Tag Archives: future

#436042 Video Friday: Caltech’s Drone With ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Caltech has been making progress on LEONARDO (LEg ON Aerial Robotic DrOne), their leggy thruster powered humanoid-thing. It can now balance and walk, which is quite impressive to see.

We’ll circle back again when they’ve got it jumping and floating around.

[ Caltech ]

Turn the subtitles on to learn how robots became experts at slicing bubbly, melty, delicious cheese.

These robots learned how to do the traditional Swiss raclette from demonstration. The Robot Learning & Interaction group at the Idiap Research Institute has developed an imitation learning technique allowing the robot to acquire new skills by considering position and force information, with an automatic adaptation to new situations. The range of applications is wide, including industrial robots, service robots, and assistive robots.

[ Idiap ]

Thanks Sylvain!

Some amazing news this week from Skydio, with the announcement of their better in every single way Skydio 2 autonomous drone. Read our full article for details, but here’s a getting started video that gives you an overview of what the drone can do.

The first batch sold out in 36 hours, but you can put down a $100 deposit to reserve the $999 drone for 2020 delivery.

[ Skydio ]

UBTECH is introducing a couple new robot kits for the holidays: ChampBot and FireBot.

$130 each, available on October 20.

[ Ubtech ]

NASA’s InSight lander on Mars is trying to use its robotic arm to get the mission’s heat flow probe, or mole, digging again. InSight team engineer Ashitey Trebbi-Ollennu, based at NASA’s Jet Propulsion Laboratory in Pasadena, California, explains what has been attempted and the game plan for the coming weeks. The next tactic they’ll try will be “pinning” the mole against the hole it’s in.

[ NASA ]

We introduce shape-changing swarm robots. A swarm of self-transformable robots can both individually and collectively change their configuration to display information, actuate objects, act as tangible controllers, visualize data, and provide physical affordances. ShapeBots is a concept prototype of shape-changing swarm robots. Each robot can change its shape by leveraging small linear actuators that are thin (2.5 cm) and highly extendable (up to 20cm) in both horizontal and vertical directions.

[ Ryo Suzuki ]

Robot abuse!

Vision 60 legged robot managing unstructured terrain without vision or force sensors in its legs. Using only high-transparency actuators and 2kHz algorithmic stability control… 4-limbs and 12-motors with only a velocity command.

[ Ghost Robotics ]

We asked real people to bring in real products they needed picked for their application. In MINUTES, we assembled the right tool.

This is a cool idea, but for a real challenge they should try it outside a supermarket. Or a pet store.

[ Soft Robotics ]

Good water quality is important to humans and to nature. In a country with as much water as the Netherlands has, ensuring water quality is a very labour-intensive undertaking. To address this issue, researchers from TU Delft have developed a ‘pelican drone’: a drone capable of taking water samples quickly, in combination with a measuring instrument that immediately analyses the water quality. The drone was tested this week at the new Marker Wadden nature area ‘Living Lab’.

[ MAVLab ]

In an international collaboration led by scientists in Switzerland, three amputees merge with their bionic prosthetic legs as they climb over various obstacles without having to look. The amputees report using and feeling their bionic leg as part of their own body, thanks to sensory feedback from the prosthetic leg that is delivered to nerves in the leg’s stump.

[ EPFL ]

It’s a little hard to see, but this is one way of testing out asteroid imaging spacecraft without actually going into space: a fake asteroid and a 2D microgravity simulator.

[ Caltech ]

Drones can help filmmakers do the kinds of shots that would be otherwise impossible.

[ DJI ]

Two long interviews this week from Lex Fridman’s AI Podcast, and both of them are worth watching: Gary Marcus, and Peter Norvig.

[ AI Podcast ]

This week’s CMU RI Seminar comes from Tucker Hermans at the University of Utah, on “Improving Multi-fingered Robot Manipulation by Unifying Learning and Planning.”

Multi-fingered hands offer autonomous robots increased dexterity, versatility, and stability over simple two-fingered grippers. Naturally, this increased ability comes with increased complexity in planning and executing manipulation actions. As such, I propose combining model-based planning with learned components to improve over purely data-driven or purely-model based approaches to manipulation. This talk examines multi-fingered autonomous manipulation when the robot has only partial knowledge of the object of interest. I will first present results on planning multi-fingered grasps for novel objects using a learned neural network. I will then present our approach to planning in-hand manipulation tasks when dynamic properties of objects are not known. I will conclude with a discussion of our ongoing and future research to further unify these two approaches.

[ CMU RI ] Continue reading

Posted in Human Robots

#435828 Video Friday: Boston Dynamics’ ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, Calif., USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

You’ve almost certainly seen the new Spot and Atlas videos from Boston Dynamics, if for no other reason than we posted about Spot’s commercial availability earlier this week. But what, are we supposed to NOT include them in Video Friday anyway? Psh! Here you go:

[ Boston Dynamics ]

Eight deadly-looking robots. One Giant Nut trophy. Tonight is the BattleBots season finale, airing on Discovery, 8 p.m. ET, or check your local channels.

[ BattleBots ]

Thanks Trey!

Speaking of battling robots… Having giant robots fight each other is one of those things that sounds really great in theory, but doesn’t work out so well in reality. And sadly, MegaBots is having to deal with reality, which means putting their giant fighting robot up on eBay.

As of Friday afternoon, the current bid is just over $100,000 with a week to go.

[ MegaBots ]

Michigan Engineering has figured out the secret formula to getting 150,000 views on YouTube: drone plus nail gun.

[ Michigan Engineering ]

Michael Burke from the University of Edinburgh writes:

We’ve been learning to scoop grapefruit segments using a PR2, by “feeling” the difference between peel and pulp. We use joint torque measurements to predict the probability that the knife is in the peel or pulp, and use this to apply feedback control to a nominal cutting trajectory learned from human demonstration, so that we remain in a position of maximum uncertainty about which medium we’re cutting. This means we slice along the boundary between the two mediums. It works pretty well!

[ Paper ] via [ Robust Autonomy and Decisions Group ]

Thanks Michael!

Hey look, it’s Jan with eight EMYS robot heads. Hi, Jan! Hi, EMYSes!

[ EMYS ]

We’re putting the KRAKEN Arm through its paces, demonstrating that it can unfold from an Express Rack locker on the International Space Station and access neighboring lockers in NASA’s FabLab system to enable transfer of materials and parts between manufacturing, inspection, and storage stations. The KRAKEN arm will be able to change between multiple ’end effector’ tools such as grippers and inspection sensors – those are in development so they’re not shown in this video.

[ Tethers Unlimited ]

UBTECH’s Alpha Mini Robot with Smart Robot’s “Maatje” software is offering healthcare service to children at Praktijk Intraverte Multidisciplinary Institution in Netherlands.

This institution is using Alpha Mini in counseling children’s behavior. Alpha Mini can move and talk to children and offers games and activities to stimulate and interact with them. Alpha Mini talks, helps and motivates children thereby becoming more flexible in society.

[ UBTECH ]

Some impressive work here from Anusha Nagabandi, Kurt Konoglie, Sergey Levine, Vikash Kumar at Google Brain, training a dexterous multi-fingered hand to do that thing with two balls that I’m really bad at.

Dexterous multi-fingered hands can provide robots with the ability to flexibly perform a wide range of manipulation skills. However, many of the more complex behaviors are also notoriously difficult to control: Performing in-hand object manipulation, executing finger gaits to move objects, and exhibiting precise fine motor skills such as writing, all require finely balancing contact forces, breaking and reestablishing contacts repeatedly, and maintaining control of unactuated objects. In this work, we demonstrate that our method of online planning with deep dynamics models (PDDM) addresses both of these limitations; we show that improvements in learned dynamics models, together with improvements in online model-predictive control, can indeed enable efficient and effective learning of flexible contact-rich dexterous manipulation skills — and that too, on a 24-DoF anthropomorphic hand in the real world, using just 2-4 hours of purely real-world data to learn to simultaneously coordinate multiple free-floating objects.

[ PDDM ]

Thanks Vikash!

CMU’s Ballbot has a deceptively light touch that’s ideal for leading people around.

A paper on this has been submitted to IROS 2019.

[ CMU ]

The Autonomous Robots Lab at the University of Nevada is sharing some of the work they’ve done on path planning and exploration for aerial robots during the DARPA SubT Challenge.

[ Autonomous Robots Lab ]

More proof that anything can be a drone if you staple some motors to it. Even 32 feet of styrofoam insulation.

[ YouTube ]

Whatever you think of military drones, we can all agree that they look cool.

[ Boeing ]

I appreciate the fact that iCub has eyelids, I really do, but sometimes, it ends up looking kinda sleepy in research videos.

[ EPFL LASA ]

Video shows autonomous flight of a lightweight aerial vehicle outdoors and indoors on the campus of Carnegie Mellon University. The vehicle is equipped with limited onboard sensing from a front-facing camera and a proximity sensor. The aerial autonomy is enabled by utilizing a 3D prior map built in Step 1.

[ CMU ]

The Stanford Space Robotics Facility allows researchers to test innovative guidance and navigation algorithms on a realistic frictionless, underactuated system.

[ Stanford ASL ]

In this video, Ian and CP discuss Misty’s many capabilities including robust locomotion, obstacle avoidance, 3D mapping/SLAM, face detection and recognition, sound localization, hardware extensibility, photo and video capture, and programmable personality. They also talk about some of the skills he’s built using these capabilities (and others) and how those skills can be expanded upon by you.

[ Misty Robotics ]

This week’s CMU RI Seminar comes from Aaron Parness at Caltech and NASA JPL, on “Robotic Grippers for Planetary Applications.”

The previous generation of NASA missions to the outer solar system discovered salt water oceans on Europa and Enceladus, each with more liquid water than Earth – compelling targets to look for extraterrestrial life. Closer to home, JAXA and NASA have imaged sky-light entrances to lava tube caves on the Moon more than 100 m in diameter and ESA has characterized the incredibly varied and complex terrain of Comet 67P. While JPL has successfully landed and operated four rovers on the surface of Mars using a 6-wheeled rocker-bogie architecture, future missions will require new mobility architectures for these extreme environments. Unfortunately, the highest value science targets often lie in the terrain that is hardest to access. This talk will explore robotic grippers that enable missions to these extreme terrains through their ability to grip a wide variety of surfaces (shapes, sizes, and geotechnical properties). To prepare for use in space where repair or replacement is not possible, we field-test these grippers and robots in analog extreme terrain on Earth. Many of these systems are enabled by advances in autonomy. The talk will present a rapid overview of my work and a detailed case study of an underactuated rock gripper for deflecting asteroids.

[ CMU ]

Rod Brooks gives some of the best robotics talks ever. He gave this one earlier this week at UC Berkeley, on “Steps Toward Super Intelligence and the Search for a New Path.”

[ UC Berkeley ] Continue reading

Posted in Human Robots

#435824 A Q&A with Cruise’s head of AI, ...

In 2016, Cruise, an autonomous vehicle startup acquired by General Motors, had about 50 employees. At the beginning of 2019, the headcount at its San Francisco headquarters—mostly software engineers, mostly working on projects connected to machine learning and artificial intelligence—hit around 1000. Now that number is up to 1500, and by the end of this year it’s expected to reach about 2000, sprawling into a recently purchased building that had housed Dropbox. And that’s not counting the 200 or so tech workers that Cruise is aiming to install in a Seattle, Wash., satellite development center and a handful of others in Phoenix, Ariz., and Pasadena, Calif.

Cruise’s recent hires aren’t all engineers—it takes more than engineering talent to manage operations. And there are hundreds of so-called safety drivers that are required to sit in the 180 or so autonomous test vehicles whenever they roam the San Francisco streets. But that’s still a lot of AI experts to be hiring in a time of AI engineer shortages.

Hussein Mehanna, head of AI/ML at Cruise, says the company’s hiring efforts are on track, due to the appeal of the challenge of autonomous vehicles in drawing in AI experts from other fields. Mehanna himself joined Cruise in May from Google, where he was director of engineering at Google Cloud AI. Mehanna had been there about a year and a half, a relatively quick career stop after a short stint at Snap following four years working in machine learning at Facebook.

Mehanna has been immersed in AI and machine learning research since his graduate studies in speech recognition and natural language processing at the University of Cambridge. I sat down with Mehanna to talk about his career, the challenges of recruiting AI experts and autonomous vehicle development in general—and some of the challenges specific to San Francisco. We were joined by Michael Thomas, Cruise’s manager of AI/ML recruiting, who had also spent time recruiting AI engineers at Google and then Facebook.

IEEE Spectrum: When you were at Cambridge, did you think AI was going to take off like a rocket?

Mehanna: Did I imagine that AI was going to be as dominant and prevailing and sometimes hyped as it is now? No. I do recall in 2003 that my supervisor and I were wondering if neural networks could help at all in speech recognition. I remember my supervisor saying if anyone could figure out how use a neural net for speech he would give them a grant immediately. So he was on the right path. Now neural networks have dominated vision, speech, and language [processing]. But that boom started in 2012.

“In the early days, Facebook wasn’t that open to PhDs, it actually had a negative sentiment about researchers, and then Facebook shifted”

I didn’t [expect it], but I certainly aimed for it when [I was at] Microsoft, where I deliberately pushed my career towards machine learning instead of big data, which was more popular at the time. And [I aimed for it] when I joined Facebook.

In the early days, Facebook wasn’t that open to PhDs, or researchers. It actually had a negative sentiment about researchers. And then Facebook shifted to becoming one of the key places where PhD students wanted to do internships or join after they graduated. It was a mindset shift, they were [once] at a point in time where they thought what was needed for success wasn’t research, but now it’s different.

There was definitely an element of risk [in taking a machine learning career path], but I was very lucky, things developed very fast.

IEEE Spectrum: Is it getting harder or easier to find AI engineers to hire, given the reported shortages?

Mehanna: There is a mismatch [between job openings and qualified engineers], though it is hard to quantify it with numbers. There is good news as well: I see a lot more students diving deep into machine learning and data in their [undergraduate] computer science studies, so it’s not as bleak as it seems. But there is massive demand in the market.

Here at Cruise, demand for AI talent is just growing and growing. It might be is saturating or slowing down at other kinds of companies, though, [which] are leveraging more traditional applications—ad prediction, recommendations—that have been out there in the market for a while. These are more mature, better understood problems.

I believe autonomous vehicle technologies is the most difficult AI problem out there. The magnitude of the challenge of these problems is 1000 times more than other problems. They aren’t as well understood yet, and they require far deeper technology. And also the quality at which they are expected to operate is off the roof.

The autonomous vehicle problem is the engineering challenge of our generation. There’s a lot of code to write, and if we think we are going to hire armies of people to write it line by line, it’s not going to work. Machine learning can accelerate the process of generating the code, but that doesn’t mean we aren’t going to have engineers; we actually need a lot more engineers.

Sometimes people worry that AI is taking jobs. It is taking some developer jobs, but it is actually generating other developer jobs as well, protecting developers from the mundane and helping them build software faster and faster.

IEEE Spectrum: Are you concerned that the demand for AI in industry is drawing out the people in academia who are needed to educate future engineers, that is, the “eating the seed corn” problem?

Mehanna: There are some negative examples in the industry, but that’s not our style. We are looking for collaborations with professors, we want to cultivate a very deep and respectful relationship with universities.

And there’s another angle to this: Universities require a thriving industry for them to thrive. It is going to be extremely beneficial for academia to have this flourishing industry in AI, because it attracts more students to academia. I think we are doing them a fantastic favor by building these career opportunities. This is not the same as in my early days, [when] people told me “don’t go to AI; go to networking, work in the mobile industry; mobile is flourishing.”

IEEE Spectrum: Where are you looking as you try to find a thousand or so engineers to hire this year?

Thomas: We look for people who want to use machine learning to solve problems. They can be in many different industries—in the financial markets, in social media, in advertising. The autonomous vehicle industry is in its infancy. You can compare it to mobile in the early days: When the iPhone first came out, everyone was looking for developers with mobile experience, but you weren’t going to find them unless you went to straight to Apple, [so you had to hire other kinds of engineers]. This is the same type of thing: it is so new that you aren’t going to find experts in this area, because we are all still learning.

“You don’t have to be an autonomous vehicle expert to flourish in this world. It’s not too late to move…now would be a great time for AI experts working on other problems to shift their attention to autonomous vehicles.”

Mehanna: Because autonomous vehicle technology is the new frontier for AI experts, [the number of] people with both AI and autonomous vehicle experience is quite limited. So we are acquiring AI experts wherever they are, and helping them grow into the autonomous vehicle area. You don’t have to be an autonomous vehicle expert to flourish in this world. It’s not too late to move; even though there is a lot of great tech developed, there’s even more innovation ahead, so now would be a great time for AI experts working on other problems or applications to shift their attention to autonomous vehicles.

It feels like the Internet in 1980. It’s about to happen, but there are endless applications [to be developed over] the next few decades. Even if we can get a car to drive safely, there is the question of how can we tune the ride comfort, and then applying it all to different cities, different vehicles, different driving situations, and who knows to what other applications.

I can see how I can spend a lifetime career trying to solve this problem.

IEEE Spectrum: Why are you doing most of your development in San Francisco?

Mehanna: I think the best talent of the world is in Silicon Valley, and solving the autonomous vehicle problem is going to require the best of the best. It’s not just the engineering talent that is here, but [also] the entrepreneurial spirit. Solving the problem just as a technology is not going to be successful, you need to solve the product and the technology together. And the entrepreneurial spirit is one of the key reasons Cruise secured 7.5 billion in funding [besides GM, the company has a number of outside investors, including Honda, Softbank, and T. Rowe Price]. That [funding] is another reason Cruise is ahead of many others, because this problem requires deep resources.

“If you can do an autonomous vehicle in San Francisco you can do it almost anywhere.”

[And then there is the driving environment.] When I speak to my peers in the industry, they have a lot of respect for us, because the problems to solve in San Francisco technically are an order of magnitude harder. It is a tight environment, with a lot of pedestrians, and driving patterns that, let’s put it this way, are not necessarily the best in the nation. Which means we are seeing more problems ahead of our competitors, which gets us to better [software]. I think if you can do an autonomous vehicle in San Francisco you can do it almost anywhere.

A version of this post appears in the September 2019 print magazine as “AI Engineers: The Autonomous-Vehicle Industry Wants You.” Continue reading

Posted in Human Robots

#435822 The Internet Is Coming to the Rest of ...

People surf it. Spiders crawl it. Gophers navigate it.

Now, a leading group of cognitive biologists and computer scientists want to make the tools of the Internet accessible to the rest of the animal kingdom.

Dubbed the Interspecies Internet, the project aims to provide intelligent animals such as elephants, dolphins, magpies, and great apes with a means to communicate among each other and with people online.

And through artificial intelligence, virtual reality, and other digital technologies, researchers hope to crack the code of all the chirps, yips, growls, and whistles that underpin animal communication.

Oh, and musician Peter Gabriel is involved.

“We can use data analysis and technology tools to give non-humans a lot more choice and control,” the former Genesis frontman, dressed in his signature Nehru-style collar shirt and loose, open waistcoat, told IEEE Spectrum at the inaugural Interspecies Internet Workshop, held Monday in Cambridge, Mass. “This will be integral to changing our relationship with the natural world.”

The workshop was a long time in the making.

Eighteen years ago, Gabriel visited a primate research center in Atlanta, Georgia, where he jammed with two bonobos, a male named Kanzi and his half-sister Panbanisha. It was the first time either bonobo had sat at a piano before, and both displayed an exquisite sense of musical timing and melody.

Gabriel seemed to be speaking to the great apes through his synthesizer. It was a shock to the man who once sang “Shock the Monkey.”

“It blew me away,” he says.

Add in the bonobos’ ability to communicate by pointing to abstract symbols, Gabriel notes, and “you’d have to be deaf, dumb, and very blind not to notice language being used.”

Gabriel eventually teamed up with Internet protocol co-inventor Vint Cerf, cognitive psychologist Diana Reiss, and IoT pioneer Neil Gershenfeld to propose building an Interspecies Internet. Presented in a 2013 TED Talk as an “idea in progress,” the concept proved to be ahead of the technology.

“It wasn’t ready,” says Gershenfeld, director of MIT’s Center for Bits and Atoms. “It needed to incubate.”

So, for the past six years, the architects of the Dolittlesque initiative embarked on two small pilot projects, one for dolphins and one for chimpanzees.

At her Hunter College lab in New York City, Reiss developed what she calls the D-Pad—a touchpad for dolphins.

Reiss had been trying for years to create an underwater touchscreen with which to probe the cognition and communication skills of bottlenose dolphins. But “it was a nightmare coming up with something that was dolphin-safe and would work,” she says.

Her first attempt emitted too much heat. A Wii-like system of gesture recognition proved too difficult to install in the dolphin tanks.

Eventually, she joined forces with Rockefeller University biophysicist Marcelo Magnasco and invented an optical detection system in which images and infrared sensors are projected through an underwater viewing window onto a glass panel, allowing the dolphins to play specially designed apps, including one dubbed Whack-a-Fish.

Meanwhile, in the United Kingdom, Gabriel worked with Alison Cronin, director of the ape rescue center Monkey World, to test the feasibility of using FaceTime with chimpanzees.

The chimps engaged with the technology, Cronin reported at this week’s workshop. However, our hominid cousins proved as adept at videotelephonic discourse as my three-year-old son is at video chatting with his grandparents—which is to say, there was a lot of pass-the-banana-through-the-screen and other silly games, and not much meaningful conversation.

“We can use data analysis and technology tools to give non-humans a lot more choice and control.”
—Peter Gabriel

The buggy, rudimentary attempt at interspecies online communication—what Cronin calls her “Max Headroom experiment”—shows that building the Interspecies Internet will not be as simple as giving out Skype-enabled tablets to smart animals.

“There are all sorts of problems with creating a human-centered experience for another animal,” says Gabriel Miller, director of research and development at the San Diego Zoo.

Miller has been working on animal-focused sensory tools such as an “Elephone” (for elephants) and a “Joybranch” (for birds), but it’s not easy to design efficient interactive systems for other creatures—and for the Interspecies Internet to be successful, Miller points out, “that will be super-foundational.”

Researchers are making progress on natural language processing of animal tongues. Through a non-profit organization called the Earth Species Project, former Firefox designer Aza Raskin and early Twitter engineer Britt Selvitelle are applying deep learning algorithms developed for unsupervised machine translation of human languages to fashion a Rosetta Stone–like tool capable of interpreting the vocalizations of whales, primates, and other animals.

Inspired by the scientists who first documented the complex sonic arrangements of humpback whales in the 1960s—a discovery that ushered in the modern marine conservation movement—Selvitelle hopes that an AI-powered animal translator can have a similar effect on environmentalism today.

“A lot of shifts happen when someone who doesn’t have a voice gains a voice,” he says.

A challenge with this sort of AI software remains verification and validation. Normally, machine-learning algorithms are benchmarked against a human expert, but who is to say if a cybernetic translation of a sperm whale’s clicks is accurate or not?

One could back-translate an English expression into sperm whale-ese and then into English again. But with the great apes, there might be a better option.

According to primatologist Sue Savage-Rumbaugh, expertly trained bonobos could serve as bilingual interpreters, translating the argot of apes into the parlance of people, and vice versa.

Not just any trained ape will do, though. They have to grow up in a mixed Pan/Homo environment, as Kanzi and Panbanisha were.

“If I can have a chat with a cow, maybe I can have more compassion for it.”
—Jeremy Coller

Those bonobos were raised effectively from birth both by Savage-Rumbaugh, who taught the animals to understand spoken English and to communicate via hundreds of different pictographic “lexigrams,” and a bonobo mother named Matata that had lived for six years in the Congolese rainforests before her capture.

Unlike all other research primates—which are brought into captivity as infants, reared by human caretakers, and have limited exposure to their natural cultures or languages—those apes thus grew up fluent in both bonobo and human.

Panbanisha died in 2012, but Kanzi, aged 38, is still going strong, living at an ape sanctuary in Des Moines, Iowa. Researchers continue to study his cognitive abilities—Francine Dolins, a primatologist at the University of Michigan-Dearborn, is running one study in which Kanzi and other apes hunt rabbits and forage for fruit through avatars on a touchscreen. Kanzi could, in theory, be recruited to check the accuracy of any Google Translate–like app for bonobo hoots, barks, grunts, and cries.

Alternatively, Kanzi could simply provide Internet-based interpreting services for our two species. He’s already proficient at video chatting with humans, notes Emily Walco, a PhD student at Harvard University who has personally Skyped with Kanzi. “He was super into it,” Walco says.

And if wild bonobos in Central Africa can be coaxed to gather around a computer screen, Savage-Rumbaugh is confident Kanzi could communicate with them that way. “It can all be put together,” she says. “We can have an Interspecies Internet.”

“Both the technology and the knowledge had to advance,” Savage-Rumbaugh notes. However, now, “the techniques that we learned could really be extended to a cow or a pig.”

That’s music to the ears of Jeremy Coller, a private equity specialist whose foundation partially funded the Interspecies Internet Workshop. Coller is passionate about animal welfare and has devoted much of his philanthropic efforts toward the goal of ending factory farming.

At the workshop, his foundation announced the creation of the Coller Doolittle Prize, a US $100,000 award to help fund further research related to the Interspecies Internet. (A working group also formed to synthesize plans for the emerging field, to facilitate future event planning, and to guide testing of shared technology platforms.)

Why would a multi-millionaire with no background in digital communication systems or cognitive psychology research want to back the initiative? For Coller, the motivation boils to interspecies empathy.

“If I can have a chat with a cow,” he says, “maybe I can have more compassion for it.”

An abridged version of this post appears in the September 2019 print issue as “Elephants, Dolphins, and Chimps Need the Internet, Too.” Continue reading

Posted in Human Robots

#435791 To Fly Solo, Racing Drones Have a Need ...

Drone racing’s ultimate vision of quadcopters weaving nimbly through obstacle courses has attracted far less excitement and investment than self-driving cars aimed at reshaping ground transportation. But the U.S. military and defense industry are betting on autonomous drone racing as the next frontier for developing AI so that it can handle high-speed navigation within tight spaces without human intervention.

The autonomous drone challenge requires split-second decision-making with six degrees of freedom instead of a car’s mere two degrees of road freedom. One research team developing the AI necessary for controlling autonomous racing drones is the Robotics and Perception Group at the University of Zurich in Switzerland. In late May, the Swiss researchers were among nine teams revealed to be competing in the two-year AlphaPilot open innovation challenge sponsored by U.S. aerospace company Lockheed Martin. The winning team will walk away with up to $2.25 million for beating other autonomous racing drones and a professional human drone pilot in head-to-head competitions.

“I think it is important to first point out that having an autonomous drone to finish a racing track at high speeds or even beating a human pilot does not imply that we can have autonomous drones [capable of] navigating in real-world, complex, unstructured, unknown environments such as disaster zones, collapsed buildings, caves, tunnels or narrow pipes, forests, military scenarios, and so on,” says Davide Scaramuzza, a professor of robotics and perception at the University of Zurich and ETH Zurich. “However, the robust and computationally efficient state estimation algorithms, control, and planning algorithms developed for autonomous drone racing would represent a starting point.”

The nine teams that made the cut—from a pool of 424 AlphaPilot applicants—will compete in four 2019 racing events organized under the Drone Racing League’s Artificial Intelligence Robotic Racing Circuit, says Keith Lynn, program manager for AlphaPilot at Lockheed Martin. To ensure an apples-to-apples comparison of each team’s AI secret sauce, each AlphaPilot team will upload its AI code into identical, specially-built drones that have the NVIDIA Xavier GPU at the core of the onboard computing hardware.

“Lockheed Martin is offering mentorship to the nine AlphaPilot teams to support their AI tech development and innovations,” says Lynn. The company “will be hosting a week-long Developers Summit at MIT in July, dedicated to workshopping and improving AlphaPilot teams’ code,” he added. He notes that each team will retain the intellectual property rights to its AI code.

The AlphaPilot challenge takes inspiration from older autonomous drone racing events hosted by academic researchers, Scaramuzza says. He credits Hyungpil Moon, a professor of robotics and mechanical engineering at Sungkyunkwan University in South Korea, for having organized the annual autonomous drone racing competition at the International Conference on Intelligent Robots and Systems since 2016.

It’s no easy task to create and train AI that can perform high-speed flight through complex environments by relying on visual navigation. One big challenge comes from how drones can accelerate sharply, take sharp turns, fly sideways, do zig-zag patterns and even perform back flips. That means camera images can suddenly appear tilted or even upside down during drone flight. Motion blur may occur when a drone flies very close to structures at high speeds and camera pixels collect light from multiple directions. Both cameras and visual software can also struggle to compensate for sudden changes between light and dark parts of an environment.

To lend AI a helping hand, Scaramuzza’s group recently published a drone racing dataset that includes realistic training data taken from a drone flown by a professional pilot in both indoor and outdoor spaces. The data, which includes complicated aerial maneuvers such as back flips, flight sequences that cover hundreds of meters, and flight speeds of up to 83 kilometers per hour, was presented at the 2019 IEEE International Conference on Robotics and Automation.

The drone racing dataset also includes data captured by the group’s special bioinspired event cameras that can detect changes in motion on a per-pixel basis within microseconds. By comparison, ordinary cameras need milliseconds (each millisecond being 1,000 microseconds) to compare motion changes in each image frame. The event cameras have already proven capable of helping drones nimbly dodge soccer balls thrown at them by the Swiss lab’s researchers.

The Swiss group’s work on the racing drone dataset received funding in part from the U.S. Defense Advanced Research Projects Agency (DARPA), which acts as the U.S. military’s special R&D arm for more futuristic projects. Specifically, the funding came from DARPA’s Fast Lightweight Autonomy program that envisions small autonomous drones capable of flying at high speeds through cluttered environments without GPS guidance or communication with human pilots.

Such speedy drones could serve as military scouts checking out dangerous buildings or alleys. They could also someday help search-and-rescue teams find people trapped in semi-collapsed buildings or lost in the woods. Being able to fly at high speed without crashing into things also makes a drone more efficient at all sorts of tasks by making the most of limited battery life, Scaramuzza says. After all, most drone battery life gets used up by the need to hover in flight and doesn’t get drained much by flying faster.

Even if AI manages to conquer the drone racing obstacle courses, that would be the end of the beginning of the technology’s development. What would still be required? Scaramuzza specifically singled out the need to handle low-visibility conditions involving smoke, dust, fog, rain, snow, fire, hail, as some of the biggest challenges for vision-based algorithms and AI in complex real-life environments.

“I think we should develop and release datasets containing smoke, dust, fog, rain, fire, etc. if we want to allow using autonomous robots to complement human rescuers in saving people lives after an earthquake or natural disaster in the future,” Scaramuzza says. Continue reading

Posted in Human Robots