Tag Archives: free

#437596 IROS Robotics Conference Is Online Now ...

The 2020 International Conference on Intelligent Robots and Systems (IROS) was originally going to be held in Las Vegas this week. Like ICRA last spring, IROS has transitioned to a completely online conference, which is wonderful news: Now everyone everywhere can participate in IROS without having to spend a dime on travel.

IROS officially opened yesterday, and the best news is that registration is entirely free! We’ll take a quick look at what IROS has on offer this year, which includes some stuff that’s brand news to IROS.

Registration for IROS is super easy, and did we mention that it’s free? To register, just go here and fill out a quick and easy form. You don’t even have to be an IEEE Member or anything like that, although in our unbiased opinion, an IEEE membership is well worth it. Once you get the confirmation email, go to https://www.iros2020.org/ondemand/, put in the email address you used to register, and that’s it, you’ve got IROS!

Here are some highlights:

Plenaries and Keynotes
Without the normal space and time constraints, you won’t have to pick and choose between any of the three plenaries or 10 keynotes. Some of them are fancier than others, but we’re used to that sort of thing by now. It’s worth noting that all three plenaries (and three of the 10 keynotes) are given by extraordinarily talented women, which is excellent to see.

Technical Tracks
There are over 1,400 technical talks, divided up into 12 categories of 20 sessions each. Note that each of the 12 categories that you see on the main page can be scrolled through to show all 20 of the sessions; if there’s a bright red arrow pointing left or right you can scroll, and if the arrow is transparent, you’ve reached the end.

On the session page, you’ll see an autoplaying advertisement (that you can mute but not stop), below which each talk has a preview slide, a link to a ~15 minute presentation video, and another link to a PDF of the paper. No supplementary videos are available, which is a bit disappointing. While you can leave a comment on the video, there’s no way of interacting with the author(s) directly through the IROS site, so you’ll have to check the paper for an email address if you want to ask a question.

Award Finalists
IROS has thoughtfully grouped all of the paper award finalists together into nine sessions. These are some truly outstanding papers, and it’s worth watching these sessions even if you’re not interested in specific subject matter.

Workshops and Tutorials
This stuff is a little more impacted by asynchronicity and on-demandedness, and some of the workshops and tutorials have already taken place. But IROS has done a good job at collecting videos of everything and making them easy to access, and the dedicated websites for the workshops and tutorials themselves sometimes have more detailed info. If you’re having trouble finding where the workshops and tutorial section is, try the “Entrance” drop-down menu up at the top.

IROS Original Series
In place of social events and lab tours, IROS this year has come up with the “IROS Original Series,” which “hosts unique content that would be difficult to see at in-person events.” Right now, there are some interviews with a diverse group of interesting roboticists, and hopefully more will show up later on.

Enjoy!
Everything on the IROS On-Demand site should be available for at least the next month, so there’s no need to try and watch a thousand presentations over three days (which is what we normally have to do). So, relax, and enjoy yourself a bit by browsing all the options. And additional content will be made available over the next several weeks, so make sure to check back often to see what’s new.

[ IROS 2020 ] Continue reading

Posted in Human Robots

#437491 3.2 Billion Images and 720,000 Hours of ...

Twitter over the weekend “tagged” as manipulated a video showing US Democratic presidential candidate Joe Biden supposedly forgetting which state he’s in while addressing a crowd.

Biden’s “hello Minnesota” greeting contrasted with prominent signage reading “Tampa, Florida” and “Text FL to 30330.”

The Associated Press’s fact check confirmed the signs were added digitally and the original footage was indeed from a Minnesota rally. But by the time the misleading video was removed it already had more than one million views, The Guardian reports.

A FALSE video claiming Biden forgot what state he was in was viewed more than 1 million times on Twitter in the past 24 hours

In the video, Biden says “Hello, Minnesota.”

The event did indeed happen in MN — signs on stage read MN

But false video edited signs to read Florida pic.twitter.com/LdHQVaky8v

— Donie O'Sullivan (@donie) November 1, 2020

If you use social media, the chances are you see (and forward) some of the more than 3.2 billion images and 720,000 hours of video shared daily. When faced with such a glut of content, how can we know what’s real and what’s not?

While one part of the solution is an increased use of content verification tools, it’s equally important we all boost our digital media literacy. Ultimately, one of the best lines of defense—and the only one you can control—is you.

Seeing Shouldn’t Always Be Believing
Misinformation (when you accidentally share false content) and disinformation (when you intentionally share it) in any medium can erode trust in civil institutions such as news organizations, coalitions and social movements. However, fake photos and videos are often the most potent.

For those with a vested political interest, creating, sharing and/or editing false images can distract, confuse and manipulate viewers to sow discord and uncertainty (especially in already polarized environments). Posters and platforms can also make money from the sharing of fake, sensationalist content.

Only 11-25 percent of journalists globally use social media content verification tools, according to the International Centre for Journalists.

Could You Spot a Doctored Image?
Consider this photo of Martin Luther King Jr.

Dr. Martin Luther King Jr. Giving the middle finger #DopeHistoricPics pic.twitter.com/5W38DRaLHr

— Dope Historic Pics (@dopehistoricpic) December 20, 2013

This altered image clones part of the background over King Jr’s finger, so it looks like he’s flipping off the camera. It has been shared as genuine on Twitter, Reddit, and white supremacist websites.

In the original 1964 photo, King flashed the “V for victory” sign after learning the US Senate had passed the civil rights bill.

“Those who love peace must learn to organize as effectively as those who love war.”
Dr. Martin Luther King Jr.

This photo was taken on June 19th, 1964, showing Dr King giving a peace sign after hearing that the civil rights bill had passed the senate. @snopes pic.twitter.com/LXHmwMYZS5

— Willie's Reserve (@WilliesReserve) January 21, 2019

Beyond adding or removing elements, there’s a whole category of photo manipulation in which images are fused together.

Earlier this year, a photo of an armed man was photoshopped by Fox News, which overlaid the man onto other scenes without disclosing the edits, the Seattle Times reported.

You mean this guy who’s been photoshopped into three separate photos released by Fox News? pic.twitter.com/fAXpIKu77a

— Zander Yates ザンダーイェーツ (@ZanderYates) June 13, 2020

Similarly, the image below was shared thousands of times on social media in January, during Australia’s Black Summer bushfires. The AFP’s fact check confirmed it is not authentic and is actually a combination of several separate photos.

Image is more powerful than screams of Greta. A silent girl is holding a koala. She looks straight at you from the waters of the ocean where they found a refuge. She is wearing a breathing mask. A wall of fire is behind them. I do not know the name of the photographer #Australia pic.twitter.com/CrTX3lltdh

— EVC Music (@EVCMusicUK) January 6, 2020

Fully and Partially Synthetic Content
Online, you’ll also find sophisticated “deepfake” videos showing (usually famous) people saying or doing things they never did. Less advanced versions can be created using apps such as Zao and Reface.

Or, if you don’t want to use your photo for a profile picture, you can default to one of several websites offering hundreds of thousands of AI-generated, photorealistic images of people.

These people don’t exist, they’re just images generated by artificial intelligence. Generated Photos, CC BY

Editing Pixel Values and the (not so) Simple Crop
Cropping can greatly alter the context of a photo, too.

We saw this in 2017, when a US government employee edited official pictures of Donald Trump’s inauguration to make the crowd appear bigger, according to The Guardian. The staffer cropped out the empty space “where the crowd ended” for a set of pictures for Trump.

Views of the crowds at the inaugurations of former US President Barack Obama in 2009 (left) and President Donald Trump in 2017 (right). AP

But what about edits that only alter pixel values such as color, saturation, or contrast?

One historical example illustrates the consequences of this. In 1994, Time magazine’s cover of OJ Simpson considerably “darkened” Simpson in his police mugshot. This added fuel to a case already plagued by racial tension, to which the magazine responded, “No racial implication was intended, by Time or by the artist.”

Tools for Debunking Digital Fakery
For those of us who don’t want to be duped by visual mis/disinformation, there are tools available—although each comes with its own limitations (something we discuss in our recent paper).

Invisible digital watermarking has been proposed as a solution. However, it isn’t widespread and requires buy-in from both content publishers and distributors.

Reverse image search (such as Google’s) is often free and can be helpful for identifying earlier, potentially more authentic copies of images online. That said, it’s not foolproof because it:

Relies on unedited copies of the media already being online.
Doesn’t search the entire web.
Doesn’t always allow filtering by publication time. Some reverse image search services such as TinEye support this function, but Google’s doesn’t.
Returns only exact matches or near-matches, so it’s not thorough. For instance, editing an image and then flipping its orientation can fool Google into thinking it’s an entirely different one.

Most Reliable Tools Are Sophisticated
Meanwhile, manual forensic detection methods for visual mis/disinformation focus mostly on edits visible to the naked eye, or rely on examining features that aren’t included in every image (such as shadows). They’re also time-consuming, expensive, and need specialized expertise.

Still, you can access work in this field by visiting sites such as Snopes.com—which has a growing repository of “fauxtography.”

Computer vision and machine learning also offer relatively advanced detection capabilities for images and videos. But they too require technical expertise to operate and understand.

Moreover, improving them involves using large volumes of “training data,” but the image repositories used for this usually don’t contain the real-world images seen in the news.

If you use an image verification tool such as the REVEAL project’s image verification assistant, you might need an expert to help interpret the results.

The good news, however, is that before turning to any of the above tools, there are some simple questions you can ask yourself to potentially figure out whether a photo or video on social media is fake. Think:

Was it originally made for social media?
How widely and for how long was it circulated?
What responses did it receive?
Who were the intended audiences?

Quite often, the logical conclusions drawn from the answers will be enough to weed out inauthentic visuals. You can access the full list of questions, put together by Manchester Metropolitan University experts, here.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Simon Steinberger from Pixabay Continue reading

Posted in Human Robots

#437373 Microsoft’s New Deepfake Detector Puts ...

The upcoming US presidential election seems set to be something of a mess—to put it lightly. Covid-19 will likely deter millions from voting in person, and mail-in voting isn’t shaping up to be much more promising. This all comes at a time when political tensions are running higher than they have in decades, issues that shouldn’t be political (like mask-wearing) have become highly politicized, and Americans are dramatically divided along party lines.

So the last thing we need right now is yet another wrench in the spokes of democracy, in the form of disinformation; we all saw how that played out in 2016, and it wasn’t pretty. For the record, disinformation purposely misleads people, while misinformation is simply inaccurate, but without malicious intent. While there’s not a ton tech can do to make people feel safe at crowded polling stations or up the Postal Service’s budget, tech can help with disinformation, and Microsoft is trying to do so.

On Tuesday the company released two new tools designed to combat disinformation, described in a blog post by VP of Customer Security and Trust Tom Burt and Chief Scientific Officer Eric Horvitz.

The first is Microsoft Video Authenticator, which is made to detect deepfakes. In case you’re not familiar with this wicked byproduct of AI progress, “deepfakes” refers to audio or visual files made using artificial intelligence that can manipulate peoples’ voices or likenesses to make it look like they said things they didn’t. Editing a video to string together words and form a sentence someone didn’t say doesn’t count as a deepfake; though there’s manipulation involved, you don’t need a neural network and you’re not generating any original content or footage.

The Authenticator analyzes videos or images and tells users the percentage chance that they’ve been artificially manipulated. For videos, the tool can even analyze individual frames in real time.

Deepfake videos are made by feeding hundreds of hours of video of someone into a neural network, “teaching” the network the minutiae of the person’s voice, pronunciation, mannerisms, gestures, etc. It’s like when you do an imitation of your annoying coworker from accounting, complete with mimicking the way he makes every sentence sound like a question and his eyes widen when he talks about complex spreadsheets. You’ve spent hours—no, months—in his presence and have his personality quirks down pat. An AI algorithm that produces deepfakes needs to learn those same quirks, and more, about whoever the creator’s target is.

Given enough real information and examples, the algorithm can then generate its own fake footage, with deepfake creators using computer graphics and manually tweaking the output to make it as realistic as possible.

The scariest part? To make a deepfake, you don’t need a fancy computer or even a ton of knowledge about software. There are open-source programs people can access for free online, and as far as finding video footage of famous people—well, we’ve got YouTube to thank for how easy that is.

Microsoft’s Video Authenticator can detect the blending boundary of a deepfake and subtle fading or greyscale elements that the human eye may not be able to see.

In the blog post, Burt and Horvitz point out that as time goes by, deepfakes are only going to get better and become harder to detect; after all, they’re generated by neural networks that are continuously learning from and improving themselves.

Microsoft’s counter-tactic is to come in from the opposite angle, that is, being able to confirm beyond doubt that a video, image, or piece of news is real (I mean, can McDonald’s fries cure baldness? Did a seal slap a kayaker in the face with an octopus? Never has it been so imperative that the world know the truth).

A tool built into Microsoft Azure, the company’s cloud computing service, lets content producers add digital hashes and certificates to their content, and a reader (which can be used as a browser extension) checks the certificates and matches the hashes to indicate the content is authentic.

Finally, Microsoft also launched an interactive “Spot the Deepfake” quiz it developed in collaboration with the University of Washington’s Center for an Informed Public, deepfake detection company Sensity, and USA Today. The quiz is intended to help people “learn about synthetic media, develop critical media literacy skills, and gain awareness of the impact of synthetic media on democracy.”

The impact Microsoft’s new tools will have remains to be seen—but hey, we’re glad they’re trying. And they’re not alone; Facebook, Twitter, and YouTube have all taken steps to ban and remove deepfakes from their sites. The AI Foundation’s Reality Defender uses synthetic media detection algorithms to identify fake content. There’s even a coalition of big tech companies teaming up to try to fight election interference.

One thing is for sure: between a global pandemic, widespread protests and riots, mass unemployment, a hobbled economy, and the disinformation that’s remained rife through it all, we’re going to need all the help we can get to make it through not just the election, but the rest of the conga-line-of-catastrophes year that is 2020.

Image Credit: Darius Bashar on Unsplash Continue reading

Posted in Human Robots

#437337 6G Will Be 100 Times Faster Than ...

Though 5G—a next-generation speed upgrade to wireless networks—is scarcely up and running (and still nonexistent in many places) researchers are already working on what comes next. It lacks an official name, but they’re calling it 6G for the sake of simplicity (and hey, it’s tradition). 6G promises to be up to 100 times faster than 5G—fast enough to download 142 hours of Netflix in a second—but researchers are still trying to figure out exactly how to make such ultra-speedy connections happen.

A new chip, described in a paper in Nature Photonics by a team from Osaka University and Nanyang Technological University in Singapore, may give us a glimpse of our 6G future. The team was able to transmit data at a rate of 11 gigabits per second, topping 5G’s theoretical maximum speed of 10 gigabits per second and fast enough to stream 4K high-def video in real time. They believe the technology has room to grow, and with more development, might hit those blistering 6G speeds.

NTU final year PhD student Abhishek Kumar, Assoc Prof Ranjan Singh and postdoc Dr Yihao Yang. Dr Singh is holding the photonic topological insulator chip made from silicon, which can transmit terahertz waves at ultrahigh speeds. Credit: NTU Singapore
But first, some details about 5G and its predecessors so we can differentiate them from 6G.

Electromagnetic waves are characterized by a wavelength and a frequency; the wavelength is the distance a cycle of the wave covers (peak to peak or trough to trough, for example), and the frequency is the number of waves that pass a given point in one second. Cellphones use miniature radios to pick up electromagnetic signals and convert those signals into the sights and sounds on your phone.

4G wireless networks run on millimeter waves on the low- and mid-band spectrum, defined as a frequency of a little less (low-band) and a little more (mid-band) than one gigahertz (or one billion cycles per second). 5G kicked that up several notches by adding even higher frequency millimeter waves of up to 300 gigahertz, or 300 billion cycles per second. Data transmitted at those higher frequencies tends to be information-dense—like video—because they’re much faster.

The 6G chip kicks 5G up several more notches. It can transmit waves at more than three times the frequency of 5G: one terahertz, or a trillion cycles per second. The team says this yields a data rate of 11 gigabits per second. While that’s faster than the fastest 5G will get, it’s only the beginning for 6G. One wireless communications expert even estimates 6G networks could handle rates up to 8,000 gigabits per second; they’ll also have much lower latency and higher bandwidth than 5G.

Terahertz waves fall between infrared waves and microwaves on the electromagnetic spectrum. Generating and transmitting them is difficult and expensive, requiring special lasers, and even then the frequency range is limited. The team used a new material to transmit terahertz waves, called photonic topological insulators (PTIs). PTIs can conduct light waves on their surface and edges rather than having them run through the material, and allow light to be redirected around corners without disturbing its flow.

The chip is made completely of silicon and has rows of triangular holes. The team’s research showed the chip was able to transmit terahertz waves error-free.

Nanyang Technological University associate professor Ranjan Singh, who led the project, said, “Terahertz technology […] can potentially boost intra-chip and inter-chip communication to support artificial intelligence and cloud-based technologies, such as interconnected self-driving cars, which will need to transmit data quickly to other nearby cars and infrastructure to navigate better and also to avoid accidents.”

Besides being used for AI and self-driving cars (and, of course, downloading hundreds of hours of video in seconds), 6G would also make a big difference for data centers, IoT devices, and long-range communications, among other applications.

Given that 5G networks are still in the process of being set up, though, 6G won’t be coming on the scene anytime soon; a recent whitepaper on 6G from Japanese company NTTDoCoMo estimates we’ll see it in 2030, pointing out that wireless connection tech generations have thus far been spaced about 10 years apart; we got 3G in the early 2000s, 4G in 2010, and 5G in 2020.

In the meantime, as 6G continues to develop, we’re still looking forward to the widespread adoption of 5G.

Image Credit: Hans Braxmeier from Pixabay Continue reading

Posted in Human Robots

#437301 The Global Work Crisis: Automation, the ...

The alarm bell rings. You open your eyes, come to your senses, and slide from dream state to consciousness. You hit the snooze button, and eventually crawl out of bed to the start of yet another working day.

This daily narrative is experienced by billions of people all over the world. We work, we eat, we sleep, and we repeat. As our lives pass day by day, the beating drums of the weekly routine take over and years pass until we reach our goal of retirement.

A Crisis of Work
We repeat the routine so that we can pay our bills, set our kids up for success, and provide for our families. And after a while, we start to forget what we would do with our lives if we didn’t have to go back to work.

In the end, we look back at our careers and reflect on what we’ve achieved. It may have been the hundreds of human interactions we’ve had; the thousands of emails read and replied to; the millions of minutes of physical labor—all to keep the global economy ticking along.

According to Gallup’s World Poll, only 15 percent of people worldwide are actually engaged with their jobs. The current state of “work” is not working for most people. In fact, it seems we as a species are trapped by a global work crisis, which condemns people to cast away their time just to get by in their day-to-day lives.

Technologies like artificial intelligence and automation may help relieve the work burdens of millions of people—but to benefit from their impact, we need to start changing our social structures and the way we think about work now.

The Specter of Automation
Automation has been ongoing since the Industrial Revolution. In recent decades it has taken on a more elegant guise, first with physical robots in production plants, and more recently with software automation entering most offices.

The driving goal behind much of this automation has always been productivity and hence, profits: technology that can act as a multiplier on what a single human can achieve in a day is of huge value to any company. Powered by this strong financial incentive, the quest for automation is growing ever more pervasive.

But if automation accelerates or even continues at its current pace and there aren’t strong social safety nets in place to catch the people who are negatively impacted (such as by losing their jobs), there could be a host of knock-on effects, including more concentrated wealth among a shrinking elite, more strain on government social support, an increase in depression and drug dependence, and even violent social unrest.

It seems as though we are rushing headlong into a major crisis, driven by the engine of accelerating automation. But what if instead of automation challenging our fragile status quo, we view it as the solution that can free us from the shackles of the Work Crisis?

The Way Out
In order to undertake this paradigm shift, we need to consider what society could potentially look like, as well as the problems associated with making this change. In the context of these crises, our primary aim should be for a system where people are not obligated to work to generate the means to survive. This removal of work should not threaten access to food, water, shelter, education, healthcare, energy, or human value. In our current system, work is the gatekeeper to these essentials: one can only access these (and even then often in a limited form), if one has a “job” that affords them.

Changing this system is thus a monumental task. This comes with two primary challenges: providing people without jobs with financial security, and ensuring they maintain a sense of their human value and worth. There are several measures that could be implemented to help meet these challenges, each with important steps for society to consider.

Universal basic income (UBI)

UBI is rapidly gaining support, and it would allow people to become shareholders in the fruits of automation, which would then be distributed more broadly.

UBI trials have been conducted in various countries around the world, including Finland, Kenya, and Spain. The findings have generally been positive on the health and well-being of the participants, and showed no evidence that UBI disincentivizes work, a common concern among the idea’s critics. The most recent popular voice for UBI has been that of former US presidential candidate Andrew Yang, who now runs a non-profit called Humanity Forward.

UBI could also remove wasteful bureaucracy in administering welfare payments (since everyone receives the same amount, there’s no need to prevent false claims), and promote the pursuit of projects aligned with peoples’ skill sets and passions, as well as quantifying the value of tasks not recognized by economic measures like Gross Domestic Product (GDP). This includes looking after children and the elderly at home.

How a UBI can be initiated with political will and social backing and paid for by governments has been hotly debated by economists and UBI enthusiasts. Variables like how much the UBI payments should be, whether to implement taxes such as Yang’s proposed valued added tax (VAT), whether to replace existing welfare payments, the impact on inflation, and the impact on “jobs” from people who would otherwise look for work require additional discussion. However, some have predicted the inevitability of UBI as a result of automation.

Universal healthcare

Another major component of any society is the healthcare of its citizens. A move away from work would further require the implementation of a universal healthcare system to decouple healthcare from jobs. Currently in the US, and indeed many other economies, healthcare is tied to employment.

Universal healthcare such as Medicare in Australia is evidence for the adage “prevention is better than cure,” when comparing the cost of healthcare in the US with Australia on a per capita basis. This has already presented itself as an advancement in the way healthcare is considered. There are further benefits of a healthier population, including less time and money spent on “sick-care.” Healthy people are more likely and more able to achieve their full potential.

Reshape the economy away from work-based value

One of the greatest challenges in a departure from work is for people to find value elsewhere in life. Many people view their identities as being inextricably tied to their jobs, and life without a job is therefore a threat to one’s sense of existence. This presents a shift that must be made at both a societal and personal level.

A person can only seek alternate value in life when afforded the time to do so. To this end, we need to start reducing “work-for-a-living” hours towards zero, which is a trend we are already seeing in Europe. This should not come at the cost of reducing wages pro rata, but rather could be complemented by UBI or additional schemes where people receive dividends for work done by automation. This transition makes even more sense when coupled with the idea of deviating from using GDP as a measure of societal growth, and instead adopting a well-being index based on universal human values like health, community, happiness, and peace.

The crux of this issue is in transitioning away from the view that work gives life meaning and life is about using work to survive, towards a view of living a life that itself is fulfilling and meaningful. This speaks directly to notions from Maslow’s hierarchy of needs, where work largely addresses psychological and safety needs such as shelter, food, and financial well-being. More people should have a chance to grow beyond the most basic needs and engage in self-actualization and transcendence.

The question is largely around what would provide people with a sense of value, and the answers would differ as much as people do; self-mastery, building relationships and contributing to community growth, fostering creativity, and even engaging in the enjoyable aspects of existing jobs could all come into play.

Universal education

With a move towards a society that promotes the values of living a good life, the education system would have to evolve as well. Researchers have long argued for a more nimble education system, but universities and even most online courses currently exist for the dominant purpose of ensuring people are adequately skilled to contribute to the economy. These “job factories” only exacerbate the Work Crisis. In fact, the response often given by educational institutions to the challenge posed by automation is to find new ways of upskilling students, such as ensuring they are all able to code. As alluded to earlier, this is a limited and unimaginative solution to the problem we are facing.

Instead, education should be centered on helping people acknowledge the current crisis of work and automation, teach them how to derive value that is decoupled from work, and enable people to embrace progress as we transition to the new economy.

Disrupting the Status Quo
While we seldom stop to think about it, much of the suffering faced by humanity is brought about by the systemic foe that is the Work Crisis. The way we think about work has brought society far and enabled tremendous developments, but at the same time it has failed many people. Now the status quo is threatened by those very developments as we progress to an era where machines are likely to take over many job functions.

This impending paradigm shift could be a threat to the stability of our fragile system, but only if it is not fully anticipated. If we prepare for it appropriately, it could instead be the key not just to our survival, but to a better future for all.

Image Credit: mostafa meraji from Pixabay Continue reading

Posted in Human Robots