that could have a negative impact on the robotics community?
For perspective on this, we contacted folks from three different robotics companies, each of which has experience selling distinctive mobile robots to commercial end users. We asked them the same five questions about the responsibility that robotics companies have regarding the robots that they sell, and here’s what they had to say:
Do you have any restrictions on what people can do with your robots? If so, what are they, and if not, why not?
Péter Fankhauser, CEO, ANYbotics:
We closely work together with our customers to make sure that our solution provides the right approach for their problem. Thereby, the target use case is clear from the beginning and we do not work with customers interested in using our robot ANYmal outside the intended target applications. Specifically, we strictly exclude any military or weaponized uses and since the foundation of ANYbotics it is close to our heart to make human work easier, safer, and more enjoyable.
Robert Playter, CEO, Boston Dynamics:
Yes, we have restrictions on what people can do with our robots, which are outlined in our Terms and Conditions of Sale. All of our buyers, without exception, must agree that Spot will not be used to harm or intimidate people or animals, as a weapon or configured to hold a weapon. Spot, just like any product, must be used in compliance with the law.
Ryan Gariepy, CTO, Clearpath Robotics:
We do have strict restrictions and KYC processes which are based primarily on Canadian export control regulations. They depend on the type of equipment sold as well as where it is going. More generally, we also will not sell or support a robot if we know that it will create an uncontrolled safety hazard or if we have reason to believe that the buyer is unqualified to use the product. And, as always, we do not support using our products for the development of fully autonomous weapons systems.
More broadly, if you sell someone a robot, why should they be restricted in what they can do with it?
Péter Fankhauser, ANYbotics: We see the robot less as a simple object but more as an artificial workforce. This implies to us that the usage is closely coupled with the transfer of the robot and both the customer and the provider agree what the robot is expected to do. This approach is supported by what we hear from our customers with an increasing interest to pay for the robots as a service or per use.
Robert Playter, Boston Dynamics: We’re offering a product for sale. We’re going to do the best we can to stop bad actors from using our technology for harm, but we don’t have the control to regulate every use. That said, we believe that our business will be best served if our technology is used for peaceful purposes—to work alongside people as trusted assistants and remove them from harm’s way. We do not want to see our technology used to cause harm or promote violence. Our restrictions are similar to those of other manufacturers or technology companies that take steps to reduce or eliminate the violent or unlawful use of their products.
Ryan Gariepy, Clearpath Robotics: Assuming the organization doing the restricting is a private organization and the robot and its software is sold vs. leased or “managed,” there aren't strong legal reasons to restrict use. That being said, the manufacturer likewise has no obligation to continue supporting that specific robot or customer going forward. However, given that we are only at the very edge of how robots will reshape a great deal of society, it is in the best interest for the manufacturer and user to be honest with each other about their respective goals. Right now, you're not only investing in the initial purchase and relationship, you're investing in the promise of how you can help each other succeed in the future.
“If a robot is being used in a way that is irresponsible due to safety: intervene! If it’s unethical: speak up!”
—Péter Fankhauser, ANYbotics
What can you realistically do to make sure that people who buy your robots use them in the ways that you intend?
Péter Fankhauser, ANYbotics: We maintain a close collaboration with our customers to ensure their success with our solution. So for us, we have refrained from technical solutions to block unintended use.
Robert Playter, Boston Dynamics: We vet our customers to make sure that their desired applications are things that Spot can support, and are in alignment with our Terms and Conditions of Sale. We’ve turned away customers whose applications aren’t a good match with our technology. If customers misuse our technology, we’re clear in our Terms of Sale that their violations may void our warranty and prevent their robots from being updated, serviced, repaired, or replaced. We may also repossess robots that are not purchased, but leased. Finally, we will refuse future sales to customers that violate our Terms of Sale.
Ryan Gariepy, Clearpath Robotics: We typically work with our clients ahead of the purchase to make sure their expectations match reality, in particular on aspects like safety, supervisory requirements, and usability. It's far worse to sell a robot that'll sit on a shelf or worse, cause harm, then to not sell a robot at all, so we prefer to reduce the risk of this situation in advance of receiving an order or shipping a robot.
How do you evaluate the merit of edge cases, for example if someone wants to use your robot in research or art that may push the boundaries of what you personally think is responsible or ethical?
Péter Fankhauser, ANYbotics: It’s about the dialog, understanding, and figuring out alternatives that work for all involved parties and the earlier you can have this dialog the better.
Robert Playter, Boston Dynamics: There’s a clear line between exploring robots in research and art, and using the robot for violent or illegal purposes.
Ryan Gariepy, Clearpath Robotics: We have sold thousands of robots to hundreds of clients, and I do not recall the last situation that was not covered by a combination of export control and a general evaluation of the client's goals and expectations. I'm sure this will change as robots continue to drop in price and increase in flexibility and usability.
“You're not only investing in the initial purchase and relationship, you're investing in the promise of how you can help each other succeed in the future.”
—Ryan Gariepy, Clearpath Robotics
What should roboticists do if we see a robot being used in a way that we feel is unethical or irresponsible?
Péter Fankhauser, ANYbotics: If it’s irresponsible due to safety: intervene! If it’s unethical: speak up!
Robert Playter, Boston Dynamics: We want robots to be beneficial for humanity, which includes the notion of not causing harm. As an industry, we think robots will achieve long-term commercial viability only if people see robots as helpful, beneficial tools without worrying if they’re going to cause harm.
Ryan Gariepy, Clearpath Robotics: On a one off basis, they should speak to a combination of the user, the supplier or suppliers, the media, and, if safety is an immediate concern, regulatory or government agencies. If the situation in question risks becoming commonplace and is not being taken seriously, they should speak up more generally in appropriate forums—conferences, industry groups, standards bodies, and the like.
As more and more robots representing different capabilities become commercially available, these issues are likely to come up more frequently. The three companies we talked to certainly don’t represent every viewpoint, and we did reach out to other companies who declined to comment. But I would think (I would hope?) that everyone in the robotics community can agree that robots should be used in a way that makes people’s lives better. What “better” means in the context of art and research and even robots in the military may not always be easy to define, and inevitably there’ll be disagreement as to what is ethical and responsible, and what isn’t.
We’ll keep on talking about it, though, and do our best to help the robotics community to continue growing and evolving in a positive way. Let us know what you think in the comments. Continue reading